Generic placeholder image

Current Traditional Medicine

Editor-in-Chief

ISSN (Print): 2215-0838
ISSN (Online): 2215-0846

Review Article

Natural Flavonoids as an Intervention for Hepatic Encephalopathy: Preclinical Evidence-based Review

Author(s): Niraj Kumar Singh* and Ashutosh Solanki

Volume 10, Issue 5, 2024

Published on: 18 August, 2023

Article ID: e030823219377 Pages: 10

DOI: 10.2174/2215083810666230803093156

Price: $65

Abstract

Hepatic encephalopathy (HE) is a serious neuropsychiatric disorder caused in patients with both; acute and chronic liver diseases, which consists of various complications ranging from cognitive impairment, disorientation, confusion, and coma. The available therapies mainly focus on decreasing ammonia levels either through increasing its elimination or decreasing its production, some medications may subside the duration and limit the consequences of HE, but there is no complete available treatment for HE-like manifestation. Thus, there is a need to explore new pharmacotherapy for the treatment and management of HE. Flavonoids are polyphenolic compounds easily found in vegetables, fruits, flowers, beverages, and plants based foods. In modern research, flavonoids have gained attention due to their broad pharmacological properties, like anti-oxidant, antiviral, anti-inflammatory, cardioprotective, cytoprotective, and neuroprotective activity. Several preclinical studies suggest that various flavonoids have a potential therapeutic role in a variety of metabolic- related neurological disorders, including HE. This review focuses on all pre-clinical reports that highlight the neuroprotective potential of natural flavonoids for the management of HE. Based on numerous pre-clinical studies and taking into account the therapeutic effects of natural flavonoids, the present study illustrates the cellular and molecular mechanisms responsible for the potential role of natural flavonoids as pharmacotherapy for the management and treatment of HE.

Graphical Abstract

[1]
Rose CF, Amodio P, Bajaj JS, et al. Hepatic encephalopathy: Novel insights into classification, pathophysiology and therapy. J Hepatol 2020; 73(6): 1526-47.
[http://dx.doi.org/10.1016/j.jhep.2020.07.013] [PMID: 33097308]
[2]
Cordoba J, Ventura-Cots M, Simón-Talero M, et al. Characteristics, risk factors, and mortality of cirrhotic patients hospitalized for hepatic encephalopathy with and without acute-on-chronic liver failure (ACLF). J Hepatol 2014; 60(2): 275-81.
[http://dx.doi.org/10.1016/j.jhep.2013.10.004] [PMID: 24128414]
[3]
Tapper EB, Henderson JB, Parikh ND, Ioannou GN, Lok AS. Incidence of and risk factors for hepatic encephalopathy in a population-based cohort of americans with cirrhosis. Hepatol Commun 2019; 3(11): 1510-9.
[http://dx.doi.org/10.1002/hep4.1425] [PMID: 31701074]
[4]
Rudler M, Weiss N, Bouzbib C, Thabut D. Diagnosis and management of hepatic encephalopathy. Clin Liver Dis 2021; 25(2): 393-417.
[http://dx.doi.org/10.1016/j.cld.2021.01.008] [PMID: 33838857]
[5]
Elsaid MI, Rustgi VK. Epidemiology of hepatic encephalopathy. Clin Liver Dis 2020; 24(2): 157-74.
[http://dx.doi.org/10.1016/j.cld.2020.01.001] [PMID: 32245524]
[6]
Lauridsen MM, Jepsen P, Vilstrup H. Critical flicker frequency and continuous reaction times for the diagnosis of minimal hepatic encephalopathy. A comparative study of 154 patients with liver disease. Metab Brain Dis 2011; 26(2): 135-9.
[http://dx.doi.org/10.1007/s11011-011-9242-1] [PMID: 21484318]
[7]
Dellatore P, Cheung M, Mahpour NY, Tawadros A, Rustgi VK. Clinical manifestations of hepatic encephalopathy. Clin Liver Dis 2020; 24(2): 189-96.
[http://dx.doi.org/10.1016/j.cld.2020.01.010] [PMID: 32245526]
[8]
Vidal-Cevallos P, Chávez-Tapia NC, Uribe M. Current approaches to hepatic encephalopathy. Ann Hepatol 2022; 27(6): 100757.
[http://dx.doi.org/10.1016/j.aohep.2022.100757] [PMID: 36115576]
[9]
Tryc AB, Goldbecker A, Berding G, et al. Cirrhosis-related Parkinsonism: Prevalence, mechanisms and response to treatments. J Hepatol 2013; 58(4): 698-705.
[http://dx.doi.org/10.1016/j.jhep.2012.11.043] [PMID: 23220368]
[10]
Wijdicks EFM. Hepatic Encephalopathy. N Engl J Med 2016; 375(17): 1660-70.
[http://dx.doi.org/10.1056/NEJMra1600561] [PMID: 27783916]
[11]
Dabrowska K, Skowronska K, Popek M, Obara-Michlewska M, Albrecht J, Zielinska M. Roles of glutamate and glutamine transport in ammonia neurotoxicity: State of the Art and question marks. Endocr Metab Immune Disord Drug Targets 2018; 18(4): 306-15.
[http://dx.doi.org/10.2174/1871520618666171219124427] [PMID: 29256360]
[12]
Bosoi CR, Zwingmann C, Marin H, et al. Increased brain lactate is central to the development of brain edema in rats with chronic liver disease. J Hepatol 2014; 60(3): 554-60.
[http://dx.doi.org/10.1016/j.jhep.2013.10.011] [PMID: 24512824]
[13]
Rackayova V, Braissant O, McLin VA, Berset C, Lanz B, Cudalbu C. 1H and 31P magnetic resonance spectroscopy in a rat model of chronic hepatic encephalopathy: In vivo longitudinal measurements of brain energy metabolism. Metab Brain Dis 2016; 31(6): 1303-14.
[http://dx.doi.org/10.1007/s11011-015-9715-8] [PMID: 26253240]
[14]
Weiss N, Barbier Saint Hilaire P, Colsch B, et al. Cerebrospinal fluid metabolomics highlights dysregulation of energy metabolism in overt hepatic encephalopathy. J Hepatol 2016; 65(6): 1120-30.
[http://dx.doi.org/10.1016/j.jhep.2016.07.046] [PMID: 27520878]
[15]
Kano Y, Morishima R. Pallidal manganese concentration in hepatic encephalopathy. Clin Gastroenterol Hepatol 2021; 19(11): e114.
[http://dx.doi.org/10.1016/j.cgh.2020.07.039] [PMID: 32712397]
[16]
Butterworth RF. The liver–brain axis in liver failure: Neuroinflammation and encephalopathy. Nat Rev Gastroenterol Hepatol 2013; 10(9): 522-8.
[http://dx.doi.org/10.1038/nrgastro.2013.99] [PMID: 23817325]
[17]
Rose CF. Ammonia-lowering strategies for the treatment of hepatic encephalopathy. Clin Pharmacol Ther 2012; 92(3): 321-31.
[http://dx.doi.org/10.1038/clpt.2012.112] [PMID: 22871998]
[18]
Hadjihambi A, Arias N, Sheikh M, Jalan R. Hepatic encephalopathy: A critical current review. Hepatol Int 2018; 12(S1) (Suppl. 1): 135-47.
[http://dx.doi.org/10.1007/s12072-017-9812-3] [PMID: 28770516]
[19]
Gluud LL, Dam G, Borre M, et al. Lactulose, rifaximin or branched chain amino acids for hepatic encephalopathy: What is the evidence? Metab Brain Dis 2013; 28(2): 221-5.
[http://dx.doi.org/10.1007/s11011-012-9372-0] [PMID: 23275147]
[20]
Wu D, Wu SM, Lu J, Zhou YQ, Xu L, Guo CY. Rifaximin versus Nonabsorbable disaccharides for the treatment of hepatic encephalopathy: A Meta-Analysis. Gastroenterol Res Pract 2013; 2013: 1-9.
[http://dx.doi.org/10.1155/2013/236963] [PMID: 23653636]
[21]
Hosseinzadeh E, Hassanzadeh A, Marofi F, Alivand MR, Solali S. Flavonoid-based cancer therapy: An updated review. Anticancer Agents Med Chem 2020; 20(12): 1398-414.
[http://dx.doi.org/10.2174/1871520620666200423071759] [PMID: 32324520]
[22]
Zhu XJ, Zhao Z, Xin HH, et al. Isolation and dynamic expression of four genes involving in shikimic acid pathway in Camellia sinensis ‘Baicha 1’ during periodic albinism. Mol Biol Rep 2016; 43(10): 1119-27.
[http://dx.doi.org/10.1007/s11033-016-4045-4] [PMID: 27553670]
[23]
Cazarolli L, Zanatta L, Alberton E, et al. Flavonoids: Prospective drug candidates. Mini Rev Med Chem 2008; 8(13): 1429-40.
[http://dx.doi.org/10.2174/138955708786369564] [PMID: 18991758]
[24]
Ramesh P, Jagadeesan R, Sekaran S, Dhanasekaran A, Vimalraj S. Flavonoids: Classification, Function, and Molecular Mechanisms Involved in Bone Remodelling. Front Endocrinol (Lausanne) 2021; 12: 779638.
[http://dx.doi.org/10.3389/fendo.2021.779638] [PMID: 34887836]
[25]
Airoldi C, La Ferla B, D’Orazio G, Ciaramelli C, Palmioli A. Flavonoids in the Treatment of Alzheimer’s and Other Neurodegenerative Diseases. Curr Med Chem 2018; 25(27): 3228-46.
[http://dx.doi.org/10.2174/0929867325666180209132125] [PMID: 29424298]
[26]
Schroeter H, Boyd C, Spencer J, Williams R, Cadenas E, Riceevans C. MAPK signaling in neurodegeneration: Influences of flavonoids and of nitric oxide. Neurobiol Aging 2002; 23(5): 861-80.
[http://dx.doi.org/10.1016/S0197-4580(02)00075-1] [PMID: 12392791]
[27]
Alam M, Ahsan F, Mahmood T, et al. Meticulous parade on naringin respecting its pharmacological activities and novel formulations. Avicenna J Phytomed 2022; 12(5): 457-74.
[http://dx.doi.org/10.22038/AJP.2022.20001] [PMID: 36249455]
[28]
Ahmed S, Khan H, Aschner M, Hasan MM, Hassan STS. Therapeutic potential of naringin in neurological disorders. Food Chem Toxicol 2019; 132: 110646.
[http://dx.doi.org/10.1016/j.fct.2019.110646] [PMID: 31252025]
[29]
Ding S, Hu J, Yang J, et al. The inactivation of JAK2/STAT3 signaling and desensitization of M1 mAChR in minimal hepatic encephalopathy (MHE) and the protection of naringin against MHE. Cell Physiol Biochem 2014; 34(6): 1933-50.
[http://dx.doi.org/10.1159/000366391] [PMID: 25500624]
[30]
Ding S, Yang J, Huang X, et al. Dopamine Burden Induced the Inactivation of Sonic Hedgehog Signaling to Cognitive Decline in Minimal Hepatic Encephalopathy. Aging Dis 2017; 8(4): 442-57.
[http://dx.doi.org/10.14336/AD.2016.1123] [PMID: 28840059]
[31]
Mani R, Natesan V. Chrysin: Sources, beneficial pharmacological activities, and molecular mechanism of action. Phytochemistry 2018; 145: 187-96.
[http://dx.doi.org/10.1016/j.phytochem.2017.09.016] [PMID: 29161583]
[32]
El-Marasy SA, El Awdan SA, Abd-Elsalam RM. Protective role of chrysin on thioacetamide-induced hepatic encephalopathy in rats. Chem Biol Interact 2019; 299: 111-9.
[http://dx.doi.org/10.1016/j.cbi.2018.11.021] [PMID: 30500344]
[33]
Bhat SS, Prasad SK, Shivamallu C, et al. Genistein: A Potent Anti-Breast Cancer Agent. Curr Issues Mol Biol 2021; 43(3): 1502-17.
[http://dx.doi.org/10.3390/cimb43030106] [PMID: 34698063]
[34]
Sharifi-Rad J, Quispe C, Imran M, et al. Genistein: An Integrative Overview of Its Mode of Action, Pharmacological Properties, and Health Benefits. Oxid Med Cell Longev 2021; 2021: 1-36.
[http://dx.doi.org/10.1155/2021/3268136] [PMID: 34336089]
[35]
Ganai AA, Husain M. Genistein Alleviates Neuroinflammation and Restores Cognitive Function in Rat Model of Hepatic Encephalopathy: Underlying Mechanisms. Mol Neurobiol 2018; 55(2): 1762-72.
[http://dx.doi.org/10.1007/s12035-017-0454-1] [PMID: 28224477]
[36]
Rahmani S, Naraki K, Roohbakhsh A, Hayes AW, Karimi G. The protective effects of rutin on the liver, kidneys, and heart by counteracting organ toxicity caused by synthetic and natural compounds. Food Sci Nutr 2023; 11(1): 39-56.
[http://dx.doi.org/10.1002/fsn3.3041] [PMID: 36655104]
[37]
Khan RU, Rahman Z, Javed I, Muhammad F. Effect of vitamins, probiotics and protein on semen traits in post-molt male broiler breeders. Anim Reprod Sci 2012; 135(1-4): 85-90.
[http://dx.doi.org/10.1016/j.anireprosci.2012.09.005] [PMID: 23078867]
[38]
Janbaz KH, Saeed SA, Gilani AH. Protective effect of rutin on paracetamol- and CCl4-induced hepatotoxicity in rodents. Fitoterapia 2002; 73(7-8): 557-63.
[http://dx.doi.org/10.1016/S0367-326X(02)00217-4] [PMID: 12490212]
[39]
Mansour SZ, El-Marakby SM, Moawed FSM. Ameliorative effects of rutin on hepatic encephalopathy-induced by thioacetamide or gamma irradiation. J Photochem Photobiol B 2017; 172: 20-7.
[http://dx.doi.org/10.1016/j.jphotobiol.2017.05.005] [PMID: 28505498]
[40]
Huang T, Liu Y, Zhang C. Pharmacokinetics and bioavailability enhancement of baicalin: A review. Eur J Drug Metab Pharmacokinet 2019; 44(2): 159-68.
[http://dx.doi.org/10.1007/s13318-018-0509-3] [PMID: 30209794]
[41]
Ding S, Zhuge W, Hu J, et al. Baicalin reverses the impairment of synaptogenesis induced by dopamine burden via the stimulation of GABAAR-TrkB interaction in minimal hepatic encephalopathy. Psychopharmacology (Berl) 2018; 235(4): 1163-78.
[http://dx.doi.org/10.1007/s00213-018-4833-8] [PMID: 29404643]
[42]
Micek I, Nawrot J, Seraszek-Jaros A, et al. Taxifolin as a promising ingredient of cosmetics for adult skin. Antioxidants 2021; 10(10): 1625.
[http://dx.doi.org/10.3390/antiox10101625] [PMID: 34679758]
[43]
Okkay U, Ferah Okkay I, Cicek B, Aydin IC, Ozkaraca M. Hepatoprotective and neuroprotective effect of taxifolin on hepatic encephalopathy in rats. Metab Brain Dis 2022; 37(5): 1541-56.
[http://dx.doi.org/10.1007/s11011-022-00952-3] [PMID: 35298730]
[44]
Alonso M, Barcia E, González JF, et al. Functionalization of morin-loaded PLGA nanoparticles with phenylalanine dipeptide targeting the brain. Pharmaceutics 2022; 14(11): 2348.
[http://dx.doi.org/10.3390/pharmaceutics14112348] [PMID: 36365169]
[45]
Deriabina A, Prutskij T, Castillo Trejo L, Sanchez Gutierrez MP, Gonzalez Jimenez E. Experimental and theoretical study of fluorescent properties of morin. Molecules 2022; 27(15): 4965.
[http://dx.doi.org/10.3390/molecules27154965] [PMID: 35956920]
[46]
Shafey GM, Rashed ER, Zaki HF, Attia AS, El-Ghazaly MA. Molecular mechanisms involved in the effects of morin in experimental hepatic encephalopathy. Biofactors 2022; 48(5): 1166-78.
[http://dx.doi.org/10.1002/biof.1838] [PMID: 35332953]
[47]
Syed AA, Reza MI, Yadav H, Gayen JR. Hesperidin inhibits NOX4 mediated oxidative stress and inflammation by upregulating SIRT1 in experimental diabetic neuropathy. Exp Gerontol 2023; 172: 112064.
[http://dx.doi.org/10.1016/j.exger.2022.112064] [PMID: 36528304]
[48]
Li X, Huang W, Tan R, et al. The benefits of hesperidin in central nervous system disorders, based on the neuroprotective effect. Biomed Pharmacother 2023; 159: 114222.
[http://dx.doi.org/10.1016/j.biopha.2023.114222] [PMID: 36628819]
[49]
Abo El-Magd NF, El-Kashef DH, El-Sherbiny M, Eraky SM. Hepatoprotective and cognitive-enhancing effects of hesperidin against thioacetamide-induced hepatic encephalopathy in rats. Life Sci 2023; 313: 121280.
[http://dx.doi.org/10.1016/j.lfs.2022.121280] [PMID: 36526046]
[50]
Bhia M, Motallebi M, Abadi B, et al. Naringenin nano-delivery systems and their therapeutic applications. Pharmaceutics 2021; 13(2): 291.
[http://dx.doi.org/10.3390/pharmaceutics13020291] [PMID: 33672366]
[51]
Eraky SM, El-Kashef DH, El-Sherbiny M, Abo El-Magd NF. Naringenin mitigates thioacetamide-induced hepatic encephalopathy in rats: Targeting the JNK/Bax/caspase-8 apoptotic pathway. Food Funct 2023; 14(2): 1248-58.
[http://dx.doi.org/10.1039/D2FO03470K] [PMID: 36625308]
[52]
Liu D, Mao Y, Ding L, Zeng XA. Dihydromyricetin: A review on identification and quantification methods, biological activities, chemical stability, metabolism and approaches to enhance its bioavailability. Trends Food Sci Technol 2019; 91: 586-97.
[http://dx.doi.org/10.1016/j.tifs.2019.07.038] [PMID: 32288229]
[53]
Chen J, Wang X, Xia T, et al. Molecular mechanisms and therapeutic implications of dihydromyricetin in liver disease. Biomed Pharmacother 2021; 142: 111927.
[http://dx.doi.org/10.1016/j.biopha.2021.111927] [PMID: 34339914]
[54]
Cheng L, Wang X, Ma X, Xu H, Yang Y, Zhang D. Effect of dihydromyricetin on hepatic encephalopathy associated with acute hepatic failure in mice. Pharm Biol 2021; 59(1): 555-62.
[http://dx.doi.org/10.1080/13880209.2021.1917625] [PMID: 33982639]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy