Generic placeholder image

Current Drug Targets

Editor-in-Chief

ISSN (Print): 1389-4501
ISSN (Online): 1873-5592

Review Article

Therapeutic Potential of Plant Metabolites in Bone Apoptosis: A Review

Author(s): Kadirvel Devi and Thukani Sathanantham Shanmugarajan*

Volume 24, Issue 11, 2023

Published on: 04 August, 2023

Page: [857 - 869] Pages: 13

DOI: 10.2174/1389450124666230801094525

Price: $65

Abstract

Osteoporosis is one of the skeletal diseases of major health concern worldwide. Homeostasis of bone occurs with the help of cells, namely, osteoblasts and osteoclasts. Physiological and pathological conditions involve the death of the cells by apoptosis, autophagy, and necrosis. Apoptosis is a key factor in the growth, development, and maintenance of the skeleton. Apoptosis is generated by two pathways: the intrinsic (mitochondria) and extrinsic (death receptor) pathways. Osteoblast apoptosis is governed by the factors like B cell lymphoma 2 (Bcl-2) family proteins, extracellular signal-regulated kinase (ERK), mitogen-activated protein kinases (MAPK), phosphoinositide- 3-kinase/ protein kinase B (PI3-K/Akt), Janus kinase 2 (JAK2), bone morphogenetic protein (BMP), and bone matrix protein. Cytokines interact with osteocytes and induce apoptosis. A pro-inflammatory signal stimulates osteocyte apoptosis and increases osteocyte cytokines production. Current therapies have adverse effects which limit their applications. Various plant metabolites have shown beneficial effects on bone. The present review converses about normal bone metabolism and the mechanism of apoptosis leading to bone deterioration. Furthermore, it discusses the role of plant metabolites on bone apoptosis with related indications of efficacy in various experimental models.

Next »
Graphical Abstract

[1]
Miller PD. Management of severe osteoporosis. Expert Opin Pharmacother 2016; 17(4): 473-88.
[http://dx.doi.org/10.1517/14656566.2016.1124856] [PMID: 26605922]
[2]
Armas LAG, Recker RR. Pathophyssporosis. Endocrinol Metab Clin North Am 2012; 41(3): 475-86.
[http://dx.doi.org/10.1016/j.ecl.2012.04.006] [PMID: 22877425]
[3]
Manolagas SC. Birth and death of bone cells: Basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis. Endocr Rev 2000; 21(2): 115-37.
[http://dx.doi.org/10.1210/edrv.21.2.0395] [PMID: 10782361]
[4]
Gunjegaonkar SM, Shanmugarajan TS. Methyl jasmonate a stress phytohormone attenuates LPS induced in vivo and in vitro arthritis. Mol Biol Rep 2019; 46(1): 647-56.
[http://dx.doi.org/10.1007/s11033-018-4520-1] [PMID: 30498880]
[5]
Song S, Guo Y, Yang Y, Fu D. Advances in pathogenesis and therapeutic strategies for osteoporosis. Pharmacol Ther 2022; 237: 108168.
[http://dx.doi.org/10.1016/j.pharmthera.2022.108168] [PMID: 35283172]
[6]
Giner M, Montoya MJ, Vázquez MA, Miranda C, Pérez-Cano R. Differences in osteogenic and apoptotic genes between osteoporotic and osteoarthritic patients. BMC Musculoskelet Disord 2013; 14(1): 41.
[http://dx.doi.org/10.1186/1471-2474-14-41] [PMID: 23351916]
[7]
Elmore S. Apoptosis: A review of programmed cell death. Toxicol Pathol 2007; 35(4): 495-516.
[http://dx.doi.org/10.1080/01926230701320337] [PMID: 17562483]
[8]
Almeida M. Aging mechanisms in bone. Bonekey Rep 2012; 1(7): 102.
[http://dx.doi.org/10.1038/bonekey.2012.102] [PMID: 23705067]
[9]
Chandra A, Rajawat J. Skeletal aging and osteoporosis: Mechanisms and therapeutics. Int J Mol Sci 2021; 22(7): 3553.
[http://dx.doi.org/10.3390/ijms22073553]
[10]
Venugopalan SK, Shanmugarajan TS, Navaratnam V, Mansor SM, Ramanathan S. Dexamethasone provoked mitochondrial perturbations in thymus: Possible role of N-acetylglucosamine in restoration of mitochondrial function. Biomed Pharmacother 2016; 83: 1485-92.
[http://dx.doi.org/10.1016/j.biopha.2016.08.068] [PMID: 27619103]
[11]
Li Z, Li D, Chen R, Gao S, Xu Z, Li N. Cell death regulation: A new way for natural products to treat osteoporosis. Pharmacol Res 2023; 187: 106635.
[http://dx.doi.org/10.1016/j.phrs.2022.106635] [PMID: 36581167]
[12]
Liu X, Bruxvoort KJ, Zylstra CR, et al. Lifelong accumulation of bone in mice lacking Pten in osteoblasts. Proc Natl Acad Sci 2007; 104(7): 2259-64.
[http://dx.doi.org/10.1073/pnas.0604153104] [PMID: 17287359]
[13]
Liu L, Liu L, Bo T, et al. Puerarin suppress apoptosis of human osteoblasts via ERK signaling pathway. Int J Endocrinol 2013; 2013: 1-6.
[http://dx.doi.org/10.1155/2013/786574] [PMID: 23843790]
[14]
Shanmugarajan TS, Devaki T. Hepatic perturbations provoked by azathioprine: A paradigm to rationalize the cytoprotective potential of Ficus hispida Linn. Toxicol Mech Methods 2009; 19(2): 129-34.
[http://dx.doi.org/10.1080/15376510802322489] [PMID: 19778257]
[15]
Weinstein RS. Glucocorticoid-induced osteonecrosis. Endocrine 2012; 41(2): 183-90.
[http://dx.doi.org/10.1007/s12020-011-9580-0] [PMID: 22169965]
[16]
Wang T, Liu X, He C. Glucocorticoid-induced autophagy and apoptosis in bone. Apoptosis 2020; 25(3-4): 157-68.
[http://dx.doi.org/10.1007/s10495-020-01599-0] [PMID: 32157482]
[17]
Okamoto K, Nakashima T, Shinohara M, et al. Osteoimmunology: The conceptual framework unifying the immune and skeletal systems. Physiol Rev 2017; 97(4): 1295-349.
[http://dx.doi.org/10.1152/physrev.00036.2016] [PMID: 28814613]
[18]
Redlich K, Smolen JS. Inflammatory bone loss: Pathogenesis and therapeutic intervention. Nat Rev Drug Discov 2012; 11(3): 234-50.
[http://dx.doi.org/10.1038/nrd3669] [PMID: 22378270]
[19]
Kobayashi K, Takahashi N, Jimi E, et al. Tumor necrosis factor α stimulates osteoclast differentiation by a mechanism independent of the ODF/RANKL-RANK interaction. J Exp Med 2000; 191(2): 275-86.
[http://dx.doi.org/10.1084/jem.191.2.275] [PMID: 10637272]
[20]
Lam J, Takeshita S, Barker JE, Kanagawa O, Ross FP, Teitelbaum SL. TNF-α induces osteoclastogenesis by direct stimulation of macrophages exposed to permissive levels of RANK ligand. J Clin Invest 2000; 106(12): 1481-8.
[http://dx.doi.org/10.1172/JCI11176] [PMID: 11120755]
[21]
Gowen M, Wood DD, Ihrie EJ, McGuire MKB, Russell RGG. An interleukin 1 like factor stimulates bone resorption in vitro. Nature 1983; 306(5941): 378-80.
[http://dx.doi.org/10.1038/306378a0] [PMID: 6606132]
[22]
Pfeilschifter J, Chenu C, Bird A, Mundy GR, Roodman DG. Interleukin-1 and tumor necrosis factor stimulate the formation of human osteoclastlike cells in vitro. J Bone Miner Res 1989; 4(1): 113-8.
[http://dx.doi.org/10.1002/jbmr.5650040116] [PMID: 2785743]
[23]
Jilka RL, Weinstein RS, Parfitt AM, Manolagas SC. Quantifying osteoblast and osteocyte apoptosis: Challenges and rewards. J Bone Miner Res 2007; 22(10): 1492-501.
[http://dx.doi.org/10.1359/jbmr.070518] [PMID: 17542686]
[24]
Nanes MS. Tumor necrosis factor-α: Molecular and cellular mechanisms in skeletal pathology. Gene 2003; 321: 1-15.
[http://dx.doi.org/10.1016/S0378-1119(03)00841-2] [PMID: 14636987]
[25]
Abbas S, Zhang YH, Clohisy JC, Abu-Amer Y. Tumor necrosis factor-α inhibits pre-osteoblast differentiation through its type-1 receptor. Cytokine 2003; 22(1-2): 33-41.
[http://dx.doi.org/10.1016/S1043-4666(03)00106-6] [PMID: 12946103]
[26]
Bertolini DR, Nedwin GE, Bringman TS, Smith DD, Mundy GR. Stimulation of bone resorption and inhibition of bone formation in vitro by human tumour necrosis factors. Nature 1986; 319(6053): 516-8.
[http://dx.doi.org/10.1038/319516a0] [PMID: 3511389]
[27]
Kaneki H, Guo R, Chen D, et al. Tumor necrosis factor promotes Runx2 degradation through up-regulation of Smurf1 and Smurf2 in osteoblasts. J Biol Chem 2006; 281(7): 4326-33.
[http://dx.doi.org/10.1074/jbc.M509430200] [PMID: 16373342]
[28]
Pavalko FM, Gerard RL, Ponik SM, Gallagher PJ, Jin Y, Norvell SM. Fluid shear stress inhibits TNF-α-induced apoptosis in osteoblasts: A role for fluid shear stress-induced activation of PI3-kinase and inhibition of caspase-3. J Cell Physiol 2003; 194(2): 194-205.
[http://dx.doi.org/10.1002/jcp.10221] [PMID: 12494458]
[29]
Steeve KT, Marc P, Sandrine T, Dominique H, Yannick F. IL-6, RANKL, TNF-alpha/IL-1: Interrelations in bone resorption pathophysiology. Cytokine Growth Factor Rev 2004; 15(1): 49-60.
[http://dx.doi.org/10.1016/j.cytogfr.2003.10.005] [PMID: 14746813]
[30]
Hofbauer LC, Lacey DL, Dunstan CR, Spelsberg TC, Riggs BL, Khosla S. Interleukin-1β and tumor necrosis factor-α, but not interleukin-6, stimulate osteoprotegerin ligand gene expression in human osteoblastic cells. Bone 1999; 25(3): 255-9.
[http://dx.doi.org/10.1016/S8756-3282(99)00162-3] [PMID: 10495128]
[31]
Metzger CE, Narayanan A, Zawieja DC, Bloomfield SA. Inflammatory bowel disease in a rodent model alters osteocyte protein levels controlling bone turn over. J Bone Miner Res 2017; 32(4): 802-13.
[http://dx.doi.org/10.1002/jbmr.3027] [PMID: 27796050]
[32]
Narayanan SA, Metzger CE, Bloomfield SA, Zawieja DC. Inflammation-induced lymphatic architecture and bone turnover changes are ameliorated by irisin treatment in chronic inflammatory bowel disease. FASEB J 2018; 32(9): 4848-61.
[http://dx.doi.org/10.1096/fj.201800178R] [PMID: 29596023]
[33]
Liao C, Cheng T, Wang S, Zhang C, Jin L, Yang Y. Shear stress inhibits IL-17A-mediated induction of osteoclastogenesis via osteocyte pathways. Bone 2017; 101: 10-20.
[http://dx.doi.org/10.1016/j.bone.2017.04.003] [PMID: 28414140]
[34]
Li JY, D’Amelio P, Robinson J, et al. IL-17 is increased in humans with primary hyperparathyroidism and mediates PTH-induced bone loss in mice. Cell Metab 2015; 22(5): 799-810.
[http://dx.doi.org/10.1016/j.cmet.2015.09.012] [PMID: 26456334]
[35]
Wu Q, Zhou X, Huang D, Ji Y, Kang F. IL-6 enhances osteocyte mediated osteoclastogenesis by promoting JAK2 and RANKL activity in vitro. Cell Physiol Biochem 2017; 41(4): 1360-9.
[http://dx.doi.org/10.1159/000465455] [PMID: 28278513]
[36]
Graves DT, Alshabab A, Albiero ML, et al. Osteocytes play an important role in experimental periodontitis in healthy and diabetic mice through expression of RANKL. J Clin Periodontol 2018; 45(3): 285-92.
[http://dx.doi.org/10.1111/jcpe.12851] [PMID: 29220094]
[37]
Kim JH, Lee DE, Cha JH, Bak EJ, Yoo YJ. Receptor activator of nuclear factor-κB ligand and sclerostin expression in osteocytes of alveolar bone in rats with ligature-induced periodontitis. J Periodontol 2014; 85(11): e370-8.
[http://dx.doi.org/10.1902/jop.2014.140230] [PMID: 25070541]
[38]
Kim JH, Kim AR, Choi YH, et al. Tumor necrosis factor-α antagonist diminishes osteocytic RANKL and sclerostin expression in diabetes rats with periodontitis. PLoS One 2017; 12(12): e0189702.
[http://dx.doi.org/10.1371/journal.pone.0189702] [PMID: 29240821]
[39]
Metzger CE, Narayanan SA. The Role of Osteocytes in Inflammatory Bone Loss. Front Endocrinol (Lausanne) 2019; 10: 285.
[http://dx.doi.org/10.3389/fendo.2019.00285] [PMID: 31139147]
[40]
Silva RAB, Sousa-Pereira AP, Lucisano MP, et al. Alendronate inhibits osteocyte apoptosis and inflammation via IL -6, inhibiting bone resorption in periapical lesions of ovariectomized rats. Int Endod J 2020; 53(1): 84-96.
[http://dx.doi.org/10.1111/iej.13206] [PMID: 31429089]
[41]
Abdel-Naim AB, Alghamdi AA, Algandaby MM, et al. Rutin isolated from chrozophora tinctoria enhances bone cell proliferation and ossification markers. Oxid Med Cell Longev 2018; 2018: 1-10.
[http://dx.doi.org/10.1155/2018/5106469] [PMID: 29636845]
[42]
Saikumar P, Dong Z, Mikhailov V, Denton M, Weinberg JM, Venkatachalam MA. Apoptosis: Definition, mechanisms, and relevance to disease. Am J Med 1999; 107(5): 489-506.
[http://dx.doi.org/10.1016/S0002-9343(99)00259-4] [PMID: 10569305]
[43]
Julien O, Wells JA. Caspases and their substrates. Cell Death Differ 2017; 24(8): 1380-9.
[http://dx.doi.org/10.1038/cdd.2017.44] [PMID: 28498362]
[44]
Boatright KM, Renatus M, Scott FL, et al. A unified model for apical caspase activation. Mol Cell 2003; 11(2): 529-41.
[http://dx.doi.org/10.1016/S1097-2765(03)00051-0] [PMID: 12620239]
[45]
Dorstyn L, Akey CW, Kumar S. New insights into apoptosome structure and function. Cell Death Differ 2018; 25(7): 1194-208.
[http://dx.doi.org/10.1038/s41418-017-0025-z] [PMID: 29765111]
[46]
Wei MC, Zong WX, Cheng EHY, et al. Proapoptotic BAX and BAK: A requisite gateway to mitochondrial dysfunction and death. Science 2001; 292(5517): 727-30.
[http://dx.doi.org/10.1126/science.1059108] [PMID: 11326099]
[47]
Edlich F, Banerjee S, Suzuki M, et al. Bcl- xL retrotranslocates Bax from the mitochondria into the cytosol. Cell 2011; 145(1): 104-16.
[http://dx.doi.org/10.1016/j.cell.2011.02.034] [PMID: 21458670]
[48]
Todt F, Cakir Z, Reichenbach F, et al. Differential retrotranslocation of mitochondrial Bax and Bak. EMBO J 2015; 34(1): 67-80.
[http://dx.doi.org/10.15252/embj.201488806] [PMID: 25378477]
[49]
Schellenberg B, Wang P, Keeble JA, et al. Bax exists in a dynamic equilibrium between the cytosol and mitochondria to control apoptotic priming. Mol Cell 2013; 49(5): 959-71.
[http://dx.doi.org/10.1016/j.molcel.2012.12.022] [PMID: 23375500]
[50]
Letai A, Bassik MC, Walensky LD, Sorcinelli MD, Weiler S, Korsmeyer SJ. Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell 2002; 2(3): 183-92.
[http://dx.doi.org/10.1016/S1535-6108(02)00127-7] [PMID: 12242151]
[51]
Dewson G, Kratina T, Sim HW, et al. To trigger apoptosis, Bak exposes its BH3 domain and homodimerizes via BH3: Groove interactions. Mol Cell 2008; 30(3): 369-80.
[http://dx.doi.org/10.1016/j.molcel.2008.04.005] [PMID: 18471982]
[52]
Dewson G, Ma S, Frederick P, et al. Bax dimerizes via a symmetric BH3: Groove interface during apoptosis. Cell Death Differ 2012; 19(4): 661-70.
[http://dx.doi.org/10.1038/cdd.2011.138] [PMID: 22015607]
[53]
Subburaj Y, Cosentino K, Axmann M, et al. Bax monomers form dimer units in the membrane that further self-assemble into multiple oligomeric species. Nat Commun 2015; 6(1): 8042.
[http://dx.doi.org/10.1038/ncomms9042] [PMID: 26271728]
[54]
Bleicken S, Classen M, Padmavathi PVL, et al. Molecular details of bax activation, oligomerization, and membrane insertion. J Biol Chem 2010; 285(9): 6636-47.
[http://dx.doi.org/10.1074/jbc.M109.081539] [PMID: 20008353]
[55]
Rongvaux A, Jackson R, Harman CCD, et al. Apoptotic caspases prevent the induction of type I interferons by mitochondrial DNA. Cell 2014; 159(7): 1563-77.
[http://dx.doi.org/10.1016/j.cell.2014.11.037] [PMID: 25525875]
[56]
White MJ, McArthur K, Metcalf D, et al. Apoptotic caspases suppress mtDNA-induced STING-mediated type I IFN production. Cell 2014; 159(7): 1549-62.
[http://dx.doi.org/10.1016/j.cell.2014.11.036] [PMID: 25525874]
[57]
Llambi F, Moldoveanu T, Tait SWG, et al. A unified model of mammalian BCL-2 protein family interactions at the mitochondria. Mol Cell 2011; 44(4): 517-31.
[http://dx.doi.org/10.1016/j.molcel.2011.10.001] [PMID: 22036586]
[58]
O’Neill KL, Huang K, Zhang J, Chen Y, Luo X. Inactivation of prosurvival Bcl-2 proteins activates Bax/Bak through the outer mitochondrial membrane. Genes Dev 2016; 30(8): 973-88.
[http://dx.doi.org/10.1101/gad.276725.115] [PMID: 27056669]
[59]
Fang J, Zhao X, Li S, et al. Protective mechanism of artemisinin on rat bone marrow-derived mesenchymal stem cells against apoptosis induced by hydrogen peroxide via activation of c-Raf-Erk1/2-p90rsk-CREB pathway. Stem Cell Res Ther 2019; 10(1): 312.
[http://dx.doi.org/10.1186/s13287-019-1419-2] [PMID: 31655619]
[60]
Saito Y, Nishio K, Akazawa YO, et al. Cytoprotective effects of vitamin E homologues against glutamate-induced cell death in immature primary cortical neuron cultures: Tocopherols and tocotrienols exert similar effects by antioxidant function. Free Radic Biol Med 2010; 49(10): 1542-9.
[http://dx.doi.org/10.1016/j.freeradbiomed.2010.08.016] [PMID: 20736061]
[61]
Rezk BM, van der Vijgh WJ, Bast A, Haenen GR. α-tocopheryl phosphate is a novel apoptotic agent. Front Biosci 2007; 12(1): 2013-9.
[http://dx.doi.org/10.2741/2206] [PMID: 17127439]
[62]
Ogru E, Libinaki R, Gianello R, et al. Modulation of cell proliferation and gene expression by α-tocopheryl phosphates: Relevance to atherosclerosis and inflammation. Ann N Y Acad Sci 2004; 1031(1): 405-11.
[http://dx.doi.org/10.1196/annals.1331.058] [PMID: 15753182]
[63]
Yanamala N, Kapralov AA, Djukic M, et al. Structural re-arrangement and peroxidase activation of cytochrome c by anionic analogues of vitamin E, tocopherol succinate and tocopherol phosphate. J Biol Chem 2014; 289(47): 32488-98.
[http://dx.doi.org/10.1074/jbc.M114.601377] [PMID: 25278024]
[64]
Wu Z, Zheng X, Meng L, et al. α-Tocopherol, especially α-tocopherol phosphate, exerts antiapoptotic and angiogenic effects on rat bone marrow-derived endothelial progenitor cells under high-glucose and hypoxia conditions. J Vasc Surg 2018; 67(4): 1263-1273.e1.
[http://dx.doi.org/10.1016/j.jvs.2017.02.051] [PMID: 28571880]
[65]
Li W, Liu Y, Wang B, et al. Protective effect of berberine against oxidative stress-induced apoptosis in rat bone marrow-derived mesenchymal stem cells. Exp Ther Med 2016; 12(6): 4041-8.
[http://dx.doi.org/10.3892/etm.2016.3866] [PMID: 28101183]
[66]
Huang Q, Gao B, Jie Q, et al. Ginsenoside-Rb2 displays anti-osteoporosis effects through reducing oxidative damage and bone-resorbing cytokines during osteogenesis. Bone 2014; 66: 306-14.
[http://dx.doi.org/10.1016/j.bone.2014.06.010] [PMID: 24933344]
[67]
Liu Y, Chen LY, Sokolowska M, et al. The fish oil ingredient, docosahexaenoic acid, activates cytosolic phospholipase A 2via GPR120 receptor to produce prostaglandin E 2 and plays an anti-inflammatory role in macrophages. Immunology 2014; 143(1): 81-95.
[http://dx.doi.org/10.1111/imm.12296] [PMID: 24673159]
[68]
Katsuma S, Hatae N, Yano T, et al. Free fatty acids inhibit serum deprivation-induced apoptosis through GPR120 in a murine enteroendocrine cell line STC-1. J Biol Chem 2005; 280(20): 19507-15.
[http://dx.doi.org/10.1074/jbc.M412385200] [PMID: 15774482]
[69]
Gao B, Huang Q, Jie Q, et al. Ginsenoside-Rb2 inhibits dexamethasone-induced apoptosis through promotion of GPR120 induction in bone marrow-derived mesenchymal stem cells. Stem Cells Dev 2015; 24(6): 781-90.
[http://dx.doi.org/10.1089/scd.2014.0367] [PMID: 25314926]
[70]
Ho MX, Poon CCW, Wong KC, Qiu ZC, Wong MS, Wong M. Icariin, but not genistein, exerts osteogenic and anti-apoptotic effects in osteoblastic cells by selective activation of non-genomic ERα signaling. Front Pharmacol 2018; 9: 474.
[http://dx.doi.org/10.3389/fphar.2018.00474] [PMID: 29867480]
[71]
Wang S, Wang S, Wang X, et al. Effects of icariin on modulating gut microbiota and regulating metabolite alterations to prevent bone loss in ovariectomized rat model. Front Endocrinol 2022; 13: 874849.
[http://dx.doi.org/10.3389/fendo.2022.874849] [PMID: 35399950]
[72]
Lin H, Gao X, Chen G, et al. Indole-3-carbinol as inhibitors of glucocorticoid-induced apoptosis in osteoblastic cells through blocking ROS-mediated Nrf2 pathway. Biochem Biophys Res Commun 2015; 460(2): 422-7.
[http://dx.doi.org/10.1016/j.bbrc.2015.03.049] [PMID: 25795137]
[73]
Houghton CA, Fassett RG, Coombes JS. Sulforaphane: Translational research from laboratory bench to clinic. Nutr Rev 2013; 71(11): 709-26.
[http://dx.doi.org/10.1111/nure.12060] [PMID: 24147970]
[74]
Lin H, Wei B, Li G, et al. Sulforaphane reverses glucocorticoid-induced apoptosis in osteoblastic cells through regulation of the Nrf2 pathway. Drug Des Devel Ther 2014; 8: 973-82.
[http://dx.doi.org/10.2147/DDDT.S65410] [PMID: 25071366]
[75]
Bhargavan B, Gautam AK, Singh D, et al. Methoxylated isoflavones, cajanin and isoformononetin, have non-estrogenic bone forming effect via differential mitogen activated protein kinase (MAPK) signaling. J Cell Biochem 2009; 108(2): 388-99.
[http://dx.doi.org/10.1002/jcb.22264] [PMID: 19598169]
[76]
Li SY, Jia YH, Sun WG, et al. Stabilization of mitochondrial function by tetramethylpyrazine protects against kainate-induced oxidative lesions in the rat hippocampus. Free Radic Biol Med 2010; 48(4): 597-608.
[http://dx.doi.org/10.1016/j.freeradbiomed.2009.12.004] [PMID: 20006702]
[77]
Li WM, Liu HT, Li XY, et al. The effect of tetramethylpyrazine on hydrogen peroxide-induced oxidative damage in human umbilical vein endothelial cells. Basic Clin Pharmacol Toxicol 2009; 106(1): 45-52.
[http://dx.doi.org/10.1111/j.1742-7843.2009.00470.x] [PMID: 19821832]
[78]
Liao SL, Kao TK, Chen WY, et al. Tetramethylpyrazine reduces ischemic brain injury in rats. Neurosci Lett 2004; 372(1-2): 40-5.
[http://dx.doi.org/10.1016/j.neulet.2004.09.013] [PMID: 15531085]
[79]
Fang Y, Chu L, Li L, et al. Tetramethylpyrazine protects bone marrow-derived mesenchymal stem cells against hydrogen peroxide-induced apoptosis through PI3K/Akt and ERK1/2 pathways. Biol Pharm Bull 2017; 40(12): 2146-52.
[http://dx.doi.org/10.1248/bpb.b17-00524] [PMID: 28978811]
[80]
Zhang JK, Yang L, Meng GL, et al. Protective effect of tetrahydroxystilbene glucoside against hydrogen peroxide-induced dysfunction and oxidative stress in osteoblastic MC3T3-E1 cells. Eur J Pharmacol 2012; 689(1-3): 31-7.
[http://dx.doi.org/10.1016/j.ejphar.2012.05.045] [PMID: 22683865]
[81]
Li X, Li Y, Chen J, et al. Tetrahydroxystilbene glucoside attenuates MPP+-induced apoptosis in PC12 cells by inhibiting ROS generation and modulating JNK activation. Neurosci Lett 2010; 483(1): 1-5.
[http://dx.doi.org/10.1016/j.neulet.2010.07.027] [PMID: 20643188]
[82]
Qin R, Li X, Li G, et al. Protection by tetrahydroxystilbene glucoside against neurotoxicity induced by MPP+: The involvement of PI3K/Akt pathway activation. Toxicol Lett 2011; 202(1): 1-7.
[http://dx.doi.org/10.1016/j.toxlet.2011.01.001] [PMID: 21237255]
[83]
Tao L, Li X, Zhang L, et al. Protective effect of tetrahydroxystilbene glucoside on 6-OHDA-induced apoptosis in PC12 cells through the ROS-NO pathway. PLoS One 2011; 6(10): e26055.
[http://dx.doi.org/10.1371/journal.pone.0026055] [PMID: 21998750]
[84]
Choi EM, Kim GH, Lee YS. Protective effects of dehydrocostus lactone against hydrogen peroxide-induced dysfunction and oxidative stress in osteoblastic MC3T3-E1 cells. Toxicol in vitro 2009; 23(5): 862-7.
[http://dx.doi.org/10.1016/j.tiv.2009.05.005] [PMID: 19457452]
[85]
Chen S, Wang Y, Yang Y, et al. Psoralen inhibited apoptosis of osteoporotic osteoblasts by modulating IRE1-ASK1-JNK pathway. BioMed Res Int 2017; 2017: 1-9.
[http://dx.doi.org/10.1155/2017/3524307] [PMID: 28349059]
[86]
Lee SR, Kwak JH, Park DS, Pyo S. Protective effect of kobophenol A on nitric oxide-induced cell apoptosis in human osteoblast-like MG-63 cells: Involvement of JNK, NF-κB and AP-1 pathways. Int Immunopharmacol 2011; 11(9): 1251-9.
[http://dx.doi.org/10.1016/j.intimp.2011.04.004] [PMID: 21511059]
[87]
Wei Y, Jia J, Jin X, Tong W, Tian H. Resveratrol ameliorates inflammatory damage and protects against osteoarthritis in a rat model of osteoarthritis. Mol Med Rep 2017; 17(1): 1493-8.
[http://dx.doi.org/10.3892/mmr.2017.8036] [PMID: 29138829]
[88]
Wang Y, Wang WL, Xie WL, et al. Puerarin stimulates proliferation and differentiation and protects against cell death in human osteoblastic MG-63 cells via ER-dependent MEK/ERK and PI3K/Akt activation. Phytomedicine 2013; 20(10): 787-96.
[http://dx.doi.org/10.1016/j.phymed.2013.03.005] [PMID: 23639192]
[89]
Li B, Wang Y, Gong S, et al. Puerarin improves OVX-induced osteoporosis by regulating phospholipid metabolism and biosynthesis of unsaturated fatty acids based on serum metabolomics. Phytomedicine 2022; 102: 154198.
[http://dx.doi.org/10.1016/j.phymed.2022.154198] [PMID: 35636175]
[90]
Yang Y, Zhu Z, Wang D, et al. Tanshinol alleviates impaired bone formation by inhibiting adipogenesis via KLF15/PPARγ2 signaling in GIO rats. Acta Pharmacol Sin 2018; 39(4): 633-41.
[http://dx.doi.org/10.1038/aps.2017.134] [PMID: 29323335]
[91]
Huang Q, Gao B, Wang L, et al. Ophiopogonin D: A new herbal agent against osteoporosis. Bone 2015; 74: 18-28.
[http://dx.doi.org/10.1016/j.bone.2015.01.002] [PMID: 25582622]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy