Generic placeholder image

Current Drug Targets

Editor-in-Chief

ISSN (Print): 1389-4501
ISSN (Online): 1873-5592

Review Article

Co-Crystallization: A Novel Technique to Improvise the Pharmaceutical Characteristics of API’s

Author(s): Aditay Kumar and Mahesh Kumar*

Volume 24, Issue 11, 2023

Published on: 04 August, 2023

Page: [870 - 888] Pages: 19

DOI: 10.2174/1389450124666230726152037

Price: $65

conference banner
Abstract

Background: The poor water solubility of an active pharmaceutical ingredient leads to a lower dissolution profile that in turn results in poor bioavailability of drugs. Various approaches like solid dispersion, nano-technology, complexation, and micronization techniques, etc. are frequently used by pharmaceutical researchers to overcome these issues. In this context, crystal engineering emerges as a viable technique.

Objective: This review endeavors to cover the latest developments in the field of solubility enhancement using crystal engineering techniques.

Methods: Extensive literature survey was conducted in order to gain information on the past and present developments in the field of crystal engineering.

Results: In the co-crystallization process, the API and coformer interact with each other in a fixed stoichiometric ratio. The backbone of co-crystals is structurally repeating units called supramolecular synthons. These synthons provide the flexibility of transfer from one co-crystal system to another, making crystal engineering a viable approach for physicochemical property modification. Further, the availability of a large number of food and drug grade coformers with a diverse functional group and a range of preparation methods provide an excellent opportunity for tuning up desired physicochemical properties of an API.

Conclusion: This review focuses on the latest developments in the field of crystal engineering in the context of screening, preparation methods, characterization, and their application in the pharmaceutical field. Also, the concern over scale-up and regulatory guidelines are covered.

Graphical Abstract

[1]
Berge SM, ighley LD, Monkhouse DC. Pharmaceutical salts. J Pharm Sci 66(1): 1-9.
[2]
Kato Y, Okamoto Y, Nagasawa S, Ueki T. Solubility of a new polymorph of phenobarbital obtained by crystallization in the presence of phenytoin. Chem Pharm Bull 1981; 29(11): 3410-3.
[http://dx.doi.org/10.1248/cpb.29.3410]
[3]
Desiraju GR. Crystal engineering: The design of organic solids. Amsterdam.: Elsevier; 1998; p. 54.
[4]
Ling AR, Baker JL. XCVI.—Halogen derivatives of quinone. Part III. Derivatives of quinhydrone. J Chem Soc Trans 1893; 63(0): 1314-27.
[http://dx.doi.org/10.1039/CT8936301314]
[5]
Aakeröy CB, Salmon DJ. Building co-crystals with molecular sense and supramolecular sensibility. Cryst Eng Comm 2005; 7(72): 439-48.
[http://dx.doi.org/10.1039/b505883j]
[6]
Almarsson, Zaworotko MJ. Crystal engineering of the composition of pharmaceutical phases. Do pharmaceutical co-crystals represent a new path to improved medicines? Chem Commun 2004; 17(17): 1889-96.
[http://dx.doi.org/10.1039/b402150a] [PMID: 15340589]
[7]
Wohler F. Untersuchungenuber des chinons. Annalen. Chem Pharm 1844; 51: 145-63.
[8]
Desiraju GR, Parshall GW. Crystal engineering: the design of organic solids. Mater Sci Monogr 1989; p. 54.
[9]
Savjani KT, Gajjar AK, Savjani JK. Drug solubility: importance and enhancement techniques. ISRN Pharm 2012; 2012: 1-10.
[http://dx.doi.org/10.5402/2012/195727] [PMID: 22830056]
[10]
Aitipamula S, Banerjee R, Bansal AK, et al. Polymorphs, salts, and co-crystals: What’s in a name? Cryst Growth Des 2012; 12(5): 2147-52.
[http://dx.doi.org/10.1021/cg3002948]
[11]
Qiao N, Li M, Schlindwein W, Malek N, Davies A, Trappitt G. Pharmaceutical cocrystals: An overview. Int J Pharm 2011; 419(1-2): 1-11.
[http://dx.doi.org/10.1016/j.ijpharm.2011.07.037] [PMID: 21827842]
[12]
Desiraju GR. C–H…O and other weak hydrogen bonds. From crystal engineering to virtual screening. Chem Commun (Camb) 2005; 24(24): 2995-3001.
[http://dx.doi.org/10.1039/b504372g] [PMID: 15959566]
[13]
Kumar S, Nanda A. Pharmaceutical Cocrystals: An Overview. Indian J Pharm Sci 2017; 79(6): 858-71.
[http://dx.doi.org/10.4172/pharmaceutical-sciences.1000302]
[14]
Fábián L. Cambridge structural database analysis of molecular complementarity in co-crystals. Cryst Growth Des 2009; 9(3): 1436-43.
[http://dx.doi.org/10.1021/cg800861m]
[15]
Abramov YA, Loschen C, Klamt A. Rational coformer or solvent selection for pharmaceutical cocrystallization or desolvation. J Pharm Sci 2012; 101(10): 3687-97.
[http://dx.doi.org/10.1002/jps.23227] [PMID: 22821740]
[16]
Desiraju GR. Supramolecular synthons in crystal engineering - A new organic synthesis. Angew Chem Int Ed Engl 1995; 34(21): 2311-27.
[http://dx.doi.org/10.1002/anie.199523111]
[17]
Ross SA, Lamprou DA, Douroumis D. Engineering and manufacturing of pharmaceutical co-crystals: a review of solvent-free manufacturing technologies. Chem Commun (Camb) 2016; 52(57): 8772-86.
[http://dx.doi.org/10.1039/C6CC01289B] [PMID: 27302311]
[18]
Etter MC. Hydrogen bonds as design elements in organic chemistry. J Phys Chem 1991; 95(12): 4601-10.
[http://dx.doi.org/10.1021/j100165a007]
[19]
Bhatt JA, Bahl D, Morris K, Stevens LL, Haware RV. Structure-mechanics and improved tableting performance of the drug-drug cocrystal metformin:salicylic acid. Eur J Pharm Biopharm 2020; 153: 23-35.
[http://dx.doi.org/10.1016/j.ejpb.2020.05.031] [PMID: 32504797]
[20]
Yu Q, Jia W, Pu J, Wang Y, Yang H. Cocrystallization of urea and succinic acid in “Nano-Crystallizer”. Chem Eng Sci 2021; 229: 116082.
[http://dx.doi.org/10.1016/j.ces.2020.116082]
[21]
Sekhon BS. Pharmaceutical co-crystal – A review. ARS Pharmaceutica 2009; 50(3): 99-117.
[22]
Najar AA, Azim Y. Pharmaceutical co-crystals – A new paradigm of crystal engineering. J Indian Inst Sci 2014; 94(1): 45-67.
[23]
Thipparaboina R, Kumar D, Chavan RB, Shastri NR. Multidrug co-crystals: towards the development of effective therapeutic hybrids. Drug Discov Today 2016; 21(3): 481-90.
[http://dx.doi.org/10.1016/j.drudis.2016.02.001] [PMID: 26869329]
[24]
Etter MC. Encoding and decoding hydrogen-bond patterns of organic compounds. Acc Chem Res 1990; 23(4): 120-6.
[http://dx.doi.org/10.1021/ar00172a005]
[25]
Dutt B, Choudhary M, Budhwar V. Preparation, characterization and evaluation of aspirin: benzoic acid cocrystals with enhanced pharmaceutical properties. Fut J Pharm Sci 2020; 6(1): 32-4.
[http://dx.doi.org/10.1186/s43094-020-00052-y]
[26]
Bhogala BR, Basavoju S, Nangia A. Tape and layer structures in cocrystals of some di- and tricarboxylic acids with 4,4′-bipyridines and isonicotinamide. From binary to ternary cocrystals. Cryst Eng Comm 2005; 7(90): 551-62.
[http://dx.doi.org/10.1039/b509162d]
[27]
Childs SL, Stahly GP, Park A. The salt-cocrystal continuum: the influence of crystal structure on ionization state. Mol Pharm 2007; 4(3): 323-38.
[http://dx.doi.org/10.1021/mp0601345] [PMID: 17461597]
[28]
Cruz-Cabeza AJ. Acid–base crystalline complexes and the pKa rule. Cryst Eng Comm 2012; 14(20): 6362-5.
[http://dx.doi.org/10.1039/c2ce26055g]
[29]
Enkelmann D, Lipinski G, Merz K. Cyanopyridines – Suitable Heterocycles for Cocrystal Syntheses. Eur J Inorg Chem 2021; 2021(33): 3367-72.
[http://dx.doi.org/10.1002/ejic.202100306]
[30]
Mohammad MA, Alhalaweh A, Velaga SP. Hansen solubility parameter as a tool to predict cocrystal formation. Int J Pharm 2011; 407(1-2): 63-71.
[http://dx.doi.org/10.1016/j.ijpharm.2011.01.030] [PMID: 21256944]
[31]
Shete A, Murthy S, Korpale S, et al. Cocrystals of itraconazole with amino acids: Screening, synthesis, solid state characterization, in vitro drug release and antifungal activity. J Drug Deliv Sci Technol 2015; 28: 46-55.
[http://dx.doi.org/10.1016/j.jddst.2015.05.006]
[32]
Lu E, Rodríguez-Hornedo N, Suryanarayanan R. A rapid thermal method for cocrystal screening. CrystEngComm 2008; 10(6): 665-8.
[http://dx.doi.org/10.1039/b801713c]
[33]
Luo YH, Sun BW. Pharmaceutical co-crystals of pyrazinecarboxamide (PZA) with various carboxylic acids: crystallography, Hirshfeld surfaces and dissolution study. Cryst Growth Des 2013; 13(5): 2098-106.
[http://dx.doi.org/10.1021/cg400167w]
[34]
Vitthalrao MA, Kumar FN, Radheshyam BK. Review article co-crystalization: an alternative approach for solid modification. J Drug Deliv Ther 2013; 3(4): 166-72.
[35]
Kothur RR, Swetha AS. NPB An outline of crystal engineering of pharmaceutical co-crystals and applications: A review. Int J Pharm Res Dev 2012; 4: 84-92.
[36]
Ganesh M, Jeon UJ, Ubaidulla U, et al. Chitosan cocrystals embedded alginate beads for enhancing the solubility and bioavailability of aceclofenac. Int J Biol Macromol 2015; 74: 310-7.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.12.038] [PMID: 25557368]
[37]
Kotak U, Prajapati V, Solanki H, Jani G, Jha P. Co-crystallization technique its rationale and recent progress. World J Pharm Pharm Sci 2015; 4(4): 1484-508.
[38]
Aher S, Dhumal R, Mahadik K, Paradkar A, York P. Ultrasound assisted cocrystallization from solution (USSC) containing a non-congruently soluble cocrystal component pair: Caffeine/maleic acid. Eur J Pharm Sci 2010; 41(5): 597-602.
[http://dx.doi.org/10.1016/j.ejps.2010.08.012] [PMID: 20801215]
[39]
Yadav S, Gupta PC, Sharma N, Kumar J. Co-crystals: An alternative approach to modify physicochemical properties of drugs. Int J Pharm 2015; 5(2): 427-36.
[40]
Alhalaweh A, Velaga SP. Formation of co-crystals from stoichiometric solutions of incongruently saturating systems by spray drying. Cryst Growth Des 2010; 10(8): 3302-5.
[http://dx.doi.org/10.1021/cg100451q]
[41]
do Amaral LH, do Carmo FA, Amaro MI, et al. Development and characterization of dapsone co-crystal prepared by scalable production methods. AAPS PharmSciTech 2018; 19(6): 2687-99.
[http://dx.doi.org/10.1208/s12249-018-1101-5] [PMID: 29968042]
[42]
Guo M, Sun X, Chen J, Cai T. Pharmaceutical cocrystals: A review of preparations, physicochemical properties and applications. Acta Pharm Sin B 2021; 11(8): 2537-64.
[http://dx.doi.org/10.1016/j.apsb.2021.03.030] [PMID: 34522597]
[43]
Tan J, Liu J, Ran L. A review of pharmaceutical nano-cocrystals: A novel strategy to improve the chemical and physical properties for poorly soluble drugs. Crystals (Basel) 2021; 11(5): 463.
[http://dx.doi.org/10.3390/cryst11050463]
[44]
Bala R, Madaan R, Arora S. Advanced Solubility Enhancement Techniques for Poorly Soluble Drugs. J Pharm Sci Technol 2017; 7(1)
[45]
de Waard H, Frijlink HW, Hinrichs WLJ. Bottom-up preparation techniques for nanocrystals of lipophilic drugs. Pharm Res 2011; 28(5): 1220-3.
[http://dx.doi.org/10.1007/s11095-010-0323-3] [PMID: 21086152]
[46]
Chaudhary A, Nagaich U, Gulati N, Sharma VK, Khosa RL, Partapur MU. Enhancement of solubilization and bioavailability of poorly soluble drugs by physical and chemical modifications: A recent review. J Adv Pharm Educ Res 2012; 2(1): 32-67.
[47]
Sanphui P, Rajput L, Gopi SP, Desiraju GR. New multi-component solid forms of anti-cancer drug Erlotinib: role of auxiliary interactions in determining a preferred conformation. Acta Crystallogr B Struct Sci Cryst Eng Mater 2016; 72(3): 291-300.
[http://dx.doi.org/10.1107/S2052520616003607] [PMID: 27240760]
[48]
Harris KDM, Tremayne M, Kariuki BM. Contemporary advances in the use of powder X-ray diffraction for structure determination. Angew Chem Int Ed 2001; 40(9): 1626-51.
[http://dx.doi.org/10.1002/1521-3773(20010504)40:9<1626::AID-ANIE16260>3.0.CO;2-7] [PMID: 11353468]
[49]
Tremayne M. The impact of powder diffraction on the structural characterization of organic crystalline materials. Philos Trans- Royal Soc, Math Phys Eng Sci 2004; 362(1825): 2691-707.
[http://dx.doi.org/10.1098/rsta.2004.1457] [PMID: 15539365]
[50]
David WIF, Shankland K. Structure determination from powder diffraction data. Acta Crystallogr A 2008; 64(1): 52-64.
[http://dx.doi.org/10.1107/S0108767307064252] [PMID: 18156673]
[51]
Klug HP, Alexander LE. X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials. (2nd ed.), New York: Wiley-Interscience 1974.
[52]
Aitipamula S, Chow PS, Tan RBH. Conformational polymorphs of a muscle relaxant, metaxalone. Cryst Growth Des 2011; 11(9): 4101-9.
[http://dx.doi.org/10.1021/cg200678e]
[53]
Chadha R, Bhandari S, Haneef J, Khullar S, Mandal S. Cocrystals of telmisartan: characterization, structure elucidation, in vivo and toxicity studies. CrystEngComm 2014; 16(36): 8375-89.
[http://dx.doi.org/10.1039/C4CE00797B]
[54]
Hemberg O, Otendal M, Hertz HM. Liquid-metal-jet anode electron-impact x-ray source. Appl Phys Lett 2003; 83(7): 1483-5.
[http://dx.doi.org/10.1063/1.1602157]
[55]
Maddileti D, Swapna B, Nangia A. Tetramorphs of the antibiotic drug trimethoprim: Characterization and stability. Cryst Growth Des 2015; 15(4): 1745-56.
[http://dx.doi.org/10.1021/cg501772t]
[56]
Thomas LH, Wales C, Wilson CC. Selective preparation of elusive and alternative single component polymorphic solid forms through multi-component crystallisation routes. Chem Commun (Camb) 2016; 52(46): 7372-5.
[http://dx.doi.org/10.1039/C6CC01027J] [PMID: 27079688]
[57]
Babu NJ, Cherukuvada S, Thakuria R, Nangia A. Conformational and synthon polymorphism in furosemide (Lasix). Cryst Growth Des 2010; 10(4): 1979-89.
[http://dx.doi.org/10.1021/cg100098z]
[58]
Karanam M, Dev S, Choudhury AR. New polymorphs of fluconazole: Results from co-crystallization experiments. Cryst Growth Des 2012; 12(1): 240-52.
[http://dx.doi.org/10.1021/cg201005y]
[59]
Wu T, Lin SY, Lin HL, Huang YT. Simultaneous DSC-FTIR microspectroscopy used to screen and detect the co-crystal formation in real time. Bioorg Med Chem Lett 2011; 21(10): 3148-51.
[http://dx.doi.org/10.1016/j.bmcl.2011.03.001] [PMID: 21450466]
[60]
Lee KS, Kim KJ, Ulrich J. In situ monitoring of co-crystallization of salicylic acid–4, 4′-dipyridyl in solution using Raman spectroscopy. Cryst Growth Des 2014; 14(6): 2893-9.
[http://dx.doi.org/10.1021/cg5001864]
[61]
Bond AD, Boese R, Desiraju GR. On the polymorphism of aspirin: crystalline aspirin as intergrowths of two “polymorphic” domains. Angew Chem Int Ed 2007; 46(4): 618-22.
[http://dx.doi.org/10.1002/anie.200603373] [PMID: 17139692]
[62]
Pindelska E, Sokal A, Kolodziejski W. Pharmaceutical cocrystals, salts and polymorphs: Advanced characterization techniques. Adv Drug Deliv Rev 2017; 117: 111-46.
[http://dx.doi.org/10.1016/j.addr.2017.09.014] [PMID: 28931472]
[63]
Jyothi KL, Gautam R, Swain D. Guru, Row, T.N.; Lokanath, N.K. Co-crystals of gallic acid with urea and propionamide: supramolecular structures, Hirshfeld surface analysis, and DFT studies. Cryst Res Technol 2019; 54(8): 1900016.
[http://dx.doi.org/10.1002/crat.201900016]
[64]
Peiponen KE, Zeitler JA. Terahertz Spectroscopy and Imaging; Heidelberg, Germany:: Springer, 2013; pp. 191-224.
[65]
Baxter JB, Guglietta GW. Terahertz Spectroscopy; Heidelberg, Germany:: Springer, 2011; pp. 4342-68.
[66]
Shen YC. Terahertz pulsed spectroscopy and imaging for pharmaceutical applications: A review. Int J Pharm 2011; 417(1-2): 48-60.
[http://dx.doi.org/10.1016/j.ijpharm.2011.01.012] [PMID: 21237260]
[67]
Ajito K, Ueno Y, Song HJ. Visualization of pharmaceutical drug molecules by terahertz chemical imaging. NTT Tech Rev 2012; 10: 1-6.
[68]
Haines PJ. Thermal Methods of Analysis: Principles, Applications and Problems. Dordrecht, the Netherlands: Springer 2012.
[69]
Gabbott P. Principles and Applications of Thermal Analysis. Oxford: John Wiley and Sons 2008.
[http://dx.doi.org/10.1002/9780470697702]
[70]
Menczel JD. Prime RB Thermogravimetric Analysis (TGA), Thermal Analysis of Polymers: Fundamentals and Applications. Budapest, Hungary: John Wiley & Sons 2009.
[71]
Yu G, Chen X, He L, Li X, Zhou Z, Ren Z. Study on the solubilization of telmisartan by forming cocrystals with aromatic carboxylic acids. CrystEngComm 2021; 23(27): 4871-8.
[http://dx.doi.org/10.1039/D1CE00551K]
[72]
Zhou Z, Chan HM, Sung HHY, Tong HHY, Zheng Y. Identification of New Cocrystal Systems with Stoichiometric Diversity of Salicylic Acid Using Thermal Methods. Pharm Res 2016; 33(4): 1030-9.
[http://dx.doi.org/10.1007/s11095-015-1849-1] [PMID: 26744333]
[73]
Berry DJ, Seaton CC, Clegg W, et al. Applying hot-stage microscopy to co-crystal screening: A study of nicotinamide with seven active pharmaceutical ingredients. Cryst Growth Des 2008; 8(5): 1697-712.
[http://dx.doi.org/10.1021/cg800035w]
[74]
United States Patent and Trademark Office. 1999. Available from: http://www.uspto.gov
[75]
European Patent Office. 1999. Available from:http://www.epo.org
[76]
Guidance for Industry: Regulatory Classification of Pharmaceutical Co-Crystals. Center for Drug Evaluation and Research, United States Food and Drug Administration. Available from:https://www.fda.gov/downloads/Drugs/Guidances/UCM281764.pdf
[77]
Guidance for Industry: Regulatory Classification of Pharmaceutical Co-Crystals. Revision-1. Center for Drug Evaluation and Research, United States Food and Drug Administration. Available from:http://www.fda.gov/Drugs/GuidanceCompliance/Regulatoryinformation/Guidances/UCM516813.pdf
[78]
Reflection paper on the use of co-crystals of active substances in medicinal products. Committee for Medicinal Products for Human Use. European Medicines Agency. Available from:http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2015/07/WC500189927.pdf
[79]
Ahn J. New Empagliflozin co-crystal.> Patent KR102111248B1, 2020,
[80]
Albert E, Andres P, Bevill MJ, Smit J, Nelson J. Cocrystals of progesterone. Patent US20140235595A1, 2016,
[81]
Co-crystals of androstenone and vanillin, method for preparing same or use of same. Patent WO2017146440A1, 2017,
[82]
Bevill MJ, Schultheiss N. Co-crystals of p-coumaric acid. U.S. Patent US10098859B2, 2018, 2018.
[83]
Jiang X, Walling JA, Bevill MJ, Seadeek CS, Smit JP. Co-crystal forms of a novobiocin analog and proline. Patent CA3090646A1, 2019,
[84]
Jonaitis DT, Schultheiss N. L-pipecolic acid co-crystal of cannabidiol. U.S. Patent US20220117912A1, 2022.,
[85]
Hanna M, Shan N, Cheney ML, Weyna DR. in vivo studies of crystalline forms of meloxicam. U.S. Patent US8124603B2, 2012,
[86]
Childs SL. Metronidazole co-crystals and imipramine co-crystals. U.S. Patent US20090258859A1, 2012,
[87]
Zhaopeng D, Fayuan G, Mountain H, Zhibiao Z, Lihua H. Naproxen pharmaceutical co-crystal and preparation method thereof. Patent CN104592009B, 2017,
[88]
Connelly PR, Kadiyala I, Zhang Y, Johnston S, Bhisetti GR, Rose P. Co-crystals and pharmaceutical compositions comprising the same. Patent EP2114924B1, 2012., 2012.
[89]
Zaworotko MJ, Clarke H, Kapildev A, Pujari T, Ong TT, Marshall L. Nutraceutical co-crystal compositions. U.S. Patent US20190275056A1, 2020.,
[90]
Kumar Bandaru R, Rout SR, Kenguva G, et al. Recent advances in pharmaceutical cocrystals: From bench to market. Front Pharmacol 2021; 12: 780582.
[http://dx.doi.org/10.3389/fphar.2021.780582] [PMID: 34858194]
[92]
Kavanagh ON, Croker DM, Walker GM, Zaworotko MJ. Pharmaceutical cocrystals: from serendipity to design to application. Drug Discov Today 2019; 24(3): 796-804.
[http://dx.doi.org/10.1016/j.drudis.2018.11.023] [PMID: 30521935]
[93]
Brittain HG. Pharmaceutical cocrystals: the coming wave of new drug substances. J Pharm Sci 2013; 102(2): 311-7.
[http://dx.doi.org/10.1002/jps.23402] [PMID: 23192888]
[94]
Emami S, Siahi-Shadbad M, Adibkia K, Barzegar-Jalali M. Recent advances in improving oral drug bioavailability by cocrystals. Bioimpacts 2018; 8(4): 305-20.
[http://dx.doi.org/10.15171/bi.2018.33] [PMID: 30397585]
[95]
Feng L, Karpinski PH, Sutton P, et al. LCZ696: a dual-acting sodium supramolecular complex. Tetrahedron Lett 2012; 53(3): 275-6.
[http://dx.doi.org/10.1016/j.tetlet.2011.11.029]
[96]
Approval of Suglat tablets, kotobuki Pharmaceuticals> 2014. Available from: https://www.astellas.com/system/files/news/2018-12/181221_2_Eg_2.pdf
[97]
Duggirala NK, LaCasse SM, Zaworotko MJ, Krzyzaniak JF, Arora KK. Pharmaceutical co-crystals: formulation approaches to develop robust drug products. Cryst Growth Des 2020; 20(2): 617-26.
[http://dx.doi.org/10.1021/acs.cgd.9b00946]
[98]
Vasoya JM, Shah AV, Serajuddin ATM. Investigation of possible solubility and dissolution advantages of cocrystals, I: Aqueous solubility and dissolution rates of ketoconazole and its cocrystals as functions of pH. ADMET DMPK 2019; 7(2): 106-30.
[http://dx.doi.org/10.5599/admet.661] [PMID: 35350544]
[99]
Padrela L, Rodrigues MA, Tiago J, Velaga SP, Matos HA, Azevedo eg. Tuning physicochemical properties of theophylline by cocrystallization using the supercritical fluid enhanced atomization technique. J Supercrit Fluids 2014; 86: 129-36.
[http://dx.doi.org/10.1016/j.supflu.2013.12.011]
[100]
Aitipamula S, Wong ABH, Chow PS, Tan RBH. Pharmaceutical cocrystals of ethenzamide: structural, solubility and dissolution studies. CrystEngComm 2012; 14(24): 8515-24.
[http://dx.doi.org/10.1039/c2ce26325d]
[101]
Mohd S, Mahapatra SP. Review of pharmaceutical co-crystal: a new paradigm for enhancing the physicochemical properties of active pharmaceutical ingredients. Int J Phar Life Sci 2015; 6(3): 4324-33.
[102]
Schultheiss N, Newman A. Pharmaceutical co-crystals and their physicochemical properties. Cryst Growth Des 2009; 9(6): 2950-67.
[http://dx.doi.org/10.1021/cg900129f] [PMID: 19503732]
[103]
Blagden N, de Matas M, Gavan PT, York P. Crystal engineering of active pharmaceutical ingredients to improve solubility and dissolution rates. Adv Drug Deliv Rev 2007; 59(7): 617-30.
[http://dx.doi.org/10.1016/j.addr.2007.05.011] [PMID: 17597252]
[104]
Aakeröy CB, Forbes S, Desper J. Using cocrystals to systematically modulate aqueous solubility and melting behavior of an anticancer drug. J Am Chem Soc 2009; 131(47): 17048-9.
[http://dx.doi.org/10.1021/ja907674c] [PMID: 19894718]
[105]
Childs SL, Chyall LJ, Dunlap JT, Smolenskaya VN, Stahly BC, Stahly GP. Crystal engineering approach to forming cocrystals of amine hydrochlorides with organic acids. Molecular complexes of fluoxetine hydrochloride with benzoic, succinic, and fumaric acids. J Am Chem Soc 2004; 126(41): 13335-42.
[http://dx.doi.org/10.1021/ja048114o] [PMID: 15479089]
[106]
Cho E, Cho W, Cha KH, et al. Enhanced dissolution of megestrol acetate microcrystals prepared by antisolvent precipitation process using hydrophilic additives. Int J Pharm 2010; 396(1-2): 91-8.
[http://dx.doi.org/10.1016/j.ijpharm.2010.06.016] [PMID: 20558265]
[107]
Martin FA, Pop MM, Borodi G, Filip X, Kacso I. Ketoconazole salts and co-crystals with enhanced aqueous solubility. Cryst Growth Des 2013; 13(10): 4295-304.
[http://dx.doi.org/10.1021/cg400638g]
[108]
Bethune SJ, Schultheiss N, Henck JO. Improving the poor aqueous solubility of nutraceutical compound pterostilbene through co-crystal formation. Cryst Growth Des 2011; 11(7): 2817-23.
[http://dx.doi.org/10.1021/cg1016092]
[109]
Trask A, Motherwell W, Jones W. Physical stability enhancement of theophylline via cocrystallization. Int J Pharm 2006; 320(1-2): 114-23.
[http://dx.doi.org/10.1016/j.ijpharm.2006.04.018] [PMID: 16769188]
[110]
Trask AV, Motherwell WDS, Jones W. Pharmaceutical co-crystallization: Engineering a remedy for caffeine hydration. Cryst Growth Des 2005; 5(3): 1013-21.
[http://dx.doi.org/10.1021/cg0496540]
[111]
McNamara DP, Childs SL, Giordano J, et al. Use of a glutaric acid cocrystal to improve oral bioavailability of a low solubility API. Pharm Res 2006; 23(8): 1888-97.
[http://dx.doi.org/10.1007/s11095-006-9032-3] [PMID: 16832611]
[112]
Wang Z, Zhang X, Chen B, Hou M, Liu T. The Controllable Preparation, Properties and Structural Characteristics of Xylitol/Menthol Co-crystals. Int J Food Eng 2017; 13(8): 20170060.
[http://dx.doi.org/10.1515/ijfe-2017-0060]
[113]
Weiss M, Storch D, Wirth W, Olenik B, Schwiedop U. Co-crystal of 4-{[(6-chloropyrid-3-yl) methyl] (2,2-difluoroethyl) amino}­furan-2(5h)-one with oxalic acid and use thereof as pesticide. Patent no-WO2011051241A1, 2011., 2011.
[114]
Masuda T, Yoshihashi Y, Yonemochi E, Fujii K, Uekusa H, Terada K. Cocrystallization and amorphization induced by drug–excipient interaction improves the physical properties of acyclovir. Int J Pharm 2012; 422(1-2): 160-9.
[http://dx.doi.org/10.1016/j.ijpharm.2011.10.046] [PMID: 22079714]
[115]
Moradiya HG, Islam MT, Scoutaris N, Halsey SA, Chowdhry BZ, Douroumis D. Continuous Manufacturing of High Quality Pharmaceutical Cocrystals Integrated with Process Analytical Tools for In-Line Process Control. Cryst Growth Des 2016; 16(6): 3425-34.
[http://dx.doi.org/10.1021/acs.cgd.6b00402]
[116]
Chadha K, Karan M, Chadha R, Bhalla Y, Vasisht K. Is Failure of Cocrystallization Actually a Failure? Eutectic Formation in Cocrystal Screening of Hesperetin. J Pharm Sci 2017; 106(8): 2026-36.
[http://dx.doi.org/10.1016/j.xphs.2017.04.038] [PMID: 28456725]
[117]
Hickey MB, Peterson ML, Scoppettuolo LA, et al. Performance comparison of a co-crystal of carbamazepine with marketed product. Eur J Pharm Biopharm 2007; 67(1): 112-9.
[http://dx.doi.org/10.1016/j.ejpb.2006.12.016] [PMID: 17292592]
[118]
Remenar JF, Morissette SL, Peterson ML, et al. Crystal engineering of novel cocrystals of a triazole drug with 1,4-dicarboxylic acids. J Am Chem Soc 2003; 125(28): 8456-7.
[http://dx.doi.org/10.1021/ja035776p] [PMID: 12848550]
[119]
Oswald IDH, Motherwell WDS, Parsons S, Pidcock E, Pulham CR. Rationalisation of co-crystal formation through knowledge-mining. Crystallogr Rev 2004; 10(1): 57-66.
[http://dx.doi.org/10.1080/08893110410001664855]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy