Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Meta-Analysis

Phytochemical, Geographical, and Pharmacological Retrospect of Genus Torilis

Author(s): Noshin Nasreen, Nabil Semmar*, Muhammad Farman, Marie-Aleth Lacaille-Dubois and Naseem Saud Ahmed

Volume 23, Issue 24, 2023

Published on: 09 August, 2023

Page: [2300 - 2331] Pages: 32

DOI: 10.2174/1568026623666230727163658

Price: $65

conference banner
Abstract

Background: Genus Torilis (Apiaceae) known as hedge parsley, encompasses 11-13 species distributed worldwide and shows potential pharmacological uses. Its phytochemical pattern is highly diversified including many phenolic and terpenic compounds.

Objective: This research-review provides new highlighting of structural organizations, structure-activity trends, taxonomical, tissue and geographical distribution of phytocompounds of Torilis genus from extensive statistical analyses of available data.

Methods: In extenso, exploration of documented literature and statistical data analyses were applied to update the phytochemical pool of the genus under several aspects including structural diversity, geographical distribution, biological compartmentations and pharmacological activities.

Results: Phytoconstituents were classified into homogeneous clusters that revealed to be associated with chemical constitutions (aglycone types, chemical groups) and distributions (through species, tissues, geographical). About bioactivities, terpenes were studied from a pharmacological point of view with relatively high frequencies for antifungal, antibacterial, cytotoxic and anti-inflammatory activities. Preliminary structure-activity relationships were highlighted implying opposite effects between hydroxylation and methylation in favor of different activities. Crude extracts and isolated compounds have shown several biological activities (antibacterial, anticancer, antiangiogenic, antiproliferative, etc.), thus providing authentic scientific proof for their diverse uses in folk medicines.

Conclusion: The phytochemistry of the genus Torilis promises important perspectives in matters of pharmacological activities. These perspectives call for further investments in pharmacology because of (i) unbalance between phenolic and terpenic compounds according to the countries and (ii) more advanced current states of structural elucidations compared to biological evaluations.

Graphical Abstract

[1]
Baranski, R.; Baranska, M.; Schulz, H.; Simon, P.W.; Nothnagel, T. Single seed Raman measurements allow taxonomical discrimination of Apiaceae accessions collected in gene banks. Biopolymers, 2006, 81(6), 497-505.
[http://dx.doi.org/10.1002/bip.20452] [PMID: 16421916]
[3]
Abbasi, A.M.; Shah, M.H.; Khan, M.A. Wild edible vegetables of lesser Himalayas: Ethnobotanical and neutraceutical aspects; Springer, 2014.
[4]
Saad, H.E.A.; Ahmed, A.F.; Lahloub, M.F.; Halim, A.F. Crocatone and coumarins from the roots of Torilis arvensis. Mansoura J. Pharm. Sci., 1995, 11, 35-42.
[5]
Ezzat, S.M.; Abdallah, H.M.; Fawzy, G.A.; El-Maraghy, S.A. Hepatoprotective constituents of Torilis radiata Moench (Apiaceae). Nat. Prod. Res., 2012, 26(3), 282-285.
[http://dx.doi.org/10.1080/14786419.2011.587422] [PMID: 21867456]
[6]
Masoudi, S.; Fathollahi, R.; Taherkhani, M.; Valadkhani, Z.; Baradari, T.; Cheraghi, M.; Rustaiyan, A. Volatile constituents of the aerial parts of Torilis leptophylla (L.) Reichenb., Thecocarpus meifolious Boiss., leaves of Xanthogalum purpurascens Ave. Lall. and flowers of Astrodaucus orieintalis (L.) Drude. Four Umbelliferae herbs from Iran. J. Essent. Oil-Bear. Plants, 2012, 15(6), 934-942.
[http://dx.doi.org/10.1080/0972060X.2012.10662596]
[7]
Kharkwal, G.C.; Pande, C.; Tewari, G.; Panwar, A.; Pande, V. Terpenoid composition and antimicrobial activity of essential oil from Torilis japonica (Houtt.) DC. J. Indian Chem. Soc., 2017, 94, 191-194.
[8]
Kim, D.C.; Kim, J.A.; Min, B.S.; Jang, T.S.; Na, M.; Lee, S.H. Guaiane sesquiterpenoids isolated from the fruits of Torilis japonica and their cytotoxic activity. Helv. Chim. Acta, 2010, 93(4), 692-697.
[http://dx.doi.org/10.1002/hlca.200900278]
[9]
Bigdeli, M.; Rustaiyan, A.; Masoudi, S. Composition of essential oil of Torilis arvensis (Huds.) Link. from Iran. J. Essent. Oil Res., 2004, 16(6), 526-527.
[http://dx.doi.org/10.1080/10412905.2004.9698788]
[10]
Itokawa, H.; Matsumoto, H.; Mihashi, S. Isolation of oppositane- and cycloeudesmane-type sesquiterpenoids from Torilis japonica D.C. Chem. Lett., 1983, 12(8), 1253-1256.
[http://dx.doi.org/10.1246/cl.1983.1253]
[11]
Ryu, J.H.; Jeong, Y.S. A new guaiane type sesquiterpene fromTorilis japonica. Arch. Pharm. Res., 2001, 24(6), 532-535.
[http://dx.doi.org/10.1007/BF02975160] [PMID: 11794530]
[12]
Lee, I.K.; Lee, J.H.; Hwang, E.I.; Yun, B.S. New guaiane sesquiterpenes from the fruits of Torilis japonica. Chem. Pharm. Bull. (Tokyo), 2008, 56(10), 1483-1485.
[http://dx.doi.org/10.1248/cpb.56.1483] [PMID: 18827397]
[13]
Park, H.W.; Choi, S.U.; Baek, N.I.; Kim, S.H.; Eun, J.S.; Yang, J.H.; Kim, D.K. Guaiane sesquiterpenoids fromTorilis japonica and their cytotoxic effects on human cancer cell lines. Arch. Pharm. Res., 2006, 29(2), 131-134.
[http://dx.doi.org/10.1007/BF02974273] [PMID: 16526276]
[14]
Kitajima, J.; Suzuki, N.; Satoh, M.; Watanabe, M. Sesquiterpenoids of Torilis japonica fruit. Phytochemistry, 2002, 59(8), 811-815.
[http://dx.doi.org/10.1016/S0031-9422(02)00025-0] [PMID: 11937159]
[15]
Itokawa, H.; Matsumoto, H.; Mihashi, S.; Iitaka, Y.; Kasuya, A.; Itai, A. Constituents of Torilis scabra D.C. II. Chem. Pharm. Bull. (Tokyo), 1985, 33(6), 2204-2212.
[http://dx.doi.org/10.1248/cpb.33.2204]
[16]
Güzel, Y. Aktoklu, E.; Roumy, V.; Alkhatib, R.; Hennebelle, T.; Bailleul, F.; Şahpaz, S. Chemotaxonomy and flavonoid profiling of Torilis species by HPLC/ESI/MS2. Biochem. Syst. Ecol., 2011, 39(4-6), 781-786.
[http://dx.doi.org/10.1016/j.bse.2011.07.012]
[17]
Nasreen, N.; Semmar, N.; Farman, M.; Ahmad, S. Employment of hyphenated approach for metabolomic fingerprinting of phenolics from Torilis leptophylla roots. Proceedings of MOL2NET 3rd ed. International Conference on Multidisciplinary Sciences, 2017.
[http://dx.doi.org/10.3390/mol2net-03-05123]
[18]
Cho, W.I.I.; Choi, J.B.; Lee, K.; Cho, S.C.; Park, E.J.; Chung, M.S.; Pyun, Y.R. Antimicrobial activity of medicinal plants against Bacillus subtilis spore. Food Sci. Biotechnol., 2007, 16, 1072-1077.
[19]
Maleki, S.; Seyyedneja, S.M.; Mirzaie Da, N.; Motamedi, H. Antibacterial activity of the fruits of Iranian Torilis leptophylla against some clinical pathogens. Pak. J. Biol. Sci., 2008, 11(9), 1286-1289.
[http://dx.doi.org/10.3923/pjbs.2008.1286.1289] [PMID: 18819541]
[20]
Stefanovic, O.; Stanojevic, D.; Comic, L. Inhibitory effects of Torilis anthriscus on growth of microorganisms. Cent. Eur. J. Biol., 2009, 4, 493-498.
[21]
Chen, J.; Xu, X.J.; Fang, Y.H.; Li, S.; Zhang, Y.L. Chemical composition and antibacterial activity of the essential oil from the aerial parts of Torilis japonica. J. Essent. Oil Bear pl., 2013, 16, 499- 505.
[22]
Cho, W.I.; Choi, J.B.; Lee, K.; Chung, M.S.; Pyun, Y.R. Antimicrobial activity of torilin isolated from Torilis japonica fruit against Bacillus subtilis. J. Food Sci., 2008, 73(2), M37-M46.
[http://dx.doi.org/10.1111/j.1750-3841.2007.00639.x] [PMID: 18298734]
[23]
Saeed, N.; Khan, M.R.; Shabbir, M. Antioxidant activity, total phenolic and total flavonoid contents of whole plant extracts Torilis leptophylla L. BMC Complement. Altern. Med., 2012, 12(1), 221-232.
[http://dx.doi.org/10.1186/1472-6882-12-221] [PMID: 23153304]
[24]
Choi, W.I.; Cheigh, C.I.; Choi, Y.J.; Jeong, J.Y.; Choi, J.B.; Lee, K.; Cho, S.C.; Pyun, Y.R.; Chung, M.S. Inactivation mechanism of Bacillus subtilis spores by ethanol extract of Torilis japonica fruit. Food Sci. Biotechnol., 2009, 18, 336-342.
[25]
Cho, W.I.; Cheigh, C.I.; Chung, M.S.; Park, K.H.; Chang, P.S.; Chung, M.S. The combined effect of UV irradiation and ethanol extract from Torilis japonica fruit on inactivation of Bacillus subtilis spores. J. Food Saf., 2012, 32(4), 474-480.
[http://dx.doi.org/10.1111/jfs.12010]
[26]
Jung, H.W.; Ghil, S.H. A Torilis japonica extract exerts anti-proliferative activities on the U87MG human glioblastoma cell line. Mol. Med. Rep., 2010, 3(6), 1041-1045.
[PMID: 21472352]
[27]
Kim, G.T.; Kim, S.Y.; Kim, Y.M. Torilis japonica extract fraction compound, EGFR-targeted inhibition of cancer abnormal metastasis in A549 lung cancer cells. Oncol. Rep., 2017, 38(2), 1206-1212.
[http://dx.doi.org/10.3892/or.2017.5771] [PMID: 28677807]
[28]
Kim, G.T.; Lee, S.H.; Kim, Y.M. Torilis japonica extract-generated intracellular ROS induces apoptosis by reducing the mitochondrial membrane potential via regulation of the AMPK-p38 MAPK signaling pathway in HCT116 colon cancer. Int. J. Oncol., 2016, 49(3), 1088-1098.
[http://dx.doi.org/10.3892/ijo.2016.3578] [PMID: 27314881]
[29]
Kim, G.T.; Lee, S.H.; Kim, Y.M. Torilis japonica extract, a new potential EMT suppressor agent by regulation of EGFR signaling pathways. Int. J. Oncol., 2014, 45(4), 1673-1679.
[http://dx.doi.org/10.3892/ijo.2014.2546] [PMID: 25051266]
[30]
Kim, S.; Hong, Y.; Kim, Y.; Lee, J. Mode of action of torilin in multidrug-resistant cancer cell lines. Planta Med., 1998, 64(4), 335-338.
[http://dx.doi.org/10.1055/s-2006-957446] [PMID: 9619116]
[31]
Park, W.S.; Son, E.D.; Nam, G.W.; Kim, S.H.; Noh, M.S.; Lee, B.G.; Jang, I.S.; Kim, S.E.; Lee, J.J.; Lee, C.H. Torilin from Torilis japonica, as a new inhibitor of testosterone 5 alpha-reductase. Planta Med., 2003, 69(5), 459-461.
[http://dx.doi.org/10.1055/s-2003-39717] [PMID: 12802730]
[32]
Kim, M.; Baek, J.; Park, M.T.; Sohn, T.K.; Kim, S.; Lee, J.; Kim, K.W. Anti-invasive activity of torilin, a sesquiterpene compound isolated from Torilis japonica. Oncol. Rep., 2001, 8(2), 359-364.
[http://dx.doi.org/10.3892/or.8.2.359] [PMID: 11182056]
[33]
Seo, H.S.; Kim, K.H.; Kim, D.Y.; Park, B.K.; Shin, N.S.; Kim, J.H.; Youn, H. GC/MS analysis of high-performance liquid chromatography fractions from Sophora flavescens and Torilis japonica extracts and their in vitro anti-neosporal effects on Neospora caninum. J. Vet. Sci., 2013, 14(3), 241-248.
[http://dx.doi.org/10.4142/jvs.2013.14.3.241] [PMID: 23820198]
[34]
Youn, H.J.; Lakritz, J.; Rottinghaus, G.E.; Seo, H.S.; Kim, D.Y.; Cho, M.H.; Marsh, A.E. Anti-protozoal efficacy of high performance liquid chromatography fractions of Torilis japonica and Sophora flavescens extracts on Neospora caninum and Toxoplasma gondii. Vet. Parasitol., 2004, 125(3-4), 409-414.
[http://dx.doi.org/10.1016/j.vetpar.2004.08.002] [PMID: 15482896]
[35]
Fang, Y.; Lv, L.; Chai, Y.J.; Yu, F. Neuroprotective effect of whole-plant extract of Torilis leptophylla in isoflurane-treated rats. Trop. J. Pharm. Res., 2017, 15(12), 2571-2578.
[http://dx.doi.org/10.4314/tjpr.v15i12.6]
[36]
Kim, H.Y.; Eo, E.Y.; Park, H.; Kim, Y.C.; Park, S.; Shin, H.J.; Kim, K. Medicinal herbal extracts of Sophorae radix Acanthopanacis cortex Sanguisorbae radix and Torilis fructus inhibit coronavirus replication in vitro. Antivir. Ther., 2010, 15(5), 697-709.
[http://dx.doi.org/10.3851/IMP1615] [PMID: 20710051]
[37]
Seo, D.J.; Lee, M.; Jeon, S.B.; Park, H.; Jeong, S.; Lee, B.H.; Choi, C. Antiviral activity of herbal extracts against the hepatitis A virus. Food Control, 2017, 72, 9-13.
[http://dx.doi.org/10.1016/j.foodcont.2016.07.028]
[38]
Yun, C.Y.; Kim, D.; Lee, W.H.; Park, Y.; Lee, S.; Na, M.; Jahng, Y.; Hwang, B.; Lee, M.; Han, S.B.; Kim, Y. Torilin from Torilis japonica inhibits melanin production in alpha-melanocyte stimulating hormone-activated B16 melanoma cells. Planta Med., 2009, 75(14), 1505-1508.
[http://dx.doi.org/10.1055/s-0029-1185803] [PMID: 19533579]
[39]
Shukla, S.; Gupta, S. Apigenin: a promising molecule for cancer prevention. Pharm. Res., 2010, 27(6), 962-978.
[http://dx.doi.org/10.1007/s11095-010-0089-7] [PMID: 20306120]
[40]
Liu, L.Z.; Fang, J.; Zhou, Q.; Hu, X.; Shi, X.; Jiang, B.H. Apigenin inhibits expression of vascular endothelial growth factor and angiogenesis in human lung cancer cells: implication of chemoprevention of lung cancer. Mol. Pharmacol., 2005, 68(3), 635-643.
[http://dx.doi.org/10.1124/mol.105.011254] [PMID: 15947208]
[41]
Takemura, H.; Nagayoshi, H.; Matsuda, T.; Sakakibara, H.; Morita, M.; Matsui, A.; Ohura, T.; Shimoi, K. Inhibitory effects of chrysoeriol on DNA adduct formation with benzo[a]pyrene in MCF-7 breast cancer cells. Toxicology, 2010, 274(1-3), 42-48.
[http://dx.doi.org/10.1016/j.tox.2010.05.009] [PMID: 20553787]
[42]
Sadasivam, K.; Kumaresan, R. Theoretical investigation on the antioxidant behavior of chrysoeriol and hispidulin flavonoid compounds – A DFT study. Comput. Theor. Chem., 2011, 963(1), 227-235.
[http://dx.doi.org/10.1016/j.comptc.2010.10.025]
[43]
Seelinger, G.; Merfort, I.; Schempp, C. Anti-oxidant, anti-inflammatory and anti-allergic activities of luteolin. Planta Med., 2008, 74(14), 1667-1677.
[http://dx.doi.org/10.1055/s-0028-1088314] [PMID: 18937165]
[44]
Dirscherl, K.; Karlstetter, M.; Ebert, S.; Kraus, D.; Hlawatsch, J.; Walczak, Y.; Moehle, C.; Fuchshofer, R.; Langmann, T. Luteolin triggers global changes in the microglial transcriptome leading to a unique anti-inflammatory and neuroprotective phenotype. J. Neuroinflammation, 2010, 7(1), 3.
[http://dx.doi.org/10.1186/1742-2094-7-3] [PMID: 20074346]
[45]
Chiruvella, K.K.; Mohammed, A.; Dampuri, G.; Ghanta, R.G.; Raghavan, S.C. Phytochemical and antimicrobial studies of methyl angolensate and luteolin-7-O-glucoside isolated from Callus cultures of Soymida febrifuga. Int. J. Biomed. Sci., 2007, 3(4), 269-278.
[PMID: 23675053]
[46]
Kim, N.M.; Kim, J.; Chung, H.Y.; Choi, J.S. Isolation of luteolin 7-O-rutinoside and esculetin with potential antioxidant activity from the aerial parts of Artemisia montana. Arch. Pharm. Res., 2000, 23(3), 237-239.
[http://dx.doi.org/10.1007/BF02976451] [PMID: 10896054]
[47]
Kim, M.S.; Lee, Y.M.; Moon, E.J.; Kim, S.E.; Lee, J.J.; Kim, K.W. Anti-angiogenic activity of torilin, a sesquiterpene compound isolated fromTorilis japonica. Int. J. Cancer, 2000, 87(2), 269-275.
[http://dx.doi.org/10.1002/1097-0215(20000715)87:2<269:AID-IJC19>3.0.CO;2-W] [PMID: 10861486]
[48]
Duško, B.L. Čomić, L.; Solujić-Sukdolak, S. Antibacterial activity of some plants from family apiaceae in relation to selected phytopathogenic bacteria. Kragujevac J. Sci, 2006, 28, 65-72.
[49]
Kundu, A.; Saha, S.; Walia, S.; Shakil, N.A.; Kumar, J.; Annapurna, K. Cadinene sesquiterpenes from Eupatorium adenophorum and their antifungal activity. J. Environ. Sci. Health B, 2013, 48(6), 516-522.
[http://dx.doi.org/10.1080/03601234.2013.761921] [PMID: 23452218]
[50]
Chavan, M.J.; Wakte, P.S.; Shinde, D.B. Analgesic and anti-inflammatory activity of Caryophyllene oxide from Annona squamosa L. bark. Phytomedicine, 2010, 17(2), 149-151.
[http://dx.doi.org/10.1016/j.phymed.2009.05.016] [PMID: 19576741]
[51]
Antonisamy, P.; Duraipandiyan, V.; Ignacimuthu, S. Anti-inflammatory, analgesic and antipyretic effects of friedelin isolated from Azima tetracantha Lam. in mouse and rat models. J. Pharm. Pharmacol., 2011, 63(8), 1070-1077.
[http://dx.doi.org/10.1111/j.2042-7158.2011.01300.x] [PMID: 21718291]
[52]
Lucetti, D.L.; Lucetti, E.C.P.; Bandeira, M.A.M.; Veras, H.N.H.; Silva, A.H.; Leal, L.K.A.M.; Lopes, A.A.; Alves, V.C.C.; Silva, G.S.; Brito, G.A.; Viana, G.B. Anti-inflammatory effects and possible mechanism of action of lupeol acetate isolated from Himatanthus drasticus (Mart.). Plumel. J. Inflamm. (Lond.), 2010, 7(1), 60.
[http://dx.doi.org/10.1186/1476-9255-7-60] [PMID: 21167055]
[53]
Panda, S.; Kar, A. Antidiabetic and antioxidative effects of Annona squamosa leaves are possibly mediated through quercetin-3-O-glucoside. Biofactors, 2007, 31(3-4), 201-210.
[http://dx.doi.org/10.1002/biof.5520310307] [PMID: 18997283]
[54]
Loizou, S. Lekakis, I.; Chrousos, G.P.; Moutsatsou, P. β-Sitosterol exhibits anti-inflammatory activity in human aortic endothelial cells. Mol. Nutr. Food Res., 2010, 54(4), 551-558.
[http://dx.doi.org/10.1002/mnfr.200900012] [PMID: 19937850]
[55]
Mrabet, Y.; Semmar, N. Mathematical methods to analysis of topology, functional variability and evolution of metabolic systems based on different decomposition concepts. Curr. Drug Metab., 2010, 11(4), 315-341.
[http://dx.doi.org/10.2174/138920010791514333] [PMID: 20446908]
[56]
Semmar, N. Computational Metabolomics; Nova Science Publishers, 2011.
[57]
Gordon, A.D. Classification; CRC Press, 1999.
[http://dx.doi.org/10.1201/9780367805302]
[58]
Greenacre, M.J. Correspondence analysis in practice; Academic Press, 1993.
[59]
ade4: Analysis of Ecological Data: Exploratory and Euclidean Methods in Environmental Sciences. 2023. Available from: https://cran.r-project.org/web/packages/ade4/index.html
[60]
Statistical Software for Insight-Driven Improvement. 2010. Available from: https://www.jmp.com/en_us/home.html
[61]
Sarraj-Laabidi, A.; Lacaille-Dubois, M.A.; Semmar, N. Structural organization of cycloartane-based saponins in the genus Astragalus (Fabaceae). Phytochem. Rev., 2018, 17(2), 431-452.
[http://dx.doi.org/10.1007/s11101-017-9541-1]
[62]
Sarraj-Laabidi, A.; Messai, H.; Hammami-Semmar, A.H.; Semmar, N. Chemometric analysis of inter- and intra-molecular diversification factors by a machine learning simplex approach. A review and research on Astragalus saponins. Curr. Top. Med. Chem., 2017, 17(25), 2820-2848.
[PMID: 28730959]
[63]
Cheikh-Ali, S.; Farman, M.; Lacaille-Dubois, M.A.; Semmar, N. Structural organization of saponins in Caryophyllaceae. Phytochem. Rev., 2019, 18(2), 405-441.
[http://dx.doi.org/10.1007/s11101-019-09600-8]
[64]
Duško, B.L. Čomić, L.; Solujić-Sukdolak, S. Antibacterial activity of some plants from family Apiaceae in relation to selected phytopathogenic bacteria. 2006. Kragujevac. J. Sci., 2006, 28, 65-72.
[65]
Seo, J.W.; Lee, H.J.; Youk, Y.M.; Nam, G.H.; Kim, Y.M. Torilis japonica extract suppresses the induction of atopic inflammation. Int. J. Mol. Sci., 2023, 24(3), 2102.
[http://dx.doi.org/10.3390/ijms24032102] [PMID: 36768424]
[66]
Ye, Y.; Huang, Z.; Chen, M.; Mo, Y.; Mo, Z. Luteolin potentially treating prostate cancer and COVID-19 analyzed by the bioinformatics approach: clinical findings and drug targets. Front. Endocrinol., 2022, 12, 802447.
[http://dx.doi.org/10.3389/fendo.2021.802447] [PMID: 35178029]
[67]
Ahmed, D.; Kumar, V.; Sharma, M.; Verma, A. Target guided isolation, in-vitro antidiabetic, antioxidant activity and molecular docking studies of some flavonoids from Albizzia lebbeck Benth. bark. BMC Complement. Altern. Med., 2014, 14(1), 155.
[http://dx.doi.org/10.1186/1472-6882-14-155] [PMID: 24886138]
[68]
Pattanayak, S.P.; Bose, P.; Sunita, P.; Siddique, M.U.M.; Lapenna, A. Bergapten inhibits liver carcinogenesis by modulating LXR/PI3K/Akt and IDOL/LDLR pathways. Biomed. Pharmacother., 2018, 108, 297-308.
[http://dx.doi.org/10.1016/j.biopha.2018.08.145] [PMID: 30227322]
[69]
Ahmed, E.A.; Abu Zahra, H.; Ammar, R.B.; Mohamed, M.E.; Ibrahim, H.I.M. Beta-caryophyllene enhances the anti-tumor activity of cisplatin in lung cancer cell lines through regulating cell cycle and apoptosis signaling molecules. Molecules, 2022, 27(23), 8354.
[http://dx.doi.org/10.3390/molecules27238354] [PMID: 36500446]
[70]
Li, X.; Zhang, X.X.; Lin, Y.X.; Xu, X.M.; Li, L.; Yang, J.B. Virtual screening based on ensemble docking targeting wild-type p53 for anticancer drug discovery. Chem. Biodivers., 2019, 16(7), e1900170.
[http://dx.doi.org/10.1002/cbdv.201900170] [PMID: 31134745]
[71]
Okechukwu Ohiagu, F.; Chikezie, P.C.; Chikezie, C.M. Toxicological significance of bioactive compounds of plant origin. Pharmacogn. Commun., 2021, 11(2), 67-77.
[http://dx.doi.org/10.5530/pc.2021.2.15]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy