Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Research Article

Profiling of Polyphenolic Compounds, Antioxidant, Antidyslipidemic and Cardiac Risk Preventive Effect of Keteki Joha and Kola Joha Rice Cultivars Grown in Assam, India: A Comparative Study

Author(s): Saikat Sen*, Pratap Kalita and Raja Chakraborty*

Volume 23, Issue 24, 2023

Published on: 25 July, 2023

Page: [2332 - 2341] Pages: 10

DOI: 10.2174/1568026623666230719113121

Price: $65

conference banner
Abstract

Background: Food grains' ability to promote health is widely recognized as a result of their rich nutritional profile and presence of antioxidants.

Aim: The present study aimed to investigate the antioxidant, antidyslipidemic, and cardiac risk preventive effects of unpolished whole rice extracts of Keteki and Kola Joha of Assam, India, and to profile the polyphenolic compounds present.

Methods: Whole unpolished rice samples were extracted with ethanol and the efficacy of the extract of both rice cultivars was evaluated against high-fat and high-sugar induced hyperlipidemia in rats. The effects of extracts on lipid profile, hepatic enzyme, endogenous antioxidants, lipid peroxidation, creatine kinase-NAC, lactate dehydrogenase, C-reactive protein and lipoprotein(s) were evaluated. Atherogenic indices were calculated to find the effect of the extract on cardiac risk. HPLC analysis of whole unpolished rice samples was also carried out to profile the polyphenolics present.

Results: HPLC analysis revealed the presence of gallic acid, vanillic acid, caffeic acid, sinapic acid, o-coumaric acid, t-coumaric acid, rosamarinic acid, chlorogenic acid, phytic acid in both rice samples. Protocatechuic acid, syringic acid, and p-coumaric acid were detected in keteki joha, and ferulic acid was detected in kola joha only. Ethanol extracts (200 and 400 mg/kg) of both rice varieties for 30 days significantly averted dyslipidemia, preserved the level of endogenous antioxidants, and prevented lipid peroxidation. Levels of creatine kinase-NAC, lactate dehydrogenase, Creactive protein, and lipoprotein (a) were significantly (P < 0.01) less in the extract-treated group compared to the disease-control group. Extract treatment enhanced ApoA1 level while the reduced level of ApoB. ApoB/ApoA1 ratio was found more in the disease control group, which was significantly reduced in the extract-treated group. The atherogenic index, atherogenic coefficient, and cardiac risk ratio were reduced, while the cardioprotective index was enhanced in treatment groups.

Conclusion: This paper profiled polyphenolic compounds for the first time. Keteki joha exhibited better results than Kola joha. Observations offer novel insights into the hypothesis for the first time that unpolished Keteki and Kola Joha rice can be beneficial in averting hyperlipidemia and its associated coronary events.

« Previous
Graphical Abstract

[1]
Sen, S.; Chakraborty, R.; Kalita, P. Rice - not just a staple food: A comprehensive review on its phytochemicals and therapeutic potential. Trends Food Sci. Technol., 2020, 97, 265-285.
[http://dx.doi.org/10.1016/j.tifs.2020.01.022]
[2]
Das, A.; Kesari, V.; Rangan, L. Aromatic joha rice of assam- a review. Agric. Rev., 2010, 31, 1-10.
[3]
Roy, J.D.; Handique, G.K.; Handique, A.K. Nutritive value and characterization of Joha rice cultivars of Assam through seed protein electrophoresis. Oryza, 2020, 47, 136-141.
[4]
Saikia, S.; Dutta, H.; Saikia, D.; Mahanta, C.L. Quality characterisation and estimation of phytochemicals content and antioxidant capacity of aromatic pigmented and non-pigmented rice varieties. Food Res. Int., 2012, 46(1), 334-340.
[http://dx.doi.org/10.1016/j.foodres.2011.12.021]
[5]
Bagchi, T.B.; Ghosh, A.; Kumar, U.; Chattopadhyay, K.; Sanghamitra, P.; Ray, S.; Adak, T.; Sharma, S. Comparison of nutritional and physicochemical quality of rice under organic and standard production systems. Cereal Chem., 2016, 93(5), 435-443.
[http://dx.doi.org/10.1094/CCHEM-01-16-0001-R]
[6]
Choudhury, P.; Dutta, K.N.; Dev, P.K.; Talukdar, N.C.; Samanta, S.K.; Devi, R. Quantitative analysis of bio-active phytochemical (s) in selected scented rice varieties (Oryza sativa) reveals its intake towards advantage against metabolic disorders. Indian J. Tradit. Knowl., 2021, 20, 210-220.
[7]
Sen, S.; Chakraborty, R.; Kalita, P. Evaluation of hypolipidemic and antioxidant potential of keteki joha, an aromatic rice of Assam, India. Biotechnology and Biological Sciences; Sen, R.; Mukharjee, S.; Paul, R.; Narula, R., Eds.; CRP Press: London, 2019, pp. 207-213.
[http://dx.doi.org/10.1201/9781003001614-34]
[8]
Pirillo, A.; Casula, M.; Olmastroni, E.; Norata, G.D.; Catapano, A.L. Global epidemiology of dyslipidaemias. Nat. Rev. Cardiol., 2021, 18(10), 689-700.
[http://dx.doi.org/10.1038/s41569-021-00541-4] [PMID: 33833450]
[9]
Ji, X.; Shi, S.; Liu, B.; Shan, M.; Tang, D.; Zhang, W.; Zhang, Y.; Zhang, L.; Zhang, H.; Lu, C.; Wang, Y. Bioactive compounds from herbal medicines to manage dyslipidemia. Biomed. Pharmacother., 2019, 118, 109338.
[http://dx.doi.org/10.1016/j.biopha.2019.109338] [PMID: 31545238]
[10]
Khutami, C.; Sumiwi, S.A.; Khairul Ikram, N.K.; Muchtaridi, M. The effects of antioxidants from natural products on obesity, dyslipidemia, diabetes and their molecular signaling mechanism. Int. J. Mol. Sci., 2022, 23(4), 2056.
[http://dx.doi.org/10.3390/ijms23042056] [PMID: 35216172]
[11]
Hunter, P.M.; Hegele, R.A. Functional foods and dietary supplements for the management of dyslipidaemia. Nat. Rev. Endocrinol., 2017, 13(5), 278-288.
[http://dx.doi.org/10.1038/nrendo.2016.210] [PMID: 28133369]
[12]
Shao, Y.; Xu, F.; Sun, X.; Bao, J.; Beta, T. Phenolic acids, anthocyanins, and antioxidant capacity in rice (Oryza sativa L.) grains at four stages of development after flowering. Food Chem., 2014, 143, 90-96.
[http://dx.doi.org/10.1016/j.foodchem.2013.07.042] [PMID: 24054217]
[13]
Shao, Y.; Xu, F.; Sun, X.; Bao, J.; Beta, T. Identification and quantification of phenolic acids and anthocyanins as antioxidants in bran, embryo and endosperm of white, red and black rice kernels (Oryza sativa L.). J. Cereal Sci., 2014, 59(2), 211-218.
[http://dx.doi.org/10.1016/j.jcs.2014.01.004]
[14]
Test No. 423: Acute Oral toxicity - Acute Toxic Class Method, OECD Guidelines for the Testing of Chemicals; OECD Publishing: Paris, 2002.
[15]
Munshi, R.; Joshi, S.; Rane, B. Development of an experimental diet model in rats to study hyperlipidemia and insulin resistance, markers for coronary heart disease. Indian J. Pharmacol., 2014, 46(3), 270-276.
[http://dx.doi.org/10.4103/0253-7613.132156] [PMID: 24987172]
[16]
Devi, S.; Singh, R. Evaluation of antioxidant and anti-hypercholesterolemic potential of Vitis vinifera leaves. Food Sci. Hum. Wellness, 2017, 6(3), 131-136.
[http://dx.doi.org/10.1016/j.fshw.2017.07.002]
[17]
Oršolić, N.; Landeka Jurčević, I.; Đikić, D.; Rogić, D.; Odeh, D.; Balta, V.; Perak Junaković, E.; Terzić, S.; Jutrić, D. Effect of propolis on diet-induced hyperlipidemia and atherogenic indices in mice. Antioxidants, 2019, 8(6), 156.
[http://dx.doi.org/10.3390/antiox8060156] [PMID: 31163593]
[18]
Chandra, A.; Mahdi, A.A.; Ahmad, S.; Singh, R.K. Indian herbs result in hypoglycemic responses in streptozotocin-induced diabetic rats. Nutr. Res., 2007, 27(3), 161-168.
[http://dx.doi.org/10.1016/j.nutres.2006.12.008]
[19]
Zhou, D.D.; Luo, M.; Shang, A.; Mao, Q.Q.; Li, B.Y.; Gan, R.Y.; Li, H.B. Antioxidant food components for the prevention and treatment of cardiovascular diseases: Effects, mechanisms, and clinical studies. Oxid. Med. Cell. Longev., 2021, 2021, 1-17.
[http://dx.doi.org/10.1155/2021/6627355] [PMID: 33574978]
[20]
Bhargava, S.; de la Puente-Secades, S.; Schurgers, L.; Jankowski, J. Lipids and lipoproteins in cardiovascular diseases: a classification. Trends Endocrinol. Metab., 2022, 33(6), 409-423.
[http://dx.doi.org/10.1016/j.tem.2022.02.001] [PMID: 35370062]
[21]
Soppert, J.; Lehrke, M.; Marx, N.; Jankowski, J.; Noels, H. Lipoproteins and lipids in cardiovascular disease: from mechanistic insights to therapeutic targeting. Adv. Drug Deliv. Rev., 2020, 159, 4-33.
[http://dx.doi.org/10.1016/j.addr.2020.07.019] [PMID: 32730849]
[22]
Lee, A.Y.; Yeo, S.K.; Lee, J.H.; Kim, H.; Jia, Y.; Hoang, M.H.; Chung, H.; Kim, Y.S.; Lee, S.J. Hypolipidemic effect of Goami-3 rice (Oryza sativa L. cv. Goami-3) on C57BL/6J mice is mediated by the regulation of peroxisome proliferator-activated receptor-α and -γ. J. Nutr. Biochem., 2013, 24(11), 1991-2000.
[http://dx.doi.org/10.1016/j.jnutbio.2013.06.008] [PMID: 24075903]
[23]
Kang, M.Y.; Kim, S.M.; Rico, C.W.; Lee, S.C. Hypolipidemic and antioxidative effects of rice bran and phytic acid in high fat-fed mice. Food Sci. Biotechnol., 2012, 21(1), 123-128.
[http://dx.doi.org/10.1007/s10068-012-0015-3]
[24]
Sangkitikomol, W.; Tencomnao, T.; Rocejanasaroj, A. Effects of Thai black sticky rice extract on oxidative stress and lipid metabolism gene expression in HepG2 cells. Genet. Mol. Res., 2010, 9(4), 2086-2095.
[http://dx.doi.org/10.4238/vol9-4gmr912] [PMID: 20967698]
[25]
Bae, H.J.; Rico, C.W.; Ryu, S.N.; Kang, M.Y. Hypolipidemic, hypoglycemic, and antioxidative effects of a new pigmented rice cultivar “Superjami” in high fat-fed mice. J. Korean Soc. Appl. Biol. Chem., 2014, 57(5), 685-691.
[http://dx.doi.org/10.1007/s13765-014-4095-z]
[26]
Jang, H.H.; Park, M.Y.; Kim, H.W.; Lee, Y.M.; Hwang, K.A.; Park, J.H.; Park, D.S.; Kwon, O. Black rice (Oryza sativa L.) extract attenuates hepatic steatosis in C57BL/6 J mice fed a high-fat diet via fatty acid oxidation. Nutr. Metab. (Lond.), 2012, 9(1), 27.
[http://dx.doi.org/10.1186/1743-7075-9-27] [PMID: 22458550]
[27]
Arora, M.K.; Pandey, S.; Tomar, R.; Sahoo, J.; Kumar, D.; Jangra, A. Therapeutic potential of policosanol in the concurrent management of dyslipidemia and non-alcoholic fatty liver disease. FJPS, 2022, 8(1), 11.
[http://dx.doi.org/10.1186/s43094-022-00399-4]
[28]
Asokkumar, K.; Sen, S.; Umamaheswari, M.; Sivashanmugam, A.T.; Subhadradevi, V. Synergistic effect of the combination of gallic acid and famotidine in protection of rat gastric mucosa. Pharmacol. Rep., 2014, 66(4), 594-599.
[http://dx.doi.org/10.1016/j.pharep.2014.01.006] [PMID: 24948059]
[29]
Ighodaro, O.M.; Akinloye, O.A. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alex. J. Med., 2018, 54(4), 287-293.
[http://dx.doi.org/10.1016/j.ajme.2017.09.001]
[30]
Sen, S.; De, B.; Devanna, N.; Chakraborty, R. Total phenolic, total flavonoid content, and antioxidant capacity of the leaves of Meyna spinosa Roxb., an Indian medicinal plant. Chin. J. Nat. Med., 2013, 11(2), 149-157.
[http://dx.doi.org/10.1016/S1875-5364(13)60042-4] [PMID: 23787182]
[31]
Hassan, S.; El-Twab, S.A.; Hetta, M.; Mahmoud, B. Improvement of lipid profile and antioxidant of hypercholesterolemic albino rats by polysaccharides extracted from the green alga Ulva lactuca Linnaeus. Saudi J. Biol. Sci., 2011, 18(4), 333-340.
[http://dx.doi.org/10.1016/j.sjbs.2011.01.005] [PMID: 23961145]
[32]
Fu, Y.; Wu, Y.; Liu, E. C‑reactive protein and cardiovascular disease: From animal studies to the clinic (Review). Exp. Ther. Med., 2020, 20(2), 1211-1219.
[http://dx.doi.org/10.3892/etm.2020.8840] [PMID: 32765664]
[33]
Aramwit, P.; Supasyndh, O.; Siritienthong, T.; Bang, N. Mulberry leaf reduces oxidation and C-reactive protein level in patients with mild dyslipidemia. BioMed Res. Int., 2013, 2013, 1-7.
[http://dx.doi.org/10.1155/2013/787981] [PMID: 23484158]
[34]
Jang, A.Y.; Han, S.H.; Sohn, I.S.; Oh, P.C.; Koh, K.K. Lipoprotein(a) and cardiovascular diseases - revisited. Circ. J., 2020, 84(6), 867-874.
[http://dx.doi.org/10.1253/circj.CJ-20-0051] [PMID: 32336721]
[35]
Walldius, G.; Jungner, I. The apoB/apoA-I ratio: a strong, new risk factor for cardiovascular disease and a target for lipid-lowering therapy - a review of the evidence. J. Intern. Med., 2006, 259(5), 493-519.
[http://dx.doi.org/10.1111/j.1365-2796.2006.01643.x] [PMID: 16629855]
[36]
Lu, M.; Lu, Q.; Zhang, Y.; Tian, G. ApoB/apoA1 is an effective predictor of coronary heart disease risk in overweight and obesity. J. Biomed. Res., 2011, 25(4), 266-273.
[http://dx.doi.org/10.1016/S1674-8301(11)60036-5] [PMID: 23554700]
[37]
Mollick, M.M.R.; Rana, D.; Dash, S.K.; Chattopadhyay, S.; Bhowmick, B.; Maity, D.; Mondal, D.; Pattanayak, S.; Roy, S.; Chakraborty, M.; Chattopadhyay, D. Studies on green synthesized silver nanoparticles using Abelmoschus esculentus (L.) pulp extract having anticancer (in vitro) and antimicrobial applications. Arab. J. Chem., 2019, 12(8), 2572-2584.
[http://dx.doi.org/10.1016/j.arabjc.2015.04.033]
[38]
Chakraborty, R.; Kalita, P.; Manoj, P.K.; Sen, S. in vitro Antioxidant, Hypolipidemic and Anti-Lipase Potential of Joha Rice of Assam, India. Indian J. Pharm. Sci., 2023, 85, 539-543.
[39]
Ed Nignpense, B.; Latif, S.; Francis, N.; Blanchard, C.; Santhakumar, A.B. Bioaccessibility and antioxidant activity of polyphenols from pigmented barley and wheat. Foods, 2022, 11(22), 3697.
[http://dx.doi.org/10.3390/foods11223697] [PMID: 36429289]
[40]
Shahidi, F.; Ambigaipalan, P. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects - A review. J. Funct. Foods, 2015, 18, 820-897.
[http://dx.doi.org/10.1016/j.jff.2015.06.018]
[41]
Zern, T.L.; Fernandez, M.L. Cardioprotective effects of dietary polyphenols. J. Nutr., 2005, 135(10), 2291-2294.
[http://dx.doi.org/10.1093/jn/135.10.2291] [PMID: 16177184]
[42]
Sen, S.; Kalita, P.; Chakraborty, R. Evaluation of hypolipidemic, antioxidant, atherogenic index and cardiac risk suppressing effects of unpolished maniki madhuri rice extract and HPLC analysis of phenolics compounds. J. Cereal Sci., 2022, 108, 103581.
[http://dx.doi.org/10.1016/j.jcs.2022.103581]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy