Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Cognitive Effects of Lurasidone and Cariprazine: A Mini Systematic Review

Author(s): Miriam Olivola, Nicola Bassetti, Serena Parente, Vincenzo Arienti, Serena Chiara Civardi, Pietro Alessandro Topa and Natascia Brondino*

Volume 21, Issue 12, 2023

Published on: 31 July, 2023

Page: [2431 - 2446] Pages: 16

DOI: 10.2174/1570159X21666230727140843

Price: $65

Abstract

Cognitive deficits are associated with schizophrenia and show a progressive worsening, often being unresponsive to treatment. New antipsychotic molecules acting as antagonist at the serotoninergic 5-hydroxytryptamine receptor 7 (e.g. lurasidone) or partial agonists at dopamine D3 receptor (e.g. cariprazine) could have an impact on cognition in this patient group. The aim of the systematic review is to explore the efficacy of lurasidone and cariprazine in improving cognition in both animal models and human studies. The following terms: (lurasidone AND cognit*) OR (cariprazine AND cognit*) were searched in Web of Science from inception to December 2021. We included all studies that assessed changes in cognitive function after treatment with cariprazine or lurasidone. Of 201 selected articles, 36 were included. Twenty-four articles used animal models (rats, mice and marmosets), five evaluating the effects of cariprazine and 19 the effects of lurasidone. Twelve articles were clinical studies (cariprazine n = 2; lurasidone n = 10). In both animal and human studies lurasidone showed a greater efficacy on cognitive performance compared to placebo, quetiapine, ziprasidone or treatmentas- usual. Cariprazine was superior to other antipsychotics in improving cognitive functions in both animal and human studies. The cognitive effect of lurasidone could be explained by its potent antagonism at the 5-HT7 receptors combined with partial agonism at 5-HT1A receptors. The pro-cognitive effect of cariprazine is probably explained by its very high affinity for D3 receptors. Head-to-head studies comparing lurasidone and cariprazine are needed to establish the “first-choice” treatment for cognitive dysfunction associated with schizophrenia.

[1]
Institute of health Metrics and Evaluation (IHME) Global Health Data Exchange (GHDx)., Available from:http://ghdx.healthdata.org/gbd-results-tool?params=gbd-api-2019-permalink/27a7644e8ad28e739382d31e77589dd7 (Accessed on: 25 September 2021)
[2]
Zanelli, J.; Mollon, J.; Sandin, S.; Morgan, C.; Dazzan, P.; Pilecka, I.; Reis Marques, T.; David, A.S.; Morgan, K.; Fearon, P.; Doody, G.A.; Jones, P.B.; Murray, R.M.; Reichenberg, A. Cognitive change in schizophrenia and other psychoses in the decade following the first episode. Am. J. Psychiatry, 2019, 176(10), 811-819.
[http://dx.doi.org/10.1176/appi.ajp.2019.18091088] [PMID: 31256609]
[3]
Jonas, K.; Lian, W.; Callahan, J.; Ruggero, C.J.; Clouston, S.; Reichenberg, A.; Carlson, G.A.; Bromet, E.J.; Kotov, R. The course of general cognitive ability in individuals with psychotic disorders. JAMA Psychiatry, 2022, 79(7), 659-666.
[http://dx.doi.org/10.1001/jamapsychiatry.2022.1142] [PMID: 35583896]
[4]
Tripathi, A.; Kar, S.K.; Shukla, R. Cognitive deficits in schizophrenia: Understanding the biological correlates and remediation strategies. Clin. Psychopharmacol. Neurosci., 2018, 16(1), 7-17.
[http://dx.doi.org/10.9758/cpn.2018.16.1.7] [PMID: 29397662]
[5]
Stephan, K.E.; Friston, K.J.; Frith, C.D. Dysconnection in schizophrenia: From abnormal synaptic plasticity to failures of self-monitoring. Schizophr. Bull., 2009, 35(3), 509-527.
[http://dx.doi.org/10.1093/schbul/sbn176] [PMID: 19155345]
[6]
Fusar-Poli, P.; Smieskova, R.; Serafini, G.; Politi, P.; Borgwardt, S. Neuroanatomical markers of genetic liability to psychosis and first episode psychosis: A voxelwise meta-analytical comparison. World J. Biol. Psychiatry, 2014, 15(3), 219-228.
[http://dx.doi.org/10.3109/15622975.2011.630408] [PMID: 22283467]
[7]
Bowie, C.R.; Harvey, P.D. Cognitive deficits and functional outcome in schizophrenia. Neuropsychiatr. Dis. Treat., 2006, 2(4), 531-536.
[http://dx.doi.org/10.2147/nedt.2006.2.4.531] [PMID: 19412501]
[8]
Yang, Y.S.; Marder, S.R.; Green, M.F. Repurposing drugs for cognition in schizophrenia. Clin. Pharmacol. Ther., 2017, 101(2), 191-193.
[http://dx.doi.org/10.1002/cpt.529] [PMID: 27706797]
[9]
Okubo, R.; Hasegawa, T.; Fukuyama, K.; Shiroyama, T.; Okada, M. Current limitations and candidate potential of 5-HT7 receptor antagonism in psychiatric pharmacotherapy. Front. Psychiatry, 2021, 12, 623684.
[http://dx.doi.org/10.3389/fpsyt.2021.623684] [PMID: 33679481]
[10]
Stahl, S.M. Mechanism of action of cariprazine. CNS Spectr., 2016, 21(2), 123-127.
[http://dx.doi.org/10.1017/S1092852916000043] [PMID: 26956157]
[11]
Choi, Y.K.; Adham, N.; Kiss, B.; Gyertyán, I.; Tarazi, F.I. Long-term effects of cariprazine exposure on dopamine receptor subtypes. CNS Spectr., 2014, 19(3), 268-277.
[http://dx.doi.org/10.1017/S1092852913000680] [PMID: 24229617]
[12]
Meltzer, H.Y.; Rajagopal, L.; Huang, M.; Oyamada, Y.; Kwon, S.; Horiguchi, M. Translating the N-methyl-d-aspartate receptor antagonist model of schizophrenia to treatments for cognitive impairment in schizophrenia. Int. J. Neuropsychopharmacol., 2013, 16(10), 2181-2194.
[http://dx.doi.org/10.1017/S1461145713000928] [PMID: 24099265]
[13]
Goff, D.C.; Hill, M.; Barch, D. The treatment of cognitive impairment in schizophrenia. Pharmacol. Biochem. Behav., 2011, 99(2), 245-253.
[http://dx.doi.org/10.1016/j.pbb.2010.11.009] [PMID: 21115035]
[14]
Gasbarri, A.; Pompili, A. Serotonergic 5-HT7 receptors and cognition. Rev. Neurosci., 2014, 25(3), 311-323.
[http://dx.doi.org/10.1515/revneuro-2013-0066] [PMID: 24486730]
[15]
Sokoloff, P.; Le Foll, B. The dopamine D3 receptor, a quarter century later. Eur. J. Neurosci., 2017, 45(1), 2-19.
[http://dx.doi.org/10.1111/ejn.13390] [PMID: 27600596]
[16]
Maramai, S.; Gemma, S.; Brogi, S.; Campiani, G.; Butini, S.; Stark, H.; Brindisi, M. Dopamine D3 receptor antagonists as potential therapeutics for the treatment of neurological diseases. Front. Neurosci., 2016, 10, 451.
[http://dx.doi.org/10.3389/fnins.2016.00451] [PMID: 27761108]
[17]
Stahl, S.M. Drugs for psychosis and mood: Unique actions at D3, D2, and D1 dopamine receptor subtypes. CNS Spectr., 2017, 22(5), 375-384.
[http://dx.doi.org/10.1017/S1092852917000608] [PMID: 28965530]
[18]
Meneses, A. 5-HT7 receptor stimulation and blockade: A therapeutic paradox about memory formation and amnesia. Front. Behav. Neurosci., 2014, 8, 207.
[http://dx.doi.org/10.3389/fnbeh.2014.00207] [PMID: 24971055]
[19]
Ishibashi, T.; Horisawa, T.; Tokuda, K.; Ishiyama, T.; Ogasa, M.; Tagashira, R.; Matsumoto, K.; Nishikawa, H.; Ueda, Y.; Toma, S.; Oki, H.; Tanno, N.; Saji, I.; Ito, A.; Ohno, Y.; Nakamura, M. Pharmacological profile of lurasidone, a novel antipsychotic agent with potent 5-hydroxytryptamine 7 (5-HT7) and 5-HT1A receptor activity. J. Pharmacol. Exp. Ther., 2010, 334(1), 171-181.
[http://dx.doi.org/10.1124/jpet.110.167346] [PMID: 20404009]
[20]
Brennan, J.A.; Graf, R.; Grauer, S.M.; Navarra, R.L.; Pulicicchio, C.M.; Hughes, Z.A.; Lin, Q.; Wantuch, C.; Rosenzweig-Lipson, S.; Pruthi, F.; Lai, M.; Smith, D.; Goutier, W.; van de Neut, M.; Robichaud, A.J.; Rotella, D.; Feenstra, R.W.; Kruse, C.; Broqua, P.; Beyer, C.E.; McCreary, A.C.; Pausch, M.H.; Marquis, K.L. WS-50030 [7-{4-[3-(1H-inden-3-yl)propyl]piperazin-1-yl}-1,3-benzoxazol-2 (3H)-one]: A novel dopamine D2 receptor partial agonist/serotonin reuptake inhibitor with preclinical antipsychotic-like and antidepressant-like activity. J. Pharmacol. Exp. Ther., 2010, 332(1), 190-201.
[http://dx.doi.org/10.1124/jpet.109.157388] [PMID: 19828876]
[21]
Sanford, M. Lurasidone. Lurasidone: in the treatment of schizophrenia. CNS Drugs, 2013, 27(1), 67-80.
[http://dx.doi.org/10.1007/s40263-012-0026-x] [PMID: 23264146]
[22]
Citrome, L. Lurasidone for schizophrenia: A review of the efficacy and safety profile for this newly approved second-generation antipsychotic. Int. J. Clin. Pract., 2011, 65(2), 189-210.
[http://dx.doi.org/10.1111/j.1742-1241.2010.02587.x] [PMID: 21129135]
[23]
Tocco, M.; Newcomer, J.W.; Mao, Y.; Pikalov, A.; Loebel, A. Lurasidone and risk for metabolic syndrome: Results from short- and long-term clinical studies in patients with schizophrenia. CNS Spectr., 2020, 14, 1-11.
[PMID: 32921337]
[24]
Loebel, A.; Cucchiaro, J.; Xu, J.; Sarma, K.; Pikalov, A.; Kane, J.M. Effectiveness of lurasidone vs. quetiapine XR for relapse prevention in schizophrenia: A 12-month, double-blind, noninferiority study. Schizophr. Res., 2013, 147(1), 95-102.
[http://dx.doi.org/10.1016/j.schres.2013.03.013] [PMID: 23583011]
[25]
Loebel, A.D.; Siu, C.O.; Cucchiaro, J.B.; Pikalov, A.A.; Harvey, P.D. Daytime sleepiness associated with lurasidone and quetiapine XR: Results from a randomized double-blind, placebo-controlled trial in patients with schizophrenia. CNS Spectr., 2014, 19(2), 197-205.
[http://dx.doi.org/10.1017/S1092852913000904] [PMID: 24330860]
[26]
Nasrallah, H.A.; Silva, R.; Phillips, D.; Cucchiaro, J.; Hsu, J.; Xu, J.; Loebel, A. Lurasidone for the treatment of acutely psychotic patients with schizophrenia: A 6-week, randomized, placebo-controlled study. J. Psychiatr. Res., 2013, 47(5), 670-677.
[http://dx.doi.org/10.1016/j.jpsychires.2013.01.020] [PMID: 23421963]
[27]
Potkin, S.G.; Ogasa, M.; Cucchiaro, J.; Loebel, A. Double-blind comparison of the safety and efficacy of lurasidone and ziprasidone in clinically stable outpatients with schizophrenia or schizoaffective disorder. Schizophr. Res., 2011, 132(2-3), 101-107.
[http://dx.doi.org/10.1016/j.schres.2011.04.008] [PMID: 21889878]
[28]
Durgam, S.; Starace, A.; Li, D.; Migliore, R.; Ruth, A.; Németh, G.; Laszlovszky, I. An evaluation of the safety and efficacy of cariprazine in patients with acute exacerbation of schizophrenia: A phase II, randomized clinical trial. Schizophr. Res., 2014, 152(2-3), 450-457.
[http://dx.doi.org/10.1016/j.schres.2013.11.041] [PMID: 24412468]
[29]
Kane, J.M.; Zukin, S.; Wang, Y.; Lu, K.; Ruth, A.; Nagy, K.; Laszlovszky, I.; Durgam, S. Efficacy and safety of cariprazine in acute exacerbation of schizophrenia. J. Clin. Psychopharmacol., 2015, 35(4), 367-373.
[http://dx.doi.org/10.1097/JCP.0000000000000346] [PMID: 26075487]
[30]
Fleischhacker, W.; Galderisi, S.; Laszlovszky, I.; Szatmári, B.; Barabássy, Á.; Acsai, K.; Szalai, E.; Harsányi, J.; Earley, W.; Patel, M.; Németh, G. The efficacy of cariprazine in negative symptoms of schizophrenia: Post hoc analyses of PANSS individual items and PANSS-derived factors. Eur. Psychiatry, 2019, 58, 1-9.
[http://dx.doi.org/10.1016/j.eurpsy.2019.01.015] [PMID: 30738380]
[31]
Misiak, B.; Bieńkowski, P.; Samochowiec, J. Cariprazine – a novel antipsychotic drug and its place in the treatment of schizophrenia. Psychiatr. Pol., 2018, 52(6), 971-981.
[http://dx.doi.org/10.12740/PP/OnlineFirst/80710] [PMID: 30659560]
[32]
Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. BMJ, 2009, 339(1), b2535.
[http://dx.doi.org/10.1136/bmj.b2535] [PMID: 19622551]
[33]
Barnes, S.A.; Young, J.W.; Markou, A.; Adham, N.; Gyertyán, I.; Kiss, B. Correction to: The effects of cariprazine and aripiprazole on PCP-induced deficits on attention assessed in the 5-choice serial reaction time task. Psychopharmacology, 2018, 235(5), 1621.
[http://dx.doi.org/10.1007/s00213-018-4884-x] [PMID: 29564481]
[34]
Neill, J.C.; Grayson, B.; Kiss, B.; Gyertyán, I.; Ferguson, P.; Adham, N. Effects of cariprazine, a novel antipsychotic, on cognitive deficit and negative symptoms in a rodent model of schizophrenia symptomatology. Eur. Neuropsychopharmacol., 2016, 26(1), 3-14.
[http://dx.doi.org/10.1016/j.euroneuro.2015.11.016] [PMID: 26655189]
[35]
Watson, D.J.G.; King, M.V.; Gyertyán, I.; Kiss, B.; Adham, N.; Fone, K.C.F. The dopamine D 3 -preferring D 2/D 3 dopamine receptor partial agonist, cariprazine, reverses behavioural changes in a rat neurodevelopmental model for schizophrenia. Eur. Neuropsychopharmacol., 2016, 26(2), 208-224.
[http://dx.doi.org/10.1016/j.euroneuro.2015.12.020] [PMID: 26723167]
[36]
Zimnisky, R.; Chang, G.; Gyertyán, I.; Kiss, B.; Adham, N.; Schmauss, C. Cariprazine, a dopamine D3-receptor-preferring partial agonist, blocks phencyclidine-induced impairments of working memory, attention set-shifting, and recognition memory in the mouse. Psychopharmacology (Berl.), 2013, 226(1), 91-100.
[http://dx.doi.org/10.1007/s00213-012-2896-5] [PMID: 23079899]
[37]
Gyertyán, I.; Kiss, B.; Sághy, K.; Laszy, J.; Szabó, G.; Szabados, T.; Gémesi, L.I.; Pásztor, G.; Zájer-Balázs, M.; Kapás, M.; Csongor, É.Á.; Domány, G.; Tihanyi, K.; Szombathelyi, Z. Cariprazine (RGH-188), a potent D3/D2 dopamine receptor partial agonist, binds to dopamine D3 receptors in vivo and shows antipsychotic-like and procognitive effects in rodents. Neurochem. Int., 2011, 59(6), 925-935.
[http://dx.doi.org/10.1016/j.neuint.2011.07.002] [PMID: 21767587]
[38]
Lueptow, L.M. Novel object recognition test for the investigation of learning and memory in mice. J. Vis. Exp., 2017, 30(126), 55718.
[http://dx.doi.org/10.3791/55718] [PMID: 28892027]
[39]
Calabrese, F.; Brivio, P.; Sbrini, G.; Gruca, P.; Lason, M.; Litwa, E.; Niemczyk, M.; Papp, M.; Riva, M.A. Effect of lurasidone treatment on chronic mild stress-induced behavioural deficits in male rats: The potential role for glucocorticoid receptor signalling. J. Psychopharmacol., 2020, 34(4), 420-428.
[http://dx.doi.org/10.1177/0269881119895547] [PMID: 31913065]
[40]
Horiguchi, M.; Huang, M.; Meltzer, H.Y. The role of 5-hydroxytryptamine 7 receptors in the phencyclidine-induced novel object recognition deficit in rats. J. Pharmacol. Exp. Ther., 2011, 338(2), 605-614.
[http://dx.doi.org/10.1124/jpet.111.180638] [PMID: 21558435]
[41]
Horiguchi, M.; Huang, M.; Meltzer, H.Y. Interaction of mGlu2/3 agonism with clozapine and lurasidone to restore novel object recognition in subchronic phencyclidine-treated rats. Psychopharmacology (Berl.), 2011, 217(1), 13-24.
[http://dx.doi.org/10.1007/s00213-011-2251-2] [PMID: 21432027]
[42]
Horiguchi, M.; Hannaway, K.E.; Adelekun, A.E.; Jayathilake, K.; Meltzer, H.Y. Prevention of the phencyclidine-induced impairment in novel object recognition in female rats by co-administration of lurasidone or tandospirone, a 5-HT(1A) partial agonist. Neuropsychopharmacology, 2012, 37(10), 2175-2183.
[http://dx.doi.org/10.1038/npp.2012.64] [PMID: 22739469]
[43]
Horiguchi, M.; Meltzer, H.Y. The role of 5-HT1A receptors in phencyclidine (PCP)-induced novel object recognition (NOR) deficit in rats. Psychopharmacology (Berl.), 2012, 221(2), 205-215.
[http://dx.doi.org/10.1007/s00213-011-2561-4] [PMID: 22227609]
[44]
Horiguchi, M.; Miyauchi, M.; Neugebauer, N.M.; Oyamada, Y.; Meltzer, H.Y. Prolonged reversal of the phencyclidine-induced impairment in novel object recognition by a serotonin (5-HT)1A-dependent mechanism. Behav. Brain Res., 2016, 301, 132-141.
[http://dx.doi.org/10.1016/j.bbr.2015.08.040] [PMID: 26342283]
[45]
Huang, M.; Kwon, S.; Rajagopal, L.; He, W.; Meltzer, H.Y. 5-HT1A parital agonism and 5-HT7 antagonism restore episodic memory in subchronic phencyclidine-treated mice: Role of brain glutamate, dopamine, acetylcholine and GABA. Psychopharmacology, 2018, 235(10), 2795-2808.
[http://dx.doi.org/10.1007/s00213-018-4972-y] [PMID: 30066135]
[46]
Miyauchi, M.; Neugebauer, N.M.; Oyamada, Y.; Meltzer, H.Y. Nicotinic receptors and lurasidone-mediated reversal of phencyclidine-induced deficit in novel object recognition. Behav. Brain Res., 2016, 301, 204-212.
[http://dx.doi.org/10.1016/j.bbr.2015.10.044] [PMID: 26519556]
[47]
Miyauchi, M.; Neugebauer, N.M.; Meltzer, H.Y. Dopamine D4 receptor stimulation contributes to novel object recognition: Relevance to cognitive impairment in schizophrenia. J. Psychopharmacol., 2017, 31(4), 442-452.
[http://dx.doi.org/10.1177/0269881117693746] [PMID: 28347261]
[48]
Miyauchi, M.; Neugebauer, N.M.; Sato, T.; Ardehali, H.; Meltzer, H.Y. Muscarinic receptor signaling contributes to atypical antipsychotic drug reversal of the phencyclidine-induced deficit in novel object recognition in rats. J. Psychopharmacol., 2017, 31(12), 1588-1604.
[http://dx.doi.org/10.1177/0269881117731278] [PMID: 28946779]
[49]
Rajagopal, L.; Soni, D.; Meltzer, H.Y. Neurosteroid pregnenolone sulfate, alone, and as augmentation of lurasidone or tandospirone, rescues phencyclidine-induced deficits in cognitive function and social interaction. Behav. Brain Res., 2018, 350(350), 31-43.
[http://dx.doi.org/10.1016/j.bbr.2018.05.005] [PMID: 29763637]
[50]
Rajagopal, L.; Massey, B.W.; Michael, E.; Meltzer, H.Y. Serotonin (5-HT)1A receptor agonism and 5-HT7 receptor antagonism ameliorate the subchronic phencyclidine-induced deficit in executive functioning in mice. Psychopharmacology (Berl.), 2016, 233(4), 649-660.
[http://dx.doi.org/10.1007/s00213-015-4137-1] [PMID: 26558619]
[51]
Murai, T.; Nakako, T.; Ikejiri, M.; Ishiyama, T.; Taiji, M.; Ikeda, K. Effects of lurasidone on executive function in common marmosets. Behav. Brain Res., 2013, 246, 125-131.
[http://dx.doi.org/10.1016/j.bbr.2013.02.019] [PMID: 23454675]
[52]
Murai, T.; Nakako, T.; Ikeda, K.; Ikejiri, M.; Ishiyama, T.; Taiji, M. Lack of dopamine D4 receptor affinity contributes to the procognitive effect of lurasidone. Behav. Brain Res., 2014, 261, 26-30.
[http://dx.doi.org/10.1016/j.bbr.2013.11.036] [PMID: 24304719]
[53]
Horisawa, T.; Nishikawa, H.; Toma, S.; Ikeda, A.; Horiguchi, M.; Ono, M.; Ishiyama, T.; Taiji, M. The role of 5-HT7 receptor antagonism in the amelioration of MK-801-induced learning and memory deficits by the novel atypical antipsychotic drug lurasidone. Behav. Brain Res., 2013, 244, 66-69.
[http://dx.doi.org/10.1016/j.bbr.2013.01.026] [PMID: 23376699]
[54]
Ishiyama, T.; Tokuda, K.; Ishibashi, T.; Ito, A.; Toma, S.; Ohno, Y. Lurasidone (SM-13496), a novel atypical antipsychotic drug, reverses MK-801-induced impairment of learning and memory in the rat passive-avoidance test. Eur. J. Pharmacol., 2007, 572(2-3), 160-170.
[http://dx.doi.org/10.1016/j.ejphar.2007.06.058] [PMID: 17662268]
[55]
Kołaczkowski, M.; Mierzejewski, P.; Bieńkowski, P.; Wesołowska, A.; Newman-Tancredi, A. ADN-1184 a monoaminergic ligand with 5-HT(6/7) receptor antagonist activity: Pharmacological profile and potential therapeutic utility. Br. J. Pharmacol., 2014, 171(4), 973-984.
[PMID: 24199650]
[56]
Enomoto, T.; Ishibashi, T.; Tokuda, K.; Ishiyama, T.; Toma, S.; Ito, A. Lurasidone reverses MK-801-induced impairment of learning and memory in the Morris water maze and radial-arm maze tests in rats. Behav. Brain Res., 2008, 186(2), 197-207.
[http://dx.doi.org/10.1016/j.bbr.2007.08.012] [PMID: 17881065]
[57]
Percelay, S.; Since, M.; Lagadu, S.; Freret, T.; Bouet, V.; Boulouard, M. Antipsychotic lurasidone: Behavioural and pharmacokinetic data in C57BL/6 mice. Pharmacol. Biochem. Behav., 2020, 194, 172933.
[http://dx.doi.org/10.1016/j.pbb.2020.172933] [PMID: 32371059]
[58]
Vieta, E.; Calabrese, J.R.; Whelan, J.; Tohen, M.; Earley, W.R. The efficacy of cariprazine on function in patients with bipolar depression: A post hoc analysis of a randomized controlled trial. Curr. Med. Res. Opin., 2021, 37(9), 1635-1643.
[http://dx.doi.org/10.1080/03007995.2021.1932446] [PMID: 34034612]
[59]
Rosa, A.R.; Sánchez-Moreno, J.; Martínez-Aran, A.; Salamero, M.; Torrent, C.; Reinares, M.; Comes, M.; Colom, F.; Van Riel, W.; Ayuso-Mateos, J.; Kapczinski, F.; Vieta, E. Validity and reliability of the Functioning Assessment Short Test (FAST) in bipolar disorder. Clin. Pract. Epidemiol. Ment. Health, 2007, 3(1), 5.
[http://dx.doi.org/10.1186/1745-0179-3-5] [PMID: 17555558]
[60]
Harvey, P.D.; Siu, C.O.; Ogasa, M.; Loebel, A. Effect of lurasidone dose on cognition in patients with schizophrenia: Post-hoc analysis of a long-term, double-blind continuation study. Schizophr. Res., 2015, 166(1-3), 334-338.
[http://dx.doi.org/10.1016/j.schres.2015.06.008] [PMID: 26117157]
[61]
Miller, B.J.; Pikalov, A.; Siu, C.O.; Tocco, M.; Tsai, J.; Harvey, P.D.; Newcomer, J.W.; Loebel, A. Association of C-reactive protein and metabolic risk with cognitive effects of lurasidone in patients with schizophrenia. Compr. Psychiatry, 2020, 102, 152195.
[http://dx.doi.org/10.1016/j.comppsych.2020.152195] [PMID: 32896775]
[62]
Raison, C.L.; Siu, C.; Pikalov, A.; Tocco, M.; Loebel, A. C-reactive protein and response to lurasidone treatment in children and adolescents with bipolar I depression: Results from a placebo-controlled trial. Brain Behav. Immun., 2020, 84, 269-274.
[http://dx.doi.org/10.1016/j.bbi.2019.12.010] [PMID: 31857217]
[63]
Pietrzak, R.H.; Olver, J.; Norman, T.; Piskulic, D.; Maruff, P.; Snyder, P.J. A comparison of the CogState schizophrenia battery and the measurement and treatment research to improve cognition in schizophrenia (MATRICS) battery in assessing cognitive impairment in chronic schizophrenia. J. Clin. Exp. Neuropsychol., 2009, 31(7), 848-859.
[http://dx.doi.org/10.1080/13803390802592458] [PMID: 19142774]
[64]
Harvey, P.D.; Ogasa, M.; Cucchiaro, J.; Loebel, A.; Keefe, R.S.E. Performance and interview-based assessments of cognitive change in a randomized, double-blind comparison of lurasidone vs. ziprasidone. Schizophr. Res., 2011, 127(1-3), 188-194.
[http://dx.doi.org/10.1016/j.schres.2011.01.004] [PMID: 21277745]
[65]
Kantrowitz, J.T.; Sharif, Z.; Medalia, A.; Keefe, R.S.E.; Harvey, P.; Bruder, G.; Barch, D.M.; Choo, T.; Lee, S.; Lieberman, J.A. A multicenter, rater-blinded, randomized controlled study of auditory processing-focused cognitive remediation combined with open-label lurasidone in patients with schizophrenia and schizoaffective disorder. J. Clin. Psychiatry, 2016, 77(6), 799-806.
[http://dx.doi.org/10.4088/JCP.15m09998] [PMID: 27035157]
[66]
Nuechterlein, K.H.; Green, M.F.; Kern, R.S.; Baade, L.E.; Barch, D.M.; Cohen, J.D.; Essock, S.; Fenton, W.S.; Frese, F.J., III; Gold, J.M.; Goldberg, T.; Heaton, R.K.; Keefe, R.S.E.; Kraemer, H.; Mesholam-Gately, R.; Seidman, L.J.; Stover, E.; Weinberger, D.R.; Young, A.S.; Zalcman, S.; Marder, S.R. The MATRICS consensus cognitive battery, part 1: Test selection, reliability, and validity. Am. J. Psychiatry, 2008, 165(2), 203-213.
[http://dx.doi.org/10.1176/appi.ajp.2007.07010042] [PMID: 18172019]
[67]
Harvey, P.D.; Siu, C.O.; Loebel, A.D. Insight and treatment outcomes in schizophrenia: Post-hoc analysis of a long-term, double-blind study comparing lurasidone and quetiapine XR. Innov. Clin. Neurosci., 2017, 14(11-12), 23-29.
[PMID: 29410934]
[68]
Nakamura, M.; Ogasa, M.; Guarino, J.; Phillips, D.; Severs, J.; Cucchiaro, J.; Loebel, A. Lurasidone in the treatment of acute schizophrenia: A double-blind, placebo-controlled trial. J. Clin. Psychiatry, 2009, 70(6), 829-836.
[http://dx.doi.org/10.4088/JCP.08m04905] [PMID: 19497249]
[69]
Meltzer, H.Y.; Share, D.B.; Jayathilake, K.; Salomon, R.M.; Lee, M.A. Lurasidone improves psychopathology and cognition in treatment-resistant schizophrenia. J. Clin. Psychopharmacol., 2020, 40(3), 240-249.
[http://dx.doi.org/10.1097/JCP.0000000000001205] [PMID: 32332459]
[70]
Lindenmayer, J.P.; Bernstein-Hyman, R.; Grochowski, S. A new five factor model of schizophrenia. Psychiatr. Q., 1994, 65(4), 299-322.
[http://dx.doi.org/10.1007/BF02354306] [PMID: 7831416]
[71]
Karpouzian-Rogers, T.; Stocks, J.; Meltzer, H.Y.; Reilly, J.L. The effect of high vs. low dose lurasidone on eye movement biomarkers of prefrontal abilities in treatment-resistant schizophrenia. Schizophr. Res., 2020, 215, 314-321.
[http://dx.doi.org/10.1016/j.schres.2019.10.008] [PMID: 31706786]
[72]
Hutton, S.B.; Ettinger, U. The antisaccade task as a research tool in psychopathology: A critical review. Psychophysiology, 2006, 43(3), 302-313.
[http://dx.doi.org/10.1111/j.1469-8986.2006.00403.x] [PMID: 16805870]
[73]
Yatham, L.N.; Mackala, S.; Basivireddy, J.; Ahn, S.; Walji, N.; Hu, C.; Lam, R.W.; Torres, I.J. Lurasidone versus treatment as usual for cognitive impairment in euthymic patients with bipolar I disorder: A randomised, open-label, pilot study. Lancet Psychiatry, 2017, 4(3), 208-217.
[http://dx.doi.org/10.1016/S2215-0366(17)30046-9] [PMID: 28185899]
[74]
Maroteaux, L.; Béchade, C.; Roumier, A. Dimers of serotonin receptors: Impact on ligand affinity and signaling. Biochimie, 2019, 161, 23-33.
[http://dx.doi.org/10.1016/j.biochi.2019.01.009] [PMID: 30685449]
[75]
Ciranna, L.; Catania, M.V. 5-HT7 receptors as modulators of neuronal excitability, synaptic transmission and plasticity: Physiological role and possible implications in autism spectrum disorders. Front. Cell. Neurosci., 2014, 8, 250.
[http://dx.doi.org/10.3389/fncel.2014.00250] [PMID: 25221471]
[76]
Guseva, D.; Wirth, A.; Ponimaskin, E. Cellular mechanisms of the 5-HT 7 receptor-mediated signaling. Front. Behav. Neurosci., 2014, 8, 306.
[http://dx.doi.org/10.3389/fnbeh.2014.00306] [PMID: 25324743]
[77]
Woods, A.S. The dopamine D4 receptor, the ultimate disordered protein. J. Recept. Signal Transduct. Res., 2010, 30(5), 331-336.
[http://dx.doi.org/10.3109/10799893.2010.513842] [PMID: 20836733]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy