Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Virtual Screening-Based Drug Development for the Treatment of Nervous System Diseases

Author(s): Qian Li, Zhaobin Ma, Shuhua Qin and Wei-Jiang Zhao*

Volume 21, Issue 12, 2023

Published on: 25 October, 2022

Page: [2447 - 2464] Pages: 18

DOI: 10.2174/1570159X20666220830105350

Price: $65

Abstract

The incidence rate of nervous system diseases has increased in recent years. Nerve injury or neurodegenerative diseases usually cause neuronal loss and neuronal circuit damage, which seriously affect motor nerve and autonomic nervous function. Therefore, safe and effective treatment is needed. As traditional drug research becomes slower and more expensive, it is vital to enlist the help of cutting- edge technology. Virtual screening (VS) is an attractive option for the identification and development of promising new compounds with high efficiency and low cost. With the assistance of computer- aided drug design (CADD), VS is becoming more and more popular in new drug development and research. In recent years, it has become a reality to transform non-neuronal cells into functional neurons through small molecular compounds, which provides a broader application prospect than transcription factor-mediated neuronal reprogramming. This review mainly summarizes related theory and technology of VS and the drug research and development using VS technology in nervous system diseases in recent years, and focuses more on the potential application of VS technology in neuronal reprogramming, thus facilitating new drug design for both prevention and treatment of nervous system diseases.

Keywords: Virtual screening, Molecular docking, Nervous system diseases, Neuronal reprogramming, Small molecular compound, Drug design

Graphical Abstract

[1]
Zhang, W.; Ji, L.; Chen, Y.; Tang, K.; Wang, H.; Zhu, R.; Jia, W.; Cao, Z.; Liu, Q. When drug discovery meets web search: Learning to Rank for ligand-based virtual screening. J. Cheminform., 2015, 7(1), 5.
[http://dx.doi.org/10.1186/s13321-015-0052-z] [PMID: 25705262]
[2]
Russell, C.; Rahman, A.; Mohammed, A.R. Application of genomics, proteomics and metabolomics in drug discovery, development and clinic. Ther. Deliv., 2013, 4(3), 395-413.
[http://dx.doi.org/10.4155/tde.13.4] [PMID: 23442083]
[3]
Chandrasekaran, S.N.; Ceulemans, H.; Boyd, J.D.; Carpenter, A.E. Image-based profiling for drug discovery: due for a machine-learning upgrade? Nat. Rev. Drug Discov., 2021, 20(2), 145-159.
[http://dx.doi.org/10.1038/s41573-020-00117-w] [PMID: 33353986]
[4]
Mayr, L.M.; Bojanic, D. Novel trends in high-throughput screening. Curr. Opin. Pharmacol., 2009, 9(5), 580-588.
[http://dx.doi.org/10.1016/j.coph.2009.08.004] [PMID: 19775937]
[5]
Lyne, P.D. Structure-based virtual screening: an overview. Drug Discov. Today, 2002, 7(20), 1047-1055.
[http://dx.doi.org/10.1016/S1359-6446(02)02483-2] [PMID: 12546894]
[6]
Schneider, G. Virtual screening: an endless staircase? Nat. Rev. Drug Discov., 2010, 9(4), 273-276.
[http://dx.doi.org/10.1038/nrd3139] [PMID: 20357802]
[7]
Lavecchia, A.; Giovanni, C. Virtual screening strategies in drug discovery: a critical review. Curr. Med. Chem., 2013, 20(23), 2839-2860.
[http://dx.doi.org/10.2174/09298673113209990001] [PMID: 23651302]
[8]
Gimeno, A.; Ojeda-Montes, M.; Tomás-Hernández, S.; Cereto-Massagué, A.; Beltrán-Debón, R.; Mulero, M.; Pujadas, G.; Garcia-Vallvé, S. The light and dark sides of virtual screening: What is there to know? Int. J. Mol. Sci., 2019, 20(6), 1375.
[http://dx.doi.org/10.3390/ijms20061375] [PMID: 30893780]
[9]
Wang, J.; Ge, Y.; Xie, X.Q. Development and testing of druglike screening libraries. J. Chem. Inf. Model., 2019, 59(1), 53-65.
[http://dx.doi.org/10.1021/acs.jcim.8b00537] [PMID: 30563329]
[10]
Brown, R.D.; Hassan, M.; Waldman, M. Combinatorial library design for diversity, cost efficiency, and drug-like character 11 color plates for this article are on page 537. J. Mol. Graph. Model., 2000, 18(4-5), 427-437, 537.
[http://dx.doi.org/10.1016/S1093-3263(00)00072-3] [PMID: 11143560]
[11]
Yan, X.; Liao, C.; Liu, Z.; Hagler, A.T.; Gu, Q.; Xu, J. Chemical structure similarity search for ligand-based virtual screening: Methods and computational resources. Curr. Drug Targets, 2016, 17(14), 1580-1585.
[http://dx.doi.org/10.2174/1389450116666151102095555] [PMID: 26521773]
[12]
Güner, O.F.; Bowen, J.P. Setting the record straight: the origin of the pharmacophore concept. J. Chem. Inf. Model., 2014, 54(5), 1269-1283.
[http://dx.doi.org/10.1021/ci5000533] [PMID: 24745881]
[13]
Udayakumar, M.; Kumar, P.S.; Hemavathi, K.; Shanmugapriya, P.; Seenivasagam, R. Receptor-based pharmacophore tool for design and development of next-generation drugs. Int. J. Bioinform. Res. Appl., 2013, 9(5), 487-516.
[http://dx.doi.org/10.1504/IJBRA.2013.056076] [PMID: 24001724]
[14]
Löwer, M.; Proschak, E. Structure-based pharmacophores for virtual screening. Mol. Inform., 2011, 30(5), 398-404.
[http://dx.doi.org/10.1002/minf.201100007] [PMID: 27467085]
[15]
Seidel, T.; Wieder, O.; Garon, A.; Langer, T. Applications of the pharmacophore concept in natural product inspired drug design. Mol. Inform., 2020, 39(11), 2000059.
[http://dx.doi.org/10.1002/minf.202000059] [PMID: 32578959]
[16]
Dror, O.; Schneidman-Duhovny, D.; Inbar, Y.; Nussinov, R.; Wolfson, H.J. Novel approach for efficient pharmacophore-based virtual screening: method and applications. J. Chem. Inf. Model., 2009, 49(10), 2333-2343.
[http://dx.doi.org/10.1021/ci900263d] [PMID: 19803502]
[17]
Hansch, C.; Fujita, T. p-σ-π Analysis. A method for the correlation of biological activity and chemical structure. J. Am. Chem. Soc., 1964, 86(24), 5710.
[http://dx.doi.org/10.1021/ja01078a623]
[18]
Pham-The, H.; González-Álvarez, I.; Bermejo, M.; Garrigues, T.; Le-Thi-Thu, H.; Cabrera-Pérez, M.Á. The Use of rule-based and QSPR approaches in ADME profiling: A case study on Caco-2 permeability. Mol. Inform., 2013, 32(5-6), 459-479.
[http://dx.doi.org/10.1002/minf.201200166] [PMID: 27481666]
[19]
Muratov, E.N.; Bajorath, J.; Sheridan, R.P.; Tetko, I.V.; Filimonov, D.; Poroikov, V.; Oprea, T.I.; Baskin, I.I.; Varnek, A.; Roitberg, A.; Isayev, O.; Curtalolo, S.; Fourches, D.; Cohen, Y.; Aspuru-Guzik, A.; Winkler, D.A.; Agrafiotis, D.; Cherkasov, A.; Tropsha, A. QSAR without borders. Chem. Soc. Rev., 2020, 49(11), 3525-3564.
[http://dx.doi.org/10.1039/D0CS00098A] [PMID: 32356548]
[20]
Aguiar-Pulido, V.; Gestal, M.; Cruz-Monteagudo, M.; Rabuñal, J.; Dorado, J.; Munteanu, C. Evolutionary computation and QSAR research. Curr. Computeraided Drug Des., 2013, 9(2), 206-225.
[http://dx.doi.org/10.2174/1573409911309020006] [PMID: 23700999]
[21]
Ebalunode, J.O.; Zheng, W.; Tropsha, A. Application of QSAR and shape pharmacophore modeling approaches for targeted chemical library design. Methods Mol. Biol., 2011, 685, 111-133.
[http://dx.doi.org/10.1007/978-1-60761-931-4_6] [PMID: 20981521]
[22]
Lima, A.N.; Philot, E.A.; Trossini, G.H.G.; Scott, L.P.B.; Maltarollo, V.G.; Honorio, K.M. Use of machine learning approaches for novel drug discovery. Expert Opin. Drug Discov., 2016, 11(3), 225-239.
[http://dx.doi.org/10.1517/17460441.2016.1146250] [PMID: 26814169]
[23]
Neves, B.J.; Braga, R.C.; Melo-Filho, C.C.; Moreira-Filho, J.T.; Muratov, E.N.; Andrade, C.H. QSAR-Based virtual screening: Advances and applications in drug discovery. Front. Pharmacol., 2018, 9, 1275.
[http://dx.doi.org/10.3389/fphar.2018.01275] [PMID: 30524275]
[24]
da Silva Rocha, S.F.L.; Olanda, C.G.; Fokoue, H.H.; Sant’Anna, C.M.R. Virtual screening techniques in drug discovery: Review and recent applications. Curr. Top. Med. Chem., 2019, 19(19), 1751-1767.
[http://dx.doi.org/10.2174/1568026619666190816101948] [PMID: 31418662]
[25]
Kumar, A.; Zhang, K.Y.J. Advances in the development of shape similarity methods and their application in drug discovery. Front Chem., 2018, 6, 315.
[http://dx.doi.org/10.3389/fchem.2018.00315] [PMID: 30090808]
[26]
Sheridan, R.; Kearsley, S.K. Why do we need so many chemical similarity search methods? Drug Discov. Today, 2002, 7(17), 903-911.
[http://dx.doi.org/10.1016/S1359-6446(02)02411-X] [PMID: 12546933]
[27]
Durant, J.L.; Leland, B.A.; Henry, D.R.; Nourse, J.G. Reoptimization of MDL keys for use in drug discovery. J. Chem. Inf. Comput. Sci., 2002, 42(6), 1273-1280.
[http://dx.doi.org/10.1021/ci010132r] [PMID: 12444722]
[28]
Rhodes, N.; Willett, P.; Dunbar, J.B., Jr; Humblet, C. Bit-string methods for selective compound acquisition. J. Chem. Inf. Comput. Sci., 2000, 40(2), 210-214.
[http://dx.doi.org/10.1021/ci990428l] [PMID: 10761120]
[29]
Liu, Z.; Zheng, M.; Yan, X.; Gu, Q.; Gasteiger, J.; Tijhuis, J.; Maas, P.; Li, J.; Xu, J. ChemStable: a web server for rule-embedded naïve Bayesian learning approach to predict compound stability. J. Comput. Aided Mol. Des., 2014, 28(9), 941-950.
[http://dx.doi.org/10.1007/s10822-014-9778-3] [PMID: 25031075]
[30]
Hu, G.; Kuang, G.; Xiao, W.; Li, W.; Liu, G.; Tang, Y. Performance evaluation of 2D fingerprint and 3D shape similarity methods in virtual screening. J. Chem. Inf. Model., 2012, 52(5), 1103-1113.
[http://dx.doi.org/10.1021/ci300030u] [PMID: 22551340]
[31]
Ferreira, L.; dos Santos, R.; Oliva, G.; Andricopulo, A. Molecular docking and structure-based drug design strategies. Molecules, 2015, 20(7), 13384-13421.
[http://dx.doi.org/10.3390/molecules200713384] [PMID: 26205061]
[32]
Pinzi, L.; Rastelli, G. Molecular docking: Shifting paradigms in drug discovery. Int. J. Mol. Sci., 2019, 20(18), 4331.
[http://dx.doi.org/10.3390/ijms20184331] [PMID: 31487867]
[33]
López-Vallejo, F.; Caulfield, T.; Martínez-Mayorga, K.; Giulianotti, M.A.; Nefzi, A.; Houghten, R.A.; Medina-Franco, J.L. Integrating virtual screening and combinatorial chemistry for accelerated drug discovery. Comb. Chem. High Throughput Screen., 2011, 14(6), 475-487.
[http://dx.doi.org/10.2174/138620711795767866] [PMID: 21521151]
[34]
Scotti, L.; Mendonca Junior, F.; Ishiki, H.; Ribeiro, F.; Singla, R.; Filho, J.; Silva, M.; Scotti, M. Docking studies for multi-target drugs. Curr. Drug Targets, 2017, 18(5), 592-604.
[http://dx.doi.org/10.2174/1389450116666150825111818] [PMID: 26302806]
[35]
Tessaro, F.; Scapozza, L. How ‘Protein-Docking’ translates into the new emerging field of docking small molecules to nucleic acids? Molecules, 2020, 25(12), 2749.
[http://dx.doi.org/10.3390/molecules25122749] [PMID: 32545835]
[36]
Matsuzaki, Y.; Uchikoga, N.; Ohue, M.; Akiyama, Y. Rigid-docking approaches to explore protein-protein interaction space. Adv. Biochem. Eng. Biotechnol., 2016, 160, 33-55.
[http://dx.doi.org/10.1007/10_2016_41] [PMID: 27830312]
[37]
DesJarlais, R.L.; Sheridan, R.P.; Dixon, J.S.; Kuntz, I.D.; Venkataraghavan, R. Docking flexible ligands to macromolecular receptors by molecular shape. J. Med. Chem., 1986, 29(11), 2149-2153.
[http://dx.doi.org/10.1021/jm00161a004] [PMID: 3783576]
[38]
Jiang, F.; Kim, S.H. “Soft docking”: Matching of molecular surface cubes. J. Mol. Biol., 1991, 219(1), 79-102.
[http://dx.doi.org/10.1016/0022-2836(91)90859-5] [PMID: 2023263]
[39]
Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The protein data bank. Nucleic Acids Res., 2000, 28(1), 235-242.
[http://dx.doi.org/10.1093/nar/28.1.235] [PMID: 10592235]
[40]
Sousa, S.F.; Fernandes, P.A.; Ramos, M.J. Protein-ligand docking: Current status and future challenges. Proteins, 2006, 65(1), 15-26.
[http://dx.doi.org/10.1002/prot.21082] [PMID: 16862531]
[41]
Lill, M. Virtual screening in drug design. Methods Mol. Biol., 2013, 993, 1-12.
[http://dx.doi.org/10.1007/978-1-62703-342-8_1] [PMID: 23568460]
[42]
Halperin, I.; Ma, B.; Wolfson, H.; Nussinov, R. Principles of docking: An overview of search algorithms and a guide to scoring functions. Proteins, 2002, 47(4), 409-443.
[http://dx.doi.org/10.1002/prot.10115] [PMID: 12001221]
[43]
Warren, G.L.; Andrews, C.W.; Capelli, A.M.; Clarke, B.; LaLonde, J.; Lambert, M.H.; Lindvall, M.; Nevins, N.; Semus, S.F.; Senger, S.; Tedesco, G.; Wall, I.D.; Woolven, J.M.; Peishoff, C.E.; Head, M.S. A critical assessment of docking programs and scoring functions. J. Med. Chem., 2006, 49(20), 5912-5931.
[http://dx.doi.org/10.1021/jm050362n] [PMID: 17004707]
[44]
Kitchen, D.B.; Decornez, H.; Furr, J.R.; Bajorath, J. Docking and scoring in virtual screening for drug discovery: methods and applications. Nat. Rev. Drug Discov., 2004, 3(11), 935-949.
[http://dx.doi.org/10.1038/nrd1549] [PMID: 15520816]
[45]
Lin, T.W.; Melgar, M.M.; Kurth, D.; Swamidass, S.J.; Purdon, J.; Tseng, T.; Gago, G.; Baldi, P.; Gramajo, H.; Tsai, S.C. Structure-based inhibitor design of AccD5, an essential acyl-CoA carboxylase carboxyltransferase domain of Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA, 2006, 103(9), 3072-3077.
[http://dx.doi.org/10.1073/pnas.0510580103] [PMID: 16492739]
[46]
Sepehri, B.; Ghavami, R. The identification of new ATAD2 bromodomain inhibitors: the application of combined ligand and structure-based virtual screening. SAR QSAR Environ. Res., 2017, 28(12), 957-971.
[http://dx.doi.org/10.1080/1062936X.2017.1385532] [PMID: 29191061]
[47]
Bissantz, C.; Schalon, C.; Guba, W.; Stahl, M. Focused library design in GPCR projects on the example of 5-HT2c agonists: Comparison of structure-based virtual screening with ligand-based search methods. Proteins, 2005, 61(4), 938-952.
[http://dx.doi.org/10.1002/prot.20651] [PMID: 16224780]
[48]
Honório, K.M.; Moda, T.L.; Andricopulo, A.D. Pharmacokinetic properties and in silico ADME modeling in drug discovery. Med. Chem., 2013, 9(2), 163-176.
[http://dx.doi.org/10.2174/1573406411309020002] [PMID: 23016542]
[49]
Veber, D.F.; Johnson, S.R.; Cheng, H.Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem., 2002, 45(12), 2615-2623.
[http://dx.doi.org/10.1021/jm020017n] [PMID: 12036371]
[50]
Ferreira, L.L.G.; Andricopulo, A.D. ADMET modeling approaches in drug discovery. Drug Discov. Today, 2019, 24(5), 1157-1165.
[http://dx.doi.org/10.1016/j.drudis.2019.03.015] [PMID: 30890362]
[51]
Lipinski, C.A. Drug-like properties and the causes of poor solubility and poor permeability. J. Pharmacol. Toxicol. Methods, 2000, 44(1), 235-249.
[http://dx.doi.org/10.1016/S1056-8719(00)00107-6] [PMID: 11274893]
[52]
Laoui, A.; Polyakov, V.R. Web services as applications’ integration tool: QikProp case study. J. Comput. Chem., 2011, 32(9), 1944-1951.
[http://dx.doi.org/10.1002/jcc.21778] [PMID: 21455963]
[53]
Sander, T.; Freyss, J.; von Korff, M.; Rufener, C. DataWarrior: an open-source program for chemistry aware data visualization and analysis. J. Chem. Inf. Model., 2015, 55(2), 460-473.
[http://dx.doi.org/10.1021/ci500588j] [PMID: 25558886]
[54]
Rudik, A.V.; Bezhentsev, V.M.; Dmitriev, A.V.; Druzhilovskiy, D.S.; Lagunin, A.A.; Filimonov, D.A.; Poroikov, V.V. MetaTox: Web Application for Predicting Structure and Toxicity of Xenobiotics’. Metabolites. J. Chem. Inf. Model., 2017, 57(4), 638-642.
[http://dx.doi.org/10.1021/acs.jcim.6b00662] [PMID: 28345905]
[55]
Trunzer, M.; Faller, B.; Zimmerlin, A. Metabolic soft spot identification and compound optimization in early discovery phases using MetaSite and LC-MS/MS validation. J. Med. Chem., 2009, 52(2), 329-335.
[http://dx.doi.org/10.1021/jm8008663] [PMID: 19108654]
[56]
Kasamatsu, T.; Kitazawa, A.; Tajima, S.; Kaneko, M.; Sugiyama, K.; Yamada, M.; Yasui, M.; Masumura, K.; Horibata, K.; Honma, M. Development of a new quantitative structure-activity relationship model for predicting Ames mutagenicity of food flavor chemicals using StarDrop™ auto-Modeller™. Genes Environ., 2021, 43(1), 16.
[http://dx.doi.org/10.1186/s41021-021-00182-6] [PMID: 33931133]
[57]
Baell, J.; Walters, M.A. Chemistry: Chemical con artists foil drug discovery. Nature, 2014, 513(7519), 481-483.
[http://dx.doi.org/10.1038/513481a] [PMID: 25254460]
[58]
Kenny, P.W. Comment on The Ecstasy and Agony of Assay Interference Compounds. J. Chem. Inf. Model., 2017, 57(11), 2640-2645.
[http://dx.doi.org/10.1021/acs.jcim.7b00313] [PMID: 29048168]
[59]
Stüve, O.; Zettl, U. Neuroinflammation of the central and peripheral nervous system: an update. Clin. Exp. Immunol., 2014, 175(3), 333-335.
[http://dx.doi.org/10.1111/cei.12260] [PMID: 24384012]
[60]
Spijkers, X.M.; Pasteuning-Vuhman, S.; Dorleijn, J.C.; Vulto, P.; Wevers, N.R.; Pasterkamp, R.J. A directional 3D neurite outgrowth model for studying motor axon biology and disease. Sci. Rep., 2021, 11(1), 2080.
[http://dx.doi.org/10.1038/s41598-021-81335-z] [PMID: 33483540]
[61]
Murley, A.G.; Rowe, J.B. Neurotransmitter deficits from frontotemporal lobar degeneration. Brain, 2018, 141(5), 1263-1285.
[http://dx.doi.org/10.1093/brain/awx327] [PMID: 29373632]
[62]
Trounson, A.; McDonald, C. Stem cell therapies in clinical trials: Progress and challenges. Cell Stem Cell, 2015, 17(1), 11-22.
[http://dx.doi.org/10.1016/j.stem.2015.06.007] [PMID: 26140604]
[63]
Menasché, P. Cellular transplantation: hurdles remaining before widespread clinical use. Curr. Opin. Cardiol., 2004, 19(2), 154-161.
[http://dx.doi.org/10.1097/00001573-200403000-00016] [PMID: 15075744]
[64]
D. Degeneration and Regeneration of the Nervous System Nature, 1930, 125(3146), 230-231.
[http://dx.doi.org/10.1038/125230a0]
[65]
Kase, Y.; Shimazaki, T.; Okano, H. Current understanding of adult neurogenesis in the mammalian brain: how does adult neurogenesis decrease with age? Inflamm. Regen., 2020, 40(1), 10.
[http://dx.doi.org/10.1186/s41232-020-00122-x] [PMID: 32566044]
[66]
Mertens, J.; Marchetto, M.C.; Bardy, C.; Gage, F.H. Evaluating cell reprogramming, differentiation and conversion technologies in neuroscience. Nat. Rev. Neurosci., 2016, 17(7), 424-437.
[http://dx.doi.org/10.1038/nrn.2016.46] [PMID: 27194476]
[67]
Karow, M.; Schichor, C.; Beckervordersandforth, R.; Berninger, B. Lineage-reprogramming of pericyte-derived cells of the adult human brain into induced neurons. J. Vis. Exp., 2014, 87, 51433.
[http://dx.doi.org/10.3791/51433] [PMID: 24893711]
[68]
Cieślar-Pobuda, A.; Knoflach, V.; Ringh, M.V.; Stark, J.; Likus, W.; Siemianowicz, K.; Ghavami, S.; Hudecki, A.; Green, J.L.; Łos, M.J. Transdifferentiation and reprogramming: Overview of the processes, their similarities and differences. Biochim. Biophys. Acta Mol. Cell Res., 2017, 1864(7), 1359-1369.
[http://dx.doi.org/10.1016/j.bbamcr.2017.04.017] [PMID: 28460880]
[69]
Amamoto, R.; Arlotta, P. Development-inspired reprogramming of the mammalian central nervous system. Science, 2014, 343(6170), 1239882.
[http://dx.doi.org/10.1126/science.1239882] [PMID: 24482482]
[70]
Wu, Z.; Parry, M.; Hou, X.Y.; Liu, M.H.; Wang, H.; Cain, R.; Pei, Z.F.; Chen, Y.C.; Guo, Z.Y.; Abhijeet, S.; Chen, G. Gene therapy conversion of striatal astrocytes into GABAergic neurons in mouse models of Huntington’s disease. Nat. Commun., 2020, 11(1), 1105.
[http://dx.doi.org/10.1038/s41467-020-14855-3] [PMID: 32107381]
[71]
Vierbuchen, T.; Ostermeier, A.; Pang, Z.P.; Kokubu, Y.; Südhof, T.C.; Wernig, M. Direct conversion of fibroblasts to functional neurons by defined factors. Nature, 2010, 463(7284), 1035-1041.
[http://dx.doi.org/10.1038/nature08797] [PMID: 20107439]
[72]
Pang, Z.P.; Yang, N.; Vierbuchen, T.; Ostermeier, A.; Fuentes, D.R.; Yang, T.Q.; Citri, A.; Sebastiano, V.; Marro, S.; Südhof, T.C.; Wernig, M. Induction of human neuronal cells by defined transcription factors. Nature, 2011, 476(7359), 220-223.
[http://dx.doi.org/10.1038/nature10202] [PMID: 21617644]
[73]
Guo, Z.; Zhang, L.; Wu, Z.; Chen, Y.; Wang, F.; Chen, G. In vivo direct reprogramming of reactive glial cells into functional neurons after brain injury and in an Alzheimer’s disease model. Cell Stem Cell, 2014, 14(2), 188-202.
[http://dx.doi.org/10.1016/j.stem.2013.12.001] [PMID: 24360883]
[74]
Qian, H.; Kang, X.; Hu, J.; Zhang, D.; Liang, Z.; Meng, F.; Zhang, X.; Xue, Y.; Maimon, R.; Dowdy, S.F.; Devaraj, N.K.; Zhou, Z.; Mobley, W.C.; Cleveland, D.W.; Fu, X.D. Reversing a model of Parkinson’s disease with in situ converted nigral neurons. Nature, 2020, 582(7813), 550-556.
[http://dx.doi.org/10.1038/s41586-020-2388-4] [PMID: 32581380]
[75]
Qin, H.; Zhao, A.; Fu, X. Small molecules for reprogramming and transdifferentiation. Cell. Mol. Life Sci., 2017, 74(19), 3553-3575.
[http://dx.doi.org/10.1007/s00018-017-2586-x] [PMID: 28698932]
[76]
Cheng, L.; Gao, L.; Guan, W.; Mao, J.; Hu, W.; Qiu, B.; Zhao, J.; Yu, Y.; Pei, G. Direct conversion of astrocytes into neuronal cells by drug cocktail. Cell Res., 2015, 25(11), 1269-1272.
[http://dx.doi.org/10.1038/cr.2015.120] [PMID: 26427716]
[77]
Gao, L.; Guan, W.; Wang, M.; Wang, H.; Yu, J.; Liu, Q.; Qiu, B.; Yu, Y.; Ping, Y.; Bian, X.; Shen, L.; Pei, G. Direct generation of human neuronal cells from adult astrocytes by small molecules. Stem Cell Reports, 2017, 8(3), 538-547.
[http://dx.doi.org/10.1016/j.stemcr.2017.01.014] [PMID: 28216149]
[78]
Hu, W.; Qiu, B.; Guan, W.; Wang, Q.; Wang, M.; Li, W.; Gao, L.; Shen, L.; Huang, Y.; Xie, G.; Zhao, H.; Jin, Y.; Tang, B.; Yu, Y.; Zhao, J.; Pei, G. Direct conversion of normal and alzheimer’s disease human fibroblasts into neuronal cells by small molecules. Cell Stem Cell, 2015, 17(2), 204-212.
[http://dx.doi.org/10.1016/j.stem.2015.07.006] [PMID: 26253202]
[79]
Pauls, E.; Bayod, S.; Mateo, L.; Alcalde, V.; Juan-Blanco, T.; Sánchez-Soto, M.; Saido, T.C.; Saito, T.; Berrenguer-Llergo, A.; Attolini, C.S.O.; Gay, M.; de Oliveira, E.; Duran-Frigola, M.; Aloy, P. Identification and drug-induced reversion of molecular signatures of Alzheimer’s disease onset and progression in AppNL-G-F, AppNL-F, and 3xTg-AD mouse models. Genome Med., 2021, 13(1), 168.
[http://dx.doi.org/10.1186/s13073-021-00983-y] [PMID: 34702310]
[80]
Liu, Z.; Chen, O.; Zheng, M.; Wang, L.; Zhou, Y.; Yin, C.; Liu, J.; Qian, L. Re-patterning of H3K27me3, H3K4me3 and DNA methylation during fibroblast conversion into induced cardiomyocytes. Stem Cell Res. (Amst.), 2016, 16(2), 507-518.
[http://dx.doi.org/10.1016/j.scr.2016.02.037] [PMID: 26957038]
[81]
Hu, K.A. PIANO (Proper, insufficient, aberrant, and NO reprogramming) response to the yamanaka factors in the initial stages of human iPSC reprogramming. Int. J. Mol. Sci., 2020, 21(9), 3229.
[http://dx.doi.org/10.3390/ijms21093229] [PMID: 32370214]
[82]
Weller, J.; Budson, A. Current understanding of Alzheimer’s disease diagnosis and treatment. F1000 Res., 2018, 7, 1161.
[http://dx.doi.org/10.12688/f1000research.14506.1] [PMID: 30135715]
[83]
Wang, H.; Zhang, H. Reconsideration of anticholinesterase therapeutic strategies against Alzheimer’s disease. ACS Chem. Neurosci., 2019, 10(2), 852-862.
[http://dx.doi.org/10.1021/acschemneuro.8b00391] [PMID: 30521323]
[84]
McShane, R.; Westby, M.J.; Roberts, E.; Minakaran, N.; Schneider, L.; Farrimond, L.E.; Maayan, N.; Ware, J.; Debarros, J. Memantine for dementia. Cochrane Database Syst. Rev., 2019, 3(3), CD003154.
[PMID: 30891742]
[85]
Miles, J.A.; Ross, B.P. Recent Advances in Virtual Screening for Cholinesterase Inhibitors. ACS Chem. Neurosci., 2021, 12(1), 30-41.
[http://dx.doi.org/10.1021/acschemneuro.0c00627] [PMID: 33350300]
[86]
Bajda, M.; Łażewska, D.; Godyń, J.; Zaręba, P.; Kuder, K.; Hagenow, S.; Łątka, K.; Stawarska, E.; Stark, H.; Kieć-Kononowicz, K.; Malawska, B. Search for new multi-target compounds against Alzheimer’s disease among histamine H3 receptor ligands. Eur. J. Med. Chem., 2020, 185, 111785.
[http://dx.doi.org/10.1016/j.ejmech.2019.111785] [PMID: 31669851]
[87]
Lu, X.; Yang, H.; Li, Q.; Chen, Y.; Li, Q.; Zhou, Y.; Feng, F.; Liu, W.; Guo, Q.; Sun, H. Expansion of the scaffold diversity for the development of highly selective butyrylcholinesterase (BChE) inhibitors: Discovery of new hits through the pharmacophore model generation, virtual screening and molecular dynamics simulation. Bioorg. Chem., 2019, 85, 117-127.
[http://dx.doi.org/10.1016/j.bioorg.2018.12.023] [PMID: 30605885]
[88]
Hayes, M.T. Parkinson’s disease and Parkinsonism. Am. J. Med., 2019, 132(7), 802-807.
[http://dx.doi.org/10.1016/j.amjmed.2019.03.001] [PMID: 30890425]
[89]
Samii, A.; Nutt, J.G.; Ransom, B.R. Parkinson’s disease. Lancet, 2004, 363(9423), 1783-1793.
[http://dx.doi.org/10.1016/S0140-6736(04)16305-8] [PMID: 15172778]
[90]
Chen, C.; Zheng, H.; Hu, Z. Association between Parkinson’s disease and risk of prostate cancer in different populations: An updated meta-analysis. Sci. Rep., 2017, 7(1), 13449.
[http://dx.doi.org/10.1038/s41598-017-13834-x] [PMID: 29044216]
[91]
Hauser, R.A. Levodopa: past, present, and future. Eur. Neurol., 2009, 62(1), 1-8.
[http://dx.doi.org/10.1159/000215875] [PMID: 19407449]
[92]
Daidone, F.; Montioli, R.; Paiardini, A.; Cellini, B.; Macchiarulo, A.; Giardina, G.; Bossa, F.; Borri Voltattorni, C. Identification by virtual screening and in vitro testing of human DOPA decarboxylase inhibitors. PLoS One, 2012, 7(2), e31610.
[http://dx.doi.org/10.1371/journal.pone.0031610] [PMID: 22384042]
[93]
Finberg, J.P.M. Update on the pharmacology of selective inhibitors of MAO-A and MAO-B: Focus on modulation of CNS monoamine neurotransmitter release. Pharmacol. Ther., 2014, 143(2), 133-152.
[http://dx.doi.org/10.1016/j.pharmthera.2014.02.010] [PMID: 24607445]
[94]
Crisan, L.; Istrate, D.; Bora, A.; Pacureanu, L. Virtual screening and drug repurposing experiments to identify potential novel selective MAO-B inhibitors for Parkinson’s disease treatment. Mol. Divers., 2021, 25(3), 1775-1794.
[http://dx.doi.org/10.1007/s11030-020-10155-6] [PMID: 33237524]
[95]
Boison, D. The adenosine kinase hypothesis of epileptogenesis. Prog. Neurobiol., 2008, 84(3), 249-262.
[http://dx.doi.org/10.1016/j.pneurobio.2007.12.002] [PMID: 18249058]
[96]
Yuen, A.W.C.; Keezer, M.R.; Sander, J.W. Epilepsy is a neurological and a systemic disorder. Epilepsy Behav., 2018, 78, 57-61.
[http://dx.doi.org/10.1016/j.yebeh.2017.10.010] [PMID: 29175221]
[97]
de Oliveira, F.R.; da Silva, N.M.; Hamoy, M.; Crespo-López, M.E.; Ferreira, I.M.; da Silva, E.O.; de Matos Macchi, B.; do Nascimento, J.L.M. The GABAergic system and endocannabinoids in epilepsy and seizures: What can we expect from plant Oils? Molecules, 2022, 27(11), 3595.
[http://dx.doi.org/10.3390/molecules27113595] [PMID: 35684543]
[98]
Palestro, P.H.; Enrique, N.; Goicoechea, S.; Villalba, M.L.; Sabatier, L.L.; Martin, P.; Milesi, V.; Bruno Blanch, L.E.; Gavernet, L. Searching for new leads to treat epilepsy: Target-based virtual screening for the discovery of anticonvulsant agents. J. Chem. Inf. Model., 2018, 58(7), 1331-1342.
[http://dx.doi.org/10.1021/acs.jcim.7b00721] [PMID: 29870230]
[99]
Chen, C.Y.C. Chemoinformatics and pharmacoinformatics approach for exploring the GABA-A agonist from Chinese herb suanzaoren. J. Taiwan Inst. Chem. Eng., 2009, 40(1), 36-47.
[http://dx.doi.org/10.1016/j.jtice.2008.07.011]
[100]
Mehta, P.; Srivastava, S.; Sharma, M.; Singh, I.; Malik, R. Identification of chemically diverse GABAA agonists as potential anti-epileptic agents using structure-guided virtual screening, ADMET, quantum mechanics and clinical validation through off-target analysis. Int. J. Biol. Macromol., 2018, 119, 1113-1128.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.08.032] [PMID: 30098361]
[101]
Malhi, G.S.; Mann, J.J. Depression. Lancet, 2018, 392(10161), 2299-2312.
[http://dx.doi.org/10.1016/S0140-6736(18)31948-2] [PMID: 30396512]
[102]
Chinna Meyyappan, A.; Milev, R. The safety, efficacy, and tolerability of microbial ecosystem therapeutic-2 in people with major depression and/or generalized anxiety disorder: protocol for a phase 1, open-label study. JMIR Res. Protoc., 2020, 9(6), e17223.
[http://dx.doi.org/10.2196/17223] [PMID: 32495743]
[103]
Rani, K.U.; Ramaiah, M.; Nagaphani, K.; Preethi, V.; Srinadh, M. Screening for antidepressant-like effect of methanolic seed extract of avena sativa using animal models. Pharmacogn. J., 2014, 6(3), 86-92.
[http://dx.doi.org/10.5530/pj.2014.3.13]
[104]
Said, A.A.E.; Ali, T.F.S.; Attia, E.Z.; Ahmed, A.S.F.; Shehata, A.H.; Abdelmohsen, U.R.; Fouad, M.A. Antidepressant potential of Mesembryanthemum cordifolium roots assisted by metabolomic analysis and virtual screening. Nat. Prod. Res., 2021, 35(23), 5493-5497.
[http://dx.doi.org/10.1080/14786419.2020.1788019] [PMID: 32608262]
[105]
Murphy, D.L.; Lerner, A.; Rudnick, G.; Lesch, K.P. Serotonin transporter: gene, genetic disorders, and pharmacogenetics. Mol. Interv., 2004, 4(2), 109-123.
[http://dx.doi.org/10.1124/mi.4.2.8] [PMID: 15087484]
[106]
Erol, I.; Aksoydan, B.; Kantarcioglu, I.; Salmas, R.E.; Durdagi, S. Identification of novel serotonin reuptake inhibitors targeting central and allosteric binding sites: A virtual screening and molecular dynamics simulations study. J. Mol. Graph. Model., 2017, 74, 193-202.
[http://dx.doi.org/10.1016/j.jmgm.2017.02.001] [PMID: 28499269]
[107]
Albin, M.S.; White, R.J. Epidemiology, physiopathology, and experimental therapeutics of acute spinal cord injury. Crit. Care Clin., 1987, 3(3), 441-452.
[http://dx.doi.org/10.1016/S0749-0704(18)30531-1] [PMID: 3332209]
[108]
Cadotte, D.W.; Fehlings, M.G. Spinal cord injury: a systematic review of current treatment options. Clin. Orthop. Relat. Res., 2011, 469(3), 732-741.
[http://dx.doi.org/10.1007/s11999-010-1674-0] [PMID: 21080129]
[109]
Bracken, M.B. Steroids for acute spinal cord injury. Cochrane Database Syst. Rev., 2012, 1(1), CD001046.
[PMID: 22258943]
[110]
Das, A.; Smith, J.A.; Gibson, C.; Varma, A.K.; Ray, S.K.; Banik, N.L. Estrogen receptor agonists and estrogen attenuate TNF- -induced apoptosis in VSC4.1 motoneurons. J. Endocrinol., 2011, 208(2), 171-182.
[http://dx.doi.org/10.1677/JOE-10-0338] [PMID: 21068071]
[111]
Bains, M.; Hall, E.D. Antioxidant therapies in traumatic brain and spinal cord injury. Biochim. Biophys. Acta Mol. Basis Dis., 2012, 1822(5), 675-684.
[http://dx.doi.org/10.1016/j.bbadis.2011.10.017] [PMID: 22080976]
[112]
Rong, W.; Wang, J.; Liu, X.; Jiang, L.; Wei, F.; Zhou, H.; Han, X.; Liu, Z. 17β-estradiol attenuates neural cell apoptosis through inhibition of JNK phosphorylation in SCI rats and excitotoxicity induced by glutamate in vitro. Int. J. Neurosci., 2012, 122(7), 381-387.
[http://dx.doi.org/10.3109/00207454.2012.668726] [PMID: 22409452]
[113]
Lutton, C.; Young, Y.W.; Williams, R.; Meedeniya, A.C.B.; Mackay-Sim, A.; Goss, B. Combined VEGF and PDGF treatment reduces secondary degeneration after spinal cord injury. J. Neurotrauma, 2012, 29(5), 957-970.
[http://dx.doi.org/10.1089/neu.2010.1423] [PMID: 21568693]
[114]
Ray, S.K.; Samantaray, S.; Smith, J.A.; Matzelle, D.D.; Das, A.; Banik, N.L. Inhibition of cysteine proteases in acute and chronic spinal cord injury. Neurotherapeutics, 2011, 8(2), 180-186.
[http://dx.doi.org/10.1007/s13311-011-0037-1] [PMID: 21373949]
[115]
Arsalan; Alizadeh; Soheila; Karimi-Abdolrezaee. Microenvironmental regulation of oligodendrocyte replacement and remyelination in spinal cord injury. J. Physiol., 2016.
[116]
Zhou, L.; Ma, Y.C.; Tang, X.; Li, W.Y.; Ma, Y.; Wang, R.L. Identification of the potential dual inhibitor of protein tyrosine phosphatase sigma and leukocyte common antigen-related phosphatase by virtual screen, molecular dynamic simulations and post-analysis. J. Biomol. Struct. Dyn., 2021, 39(1), 45-62.
[http://dx.doi.org/10.1080/07391102.2019.1705913] [PMID: 31842717]
[117]
Liu, Z.D.; Zhang, S.; Hao, J.J.; Xie, T.R.; Kang, J.S. Cellular model of neuronal atrophy induced by DYNC1I1 deficiency reveals protective roles of RAS-RAF-MEK signaling. Protein Cell, 2016, 7(9), 638-650.
[http://dx.doi.org/10.1007/s13238-016-0301-6] [PMID: 27510948]
[118]
Yan, S.; Zhang, L.; Wang, S.; Wu, T.; Gong, Z. Inhibition of the Ras/Raf/extracellular signal regulated kinase 1/2 signaling pathway by compounds of natural origin for possible treatment of spinal cord injury: An in-silico approach. Exp. Ther. Med., 2018, 15(3), 2860-2868.
[http://dx.doi.org/10.3892/etm.2018.5734] [PMID: 29456689]
[119]
Byrne, S.; Elamin, M.; Bede, P.; Hardiman, O. Absence of consensus in diagnostic criteria for familial neurodegenerative diseases. J. Neurol. Neurosurg. Psychiatry, 2012, 83(4), 365-367.
[http://dx.doi.org/10.1136/jnnp-2011-301530] [PMID: 22399794]
[120]
Sadr, A.S.; Eslahchi, C.; Ghassempour, A.; Kiaei, M. In silico studies reveal structural deviations of mutant profilin-1 and interaction with riluzole and edaravone in amyotrophic lateral sclerosis. Sci. Rep., 2021, 11(1), 6849.
[http://dx.doi.org/10.1038/s41598-021-86211-4] [PMID: 33767237]
[121]
Hardiman, O.; Al-Chalabi, A.; Chio, A.; Corr, E.M.; Logroscino, G.; Robberecht, W.; Shaw, P.J.; Simmons, Z.; van den Berg, L.H. Amyotrophic lateral sclerosis. Nat. Rev. Dis. Primers, 2017, 3(1), 17071.
[http://dx.doi.org/10.1038/nrdp.2017.71] [PMID: 28980624]
[122]
Alsultan, A.A.; Waller, R.; Heath, P.R.; Kirby, J. The genetics of amyotrophic lateral sclerosis: current insights. Degener. Neurol. Neuromuscul. Dis., 2016, 6, 49-64.
[PMID: 30050368]
[123]
Hirayama, K.; Fujiwara, Y.; Terada, T.; Shimizu, K.; Wada, K.; Kabuta, T. Virtual screening identification of novel chemical inhibitors for aberrant interactions between pathogenic mutant SOD1 and tubulin. Neurochem. Int., 2019, 126, 19-26.
[http://dx.doi.org/10.1016/j.neuint.2019.02.020] [PMID: 30831216]
[124]
DuVal, M.G.; Hinge, V.K.; Snyder, N.; Kanyo, R.; Bratvold, J.; Pokrishevsky, E.; Cashman, N.R.; Blinov, N.; Kovalenko, A.; Allison, W.T. Tryptophan 32 mediates SOD1 toxicity in a in vivo motor neuron model of ALS and is a promising target for small molecule therapeutics. Neurobiol. Dis., 2019, 124, 297-310.
[http://dx.doi.org/10.1016/j.nbd.2018.11.025] [PMID: 30528257]
[125]
Doshi, A.; Chataway, J. Multiple sclerosis, a treatable disease. Clin. Med. (Lond.), 2017, 17(6), 530-536.
[http://dx.doi.org/10.7861/clinmedicine.17-6-530] [PMID: 29196354]
[126]
Correale, J.; Gaitán, M.I.; Ysrraelit, M.C.; Fiol, M.P. Progressive multiple sclerosis: from pathogenic mechanisms to treatment. Brain, 2017, 140(3), 527-546.
[PMID: 27794524]
[127]
Brück, W.; Gold, R.; Lund, B.T.; Oreja-Guevara, C.; Prat, A.; Spencer, C.M.; Steinman, L.; Tintoré, M.; Vollmer, T.L.; Weber, M.S.; Weiner, L.P.; Ziemssen, T.; Zamvil, S.S. Therapeutic decisions in multiple sclerosis: moving beyond efficacy. JAMA Neurol., 2013, 70(10), 1315-1324.
[http://dx.doi.org/10.1001/jamaneurol.2013.3510] [PMID: 23921521]
[128]
Luo, W.; Liu, C.T.; Yang, Q.H.; Yu, Q.; Wang, T. New angle of view on the role of rho/rho kinase pathway in human diseases. Iran. J. Allergy Asthma Immunol., 2014, 13(6), 378-395.
[PMID: 25148796]
[129]
Shah, S.; Patel, B.; Savjani, J.K. Pharmacophore mapping based virtual screening, molecular docking and ADMET studies of ROCK II inhibitors. Mult. Scler. Relat. Disord., 2018, 21, 35-41.
[http://dx.doi.org/10.1016/j.msard.2018.02.011] [PMID: 29455072]
[130]
D’Ambrosio, D.; Freedman, M.S.; Prinz, J. Ponesimod, a selective S1P1 receptor modulator: a potential treatment for multiple sclerosis and other immune-mediated diseases. Ther. Adv. Chronic Dis., 2016, 7(1), 18-33.
[http://dx.doi.org/10.1177/2040622315617354] [PMID: 26770667]
[131]
Alizadeh, A.A.; Jafari, B.; Dastmalchi, S. Alignment independent 3D-QSAR studies and molecular dynamics simulations for the identification of potent and selective S1P1 receptor agonists. J. Mol. Graph. Model., 2020, 94, 107459.
[http://dx.doi.org/10.1016/j.jmgm.2019.107459] [PMID: 31589999]
[132]
Sukumar, N.; Das, S.; Sukumar, N. Current trends in virtual high throughput screening using ligand-based and structure-based methods. Comb. Chem. High Throughput Screen., 2011, 14(10), 872-888.
[http://dx.doi.org/10.2174/138620711797537120] [PMID: 21843144]
[133]
Gutiérrez-de-Terán, H.; Keränen, H.; Azuaje, J.; Rodríguez, D.; Åqvist, J.; Sotelo, E. Computer-aided design of GPCR ligands. Methods Mol. Biol., 2015, 1272, 271-291.
[http://dx.doi.org/10.1007/978-1-4939-2336-6_19] [PMID: 25563191]
[134]
Wang, Z.; Sun, H.; Yao, X.; Li, D.; Xu, L.; Li, Y.; Tian, S.; Hou, T. Comprehensive evaluation of ten docking programs on a diverse set of protein–ligand complexes: the prediction accuracy of sampling power and scoring power. Phys. Chem. Chem. Phys., 2016, 18(18), 12964-12975.
[http://dx.doi.org/10.1039/C6CP01555G] [PMID: 27108770]
[135]
Charifson, P.S.; Corkery, J.J.; Murcko, M.A.; Walters, W.P. Consensus scoring: A method for obtaining improved hit rates from docking databases of three-dimensional structures into proteins. J. Med. Chem., 1999, 42(25), 5100-5109.
[http://dx.doi.org/10.1021/jm990352k] [PMID: 10602695]
[136]
Pulla, V.K.; Sriram, D.S.; Viswanadha, S.; Sriram, D.; Yogeeswari, P. Energy-based pharmacophore and three-dimensional quantitative structure-activity relationship (3D-QSAR) modeling combined with virtual screening to identify novel small-molecule inhibitors of silent mating-type information regulation 2 homologue 1 (SIRT1). J. Chem. Inf. Model., 2016, 56(1), 173-187.
[http://dx.doi.org/10.1021/acs.jcim.5b00220] [PMID: 26636371]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy