Generic placeholder image

Pharmaceutical Nanotechnology

Editor-in-Chief

ISSN (Print): 2211-7385
ISSN (Online): 2211-7393

Review Article

Emphasis on Nanostructured Lipid Carriers in the Ocular Delivery of Antibiotics

Author(s): Chandra Pratap Singh, Pankaj Kumar Rai, Manish Kumar*, Varsha Tiwari, Abhishek Tiwari, Ajay Sharma and Kamini Sharma

Volume 12, Issue 2, 2024

Published on: 25 August, 2023

Page: [126 - 142] Pages: 17

DOI: 10.2174/2211738511666230727102213

Price: $65

Abstract

Background: Drug distribution to the eye is still tricky because of the eye’s intricate structure. Systemic delivery, as opposed to more traditional methods like eye drops and ointments, is more effective but higher doses can be harmful.

Objective: The use of solid lipid nanoparticles (SLNPs) as a method of drug delivery has been the subject of research since the 1990s. Since SLNPs are derived from naturally occurring lipids, they pose no health risks to the user. To raise the eye's absorption of hydrophilic and lipophilic drugs, SLNs can promote corneal absorption and improve the ocular bioavailability of SLNPs.

Methods: To address problems related to ocular drug delivery, many forms of nano formulation were developed. Some of the methods developed are, emulsification and ultra-sonication, high-speed stirring and ultra-sonication, thin layer hydration, adapted melt-emulsification, and ultrasonication techniques, hot o/w micro-emulsion techniques, etc.

Results: Nanostructured lipid carriers are described in this review in terms of their ocular penetration mechanism, structural characteristic, manufacturing process, characterization, and advantages over other nanocarriers.

Conclusion: Recent developments in ocular formulations with nanostructured bases, such as surfacemodified attempts have been made to increase ocular bioavailability in both the anterior and posterior chambers by incorporating cationic chemicals into a wide variety of polymeric systems.

Graphical Abstract

[1]
Baranowski P, Karolewicz B, Gajda M, Pluta J. Ophthalmic drug dosage forms: Characterization and research methods. Sci World J 2014; 2014: 861904.
[2]
Bhattacharjee A, Das PJ, Adhikari P, et al. Novel drug delivery systems for ocular therapy: With special reference to liposomal ocular delivery. Eur J Ophthalmol 2019; 29(1): 113-26.
[http://dx.doi.org/10.1177/1120672118769776] [PMID: 29756507]
[3]
Khiev D, Mohamed ZA, Vichare R, et al. Emerging nano-formulations and nanomedicines applications for ocular drug delivery. Nanomaterials 2021; 11(1): 173.
[http://dx.doi.org/10.3390/nano11010173] [PMID: 33445545]
[4]
Chauhan I, Yasir M, Verma M, Singh AP. Nanostructured lipid carriers: A groundbreaking approach for transdermal drug delivery. Adv Pharm Bull 2020; 10(2): 150-65.
[http://dx.doi.org/10.34172/apb.2020.021] [PMID: 32373485]
[5]
Mohammadi-Samani S, Ghasemiyeh P. Solid lipid nanoparticles and nanostructured lipid carriers as novel drug delivery systems: applications, advantages and disadvantages. Res Pharm Sci 2018; 13(4): 288-303.
[http://dx.doi.org/10.4103/1735-5362.235156] [PMID: 30065762]
[6]
Naseri N, Valizadeh H, Zakeri-Milani P. Solid lipid nanoparticles and nanostructured lipid carriers: Structure, preparation and application. Adv Pharm Bull 2015; 5(3): 305-13.
[http://dx.doi.org/10.15171/apb.2015.043] [PMID: 26504751]
[7]
Gaudana R, Ananthula HK, Parenky A, Mitra AK. Ocular drug delivery. AAPS J 2010; 12(3): 348-60.
[http://dx.doi.org/10.1208/s12248-010-9183-3] [PMID: 20437123]
[8]
Yuan H, Wang L-L. Preparation and characteristics of nanostructured lipid carriers for control-releasing progesterone by melt-emulsification. Colloids Surf B 2007; 60(1): 74-9.
[9]
Occhiutto ML, Freitas FR, Maranhao RC, Costa VP. Breakdown of the blood-ocular barrier as a strategy for the systemic use of nanosystems. Pharmaceutics 2012; 4(2): 252-75.
[http://dx.doi.org/10.3390/pharmaceutics4020252] [PMID: 24300231]
[10]
Lynch CR, Kondiah PPD, Choonara YE, du Toit LC, Ally N, Pillay V. Hydrogel biomaterials for application in ocular drug delivery. Front Bioeng Biotechnol 2020; 8: 228.
[http://dx.doi.org/10.3389/fbioe.2020.00228] [PMID: 32266248]
[11]
Bekerman I, Gottlieb P, Vaiman M. Variations in eyeball diameters of the healthy adults. J Ophthalmol 2014; 2014: 503-645.
[12]
Agrahari V, Mandal A, Agrahari V, et al. A comprehensive insight on ocular pharmacokinetics. Drug Deliv Transl Res 2016; 6(6): 735-54.
[http://dx.doi.org/10.1007/s13346-016-0339-2] [PMID: 27798766]
[13]
Patel A, Cholkar K, Agrahari V, Mitra AK. Ocular drug delivery systems: An overview. World J Pharmacol 2013; 2(2): 47-64.
[http://dx.doi.org/10.5497/wjp.v2.i2.47] [PMID: 25590022]
[14]
Hosoya K, Lee VHL, Kim KJ. Roles of the conjunctiva in ocular drug delivery: A review of conjunctival transport mechanisms and their regulation. Eur J Pharm Biopharm 2005; 60(2): 227-40.
[http://dx.doi.org/10.1016/j.ejpb.2004.12.007] [PMID: 15939235]
[15]
Jacob S, Nair AB, Shah J, et al. Lipid nanoparticles as a promising drug delivery carrier for topical ocular therapy—an overview on recent advances. Pharmaceutics 2022; 14(3): 533.
[http://dx.doi.org/10.3390/pharmaceutics14030533] [PMID: 35335909]
[16]
Lee J, Pelis RM. Drug transport by the blood-aqueous humor barrier of the eye. Drug Metab Dispos 2016; 44(10): 1675-81.
[http://dx.doi.org/10.1124/dmd.116.069369] [PMID: 26895982]
[17]
Yingchoncharoen P, Kalinowski DS, Richardson DR. Lipid-based drug delivery systems in cancer therapy: What is available and what is yet to come. Pharmacol Rev 2016; 68(3): 701-87.
[http://dx.doi.org/10.1124/pr.115.012070] [PMID: 27363439]
[18]
Varela-Fernández R, Díaz-Tomé V, Luaces-Rodríguez A, et al. Drug delivery to the posterior segment of the eye: Biopharmaceutic and pharmacokinetic considerations. Pharmaceutics 2020; 12(3): 269.
[http://dx.doi.org/10.3390/pharmaceutics12030269] [PMID: 32188045]
[19]
Shah SS, Denham LV, Elison JR, et al. Drug delivery to the posterior segment of the eye for pharmacologic therapy. Expert Rev Ophthalmol 2010; 5(1): 75-93.
[http://dx.doi.org/10.1586/eop.09.70] [PMID: 20305803]
[20]
Vaneev A, Tikhomirova V, Chesnokova N, et al. Nanotechnology for topical drug delivery to the anterior segment of the eye. Int J Mol Sci 2021; 22(22): 12368.
[http://dx.doi.org/10.3390/ijms222212368] [PMID: 34830247]
[21]
Rezhdo O, Speciner L, Carrier R. Lipid-associated oral delivery: Mechanisms and analysis of oral absorption enhancement. J Control Release 2016; 240: 544-60.
[http://dx.doi.org/10.1016/j.jconrel.2016.07.050] [PMID: 27520734]
[22]
Peng CC, Bengani LC, Jung HJ, Leclerc J, Gupta C, Chauhan A. Emulsions and microemulsions for ocular drug delivery. J Drug Deliv Sci Technol 2011; 21(1): 111-21.
[http://dx.doi.org/10.1016/S1773-2247(11)50010-3]
[23]
Vandamme TF. Microemulsions as ocular drug delivery systems: Recent developments and future challenges. Prog Retin Eye Res 2002; 21(1): 15-34.
[http://dx.doi.org/10.1016/S1350-9462(01)00017-9] [PMID: 11906809]
[24]
Chan J, Maghraby GM, Craig JP, Alany RG. Effect of water-in-oil microemulsions and lamellar liquid crystalline systems on the precorneal tear film of albino New Zealand rabbits. Clin Ophthalmol 2008; 2(1): 129-38.
[PMID: 19668396]
[25]
Müller RH, Mäder K, Gohla S. Solid lipid nanoparticles (SLN) for controlled drug delivery - a review of the state of the art. Eur J Pharm Biopharm 2000; 50(1): 161-77.
[http://dx.doi.org/10.1016/S0939-6411(00)00087-4] [PMID: 10840199]
[26]
Ezzati Nazhad Dolatabadi J, Valizadeh H, Hamishehkar H. Solid lipid nanoparticles as efficient drug and gene delivery systems: Recent breakthroughs. Adv Pharm Bull 2015; 5(2): 151-9.
[http://dx.doi.org/10.15171/apb.2015.022] [PMID: 26236652]
[27]
de Jong WH, Borm PJ. Drug delivery and nanoparticles: Applications and hazards. Int J Nanomedicine 2008; 3(2): 133-49.
[http://dx.doi.org/10.2147/IJN.S596] [PMID: 18686775]
[28]
Lombardo D, Calandra P, Pasqua L, Magazù S. Self-assembly of organic nanomaterials and biomaterials: The bottom-up approach for functional nanostructures formation and advanced applications. Materials 2020; 13(5): 1048.
[http://dx.doi.org/10.3390/ma13051048] [PMID: 32110877]
[29]
Berbel Manaia E, Paiva Abuçafy M, Chiari-Andréo BG, Lallo Silva B, Oshiro-Júnior JA, Chiavacci L. Physicochemical characterization of drug nanocarriers. Int J Nanomedicine 2017; 12: 4991-5011.
[http://dx.doi.org/10.2147/IJN.S133832] [PMID: 28761340]
[30]
Zamboulis A, Nanaki S, Michailidou G, et al. Chitosan and its derivatives for ocular delivery formulations: Recent advances and developments. Polymers 2020; 12(7): 1519.
[http://dx.doi.org/10.3390/polym12071519] [PMID: 32650536]
[31]
Mobaraki M, Soltani M, Zare Harofte S, et al. Biodegradable nanoparticle for cornea drug delivery: Focus review. Pharmaceutics 2020; 12(12): 1232.
[http://dx.doi.org/10.3390/pharmaceutics12121232] [PMID: 33353013]
[32]
Uner M, Yener G. Importance of solid lipid nanoparticles (SLN) in various administration routes and future perspectives. Int J Nanomedicine 2007; 2(3): 289-300.
[PMID: 18019829]
[33]
Das S, Chaudhury A. Recent advances in lipid nanoparticle formulations with solid matrix for oral drug delivery. AAPS PharmSciTech 2011; 12(1): 62-76.
[http://dx.doi.org/10.1208/s12249-010-9563-0] [PMID: 21174180]
[34]
Puri A, Loomis K, Smith B, et al. Lipid-based nanoparticles as pharmaceutical drug carriers: from concepts to clinic. Crit Rev Ther Drug Carrier Syst 2009; 26(6): 523-80.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.v26.i6.10] [PMID: 20402623]
[35]
Elmowafy M, Al-Sanea MM. Nanostructured lipid carriers (NLCs) as drug delivery platform: Advances in formulation and delivery strategies. Saudi Pharm J 2021; 29(9): 999-1012.
[http://dx.doi.org/10.1016/j.jsps.2021.07.015] [PMID: 34588846]
[36]
Gaynes R. The discovery of penicillin—new insights after more than 75 years of clinical use. Emerg Infect Dis 2017; 23(5): 849-53.
[http://dx.doi.org/10.3201/eid2305.161556]
[37]
Fair RJ, Tor Y. Antibiotics and bacterial resistance in the 21st century. Perspect Medicin Chem 2014; 6: 25-64.
[http://dx.doi.org/10.4137/PMC.S14459] [PMID: 25232278]
[38]
Kapoor G, Saigal S, Elongavan A. Action and resistance mechanisms of antibiotics: A guide for clinicians. J Anaesthesiol Clin Pharmacol 2017; 33(3): 300-5.
[http://dx.doi.org/10.4103/joacp.JOACP_349_15] [PMID: 29109626]
[39]
Chopra I, Roberts M. Tetracycline antibiotics: Mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol Mol Biol Rev 2001; 65(2): 232-60.
[http://dx.doi.org/10.1128/MMBR.65.2.232-260.2001] [PMID: 11381101]
[40]
Munita JM, Arias CA. Mechanisms of antibiotic resistance. Microbiol Spectr 2016; 4(2): 10.
[http://dx.doi.org/10.1128/microbiolspec.VMBF-0016-2015] [PMID: 27227291]
[41]
Smilack JD, Wilson WR, Cockerill FR III. Tetracyclines, chloramphenicol, erythromycin, clindamycin, and metronidazole. Mayo Clin Proc 1991; 66(12): 1270-80.
[http://dx.doi.org/10.1016/S0025-6196(12)62479-3] [PMID: 1749296]
[42]
Ocampo PS, Lázár V, Papp B, et al. Antagonism between bacteriostatic and bactericidal antibiotics is prevalent. Antimicrob Agents Chemother 2014; 58(8): 4573-82.
[http://dx.doi.org/10.1128/AAC.02463-14] [PMID: 24867991]
[43]
Watson S, Cabrera-Aguas M, Khoo P. Common eye infections. Aust Prescr 2018; 41(3): 67-72.
[http://dx.doi.org/10.18773/austprescr.2018.016] [PMID: 29922000]
[44]
Dubald M, Bourgeois S, Andrieu V, Fessi H. Ophthalmic drug delivery systems for antibiotherapy-a review. Pharmaceutics 2018; 10(1): 10.
[45]
Schwartz SG, Flynn HW Jr. Update on the prevention and treatment of endophthalmitis. Expert Rev Ophthalmol 2014; 9(5): 425-30.
[http://dx.doi.org/10.1586/17469899.2014.951331] [PMID: 26609317]
[46]
Cyriac JM, James E. Switch over from intravenous to oral therapy: A concise overview. J Pharmacol Pharmacother 2014; 5(2): 83-7.
[http://dx.doi.org/10.4103/0976-500X.130042] [PMID: 24799810]
[47]
Levison ME, Levison JH. Pharmacokinetics and pharmacodynamics of antibacterial agents. Infect Dis Clin North Am 2009; 23(4): 791-815. vii.
[http://dx.doi.org/10.1016/j.idc.2009.06.008] [PMID: 19909885]
[48]
Sánchez-Borges M, Thong B, Blanca M, et al. Hypersensitivity reactions to non beta-lactam antimicrobial agents, a statement of the WAO special committee on drug allergy. World Allergy Organ J 2013; 6(1): 18.
[49]
Krause KM, Serio AW, Kane TR, Connolly LE. Aminoglycosides: An overview. Cold Spring Harb 2016; 6(6): a027029.
[50]
Ameeduzzafar Khan N, Shalaby K, Ali A. Improvement of ocular efficacy of levofloxacin by bioadhesivechitosan coated PLGA nanoparticles: Box-behnken design, in-vitro characterization, antibacterial evaluation and scintigraphy study. Iran J Pharm Res Winter 2020; 19(1): 292-311.
[51]
Natsaridis E, Gkartziou F, Mourtas S, et al. Moxifloxacin liposomes: Effect of liposome preparation method on physicochemical properties and antimicrobial activity against staphylococcus epidermidis. Pharmaceutics 2022; 14(2): 370.
[http://dx.doi.org/10.3390/pharmaceutics14020370] [PMID: 35214102]
[52]
Aher S, Singh RP, Kumar M. Preparation and characterization of nano structured lipid carriers for ocular bacterial infection. J Pharm Res Int 2021; 33: 8-23.
[http://dx.doi.org/10.9734/jpri/2021/v33i40A32215]
[53]
Jounaki K, Makhmalzadeh BS, Feghhi M, Heidarian A. Topical ocular delivery of vancomycin loaded cationic lipid nanocarriers as a promising and non-invasive alternative approach to intravitreal injection for enhanced bacterial endophthalmitis management. Eur J Pharm Sci 2021; 167: 105991.
[http://dx.doi.org/10.1016/j.ejps.2021.105991] [PMID: 34517103]
[54]
Seetharam R, Iyer RB, Nooraine J, Ramachandran J. Clarithromycin-induced seizures and status epilepticus. Indian J Crit Care Med 2021; 25(8): 945-7.
[http://dx.doi.org/10.5005/jp-journals-10071-23900] [PMID: 34733040]
[55]
Nair A, Shah J, Al-Dhubiab B, et al. Clarithromycin solid lipid nanoparticles for topical ocular therapy: Optimization, evaluation and in vivo studies. Pharmaceutics 2021; 13(4): 523.
[http://dx.doi.org/10.3390/pharmaceutics13040523] [PMID: 33918870]
[56]
Youssef AAA, Cai C, Dudhipala N, Majumdar S, Majumdar S. Design of topical ocular ciprofloxacin nanoemulsion for the management of bacterial keratitis. Pharmaceuticals 2021; 14(3): 210.
[http://dx.doi.org/10.3390/ph14030210] [PMID: 33802394]
[57]
Gebreel RM, Edris NA, Elmofty HM, Tadros MI, El-Nabarawi MA, Hassan DH. Development and characterization of PLGA nanoparticle-laden hydrogels for sustained ocular delivery of norfloxacin in the treatment of pseudomonas keratitis: An experimental study. Drug Des Devel Ther 2021; 15: 399-418.
[http://dx.doi.org/10.2147/DDDT.S293127] [PMID: 33584095]
[58]
Bogdanov A, Janovák L, Vraneš J, et al. Liposomal encapsulation increases the efficacy of azithromycin against chlamydia trachomatis. Pharmaceutics 2021; 14(1): 36.
[http://dx.doi.org/10.3390/pharmaceutics14010036] [PMID: 35056934]
[59]
Mansouri M, Khayam N, Jamshidifar E, et al. Streptomycin sulfate–loaded niosomes enables increased antimicrobial and anti-biofilm activities. Front Bioeng Biotechnol 2021; 9: 745099.
[http://dx.doi.org/10.3389/fbioe.2021.745099] [PMID: 34778226]
[60]
Youssef A, Dudhipala N, Majumdar S. Ciprofloxacin loaded nanostructured lipid carriers incorporated into in-situ gels to improve management of bacterial endophthalmitis. Pharmaceutics 2020; 12(6): 572.
[http://dx.doi.org/10.3390/pharmaceutics12060572] [PMID: 32575524]
[61]
dos Santos GA, Ferreira-Nunes R, Dalmolin LF, et al. Besifloxacin liposomes with positively charged additives for an improved topical ocular delivery. Sci Rep 2020; 10(1): 19285.
[http://dx.doi.org/10.1038/s41598-020-76381-y] [PMID: 33159142]
[62]
Ebrahimi S, Farhadian N, Karimi M, Ebrahimi M. Enhanced bactericidal effect of ceftriaxone drug encapsulated in nanostructured lipid carrier against gram-negative Escherichia coli bacteria: drug formulation, optimization, and cell culture study. Antimicrob Resist Infect Control 2020; 9(1): 28.
[http://dx.doi.org/10.1186/s13756-020-0690-4] [PMID: 32041660]
[63]
Bageshwar DV, Pawar AS, Khanvilkar V, Kadam VJ. Quantitative estimation of mupirocin calcium from pharmaceutical ointment formulation by UV spectrophotometry. Int J Pharm Pharm Sci 2010; 2: 86-8.
[64]
Platania CBM, Dei Cas M, Cianciolo S, et al. Novel ophthalmic formulation of myriocin: Implications in retinitis pigmentosa. Drug Deliv 2019; 26(1): 237-43.
[http://dx.doi.org/10.1080/10717544.2019.1574936] [PMID: 30883241]
[65]
Pandey D, Jain D. Formulation and evaluation of submicron emulsion containing entrapped fluoroquinolone for ocular delivery. Asian J Pharm Clin Res 2018; 11(7): 431-5.
[http://dx.doi.org/10.22159/ajpcr.2018.v11i7.24608]
[66]
Balguri SP, Adelli GR, Janga KY, Bhagav P, Majumdar S. Ocular disposition of ciprofloxacin from topical, PEGylated nanostructured lipid carriers: Effect of molecular weight and density of poly (ethylene) glycol. Int J Pharm 2017; 529(1-2): 32-43.
[http://dx.doi.org/10.1016/j.ijpharm.2017.06.042] [PMID: 28634139]
[67]
Pignatello R, Leonardi A, Fuochi V, Petronio Petronio G, Greco A, Furneri P. A method for efficient loading of ciprofloxacin hydrochloride in cationic solid lipid nanoparticles: Formulation and microbiological evaluation. Nanomaterials 2018; 8(5): 304.
[http://dx.doi.org/10.3390/nano8050304] [PMID: 29734771]
[68]
Campardelli R, Trucillo P, Reverchon E. Supercritical assisted process for the efficient production of liposomes containing antibiotics for ocular delivery. J CO2 Util 2018; 25: 235-41.
[69]
Alalaiwe A, Wang PW, Lu PL, Chen YP, Fang JY, Yang SC. Synergistic Anti-MRSA activity of cationic nanostructured lipid carriers in combination with oxacillin for cutaneous application. Front Microbiol 2018; 9: 1493.
[http://dx.doi.org/10.3389/fmicb.2018.01493] [PMID: 30034381]
[70]
Shazly GA. Ciprofloxacin controlled-solid lipid nanoparticles: Characterization, in vitro release, and antibacterial activity assessment. BioMed Res Int 2017; 2017: 2120734.
[PMID: 28194408]
[71]
Khalil R, Abdelbary G, Basha M, Awad G, El-hashemy H. Enhancement of lomefloxacin Hcl Ocular efficacy via niosomal encapsulation: in vitro characterization and in vivo evaluation. J Liposome Res 2016; 30: 1-39.
[72]
Moreno-Sastre M, Pastor M, Esquisabel A, et al. Pulmonary delivery of tobramycin-loaded nanostructured lipid carriers for Pseudomonas aeruginosa infections associated with cystic fibrosis. Int J Pharm 2016; 498(1-2): 263-73.
[http://dx.doi.org/10.1016/j.ijpharm.2015.12.028] [PMID: 26705155]
[73]
Chetoni P, Burgalassi S, Monti D, et al. Solid lipid nanoparticles as promising tool for intraocular tobramycin delivery: Pharmacokinetic studies on rabbits. Eur J Pharm Biopharm 2016; 109: 214-23.
[http://dx.doi.org/10.1016/j.ejpb.2016.10.006] [PMID: 27789355]
[74]
Kumar S, Bhanjana G, Kumar A, Taneja K, Dilbaghi N, Kim KH. Synthesis and optimization of ceftriaxone-loaded solid lipid nanocarriers. Chem Phys Lipids 2016; 200: 126-32.
[http://dx.doi.org/10.1016/j.chemphyslip.2016.09.002] [PMID: 27697513]
[75]
Üstündağ-Okur N, Gökçe EH, Bozbıyık Dİ, Eğrilmez S, Özer Ö, Ertan G. Preparation and in vitro-in vivo evaluation of ofloxacin loaded ophthalmic nano structured lipid carriers modified with chitosan oligosaccharide lactate for the treatment of bacterial keratitis. Eur J Pharm Sci 2014; 63: 204-15.
[http://dx.doi.org/10.1016/j.ejps.2014.07.013] [PMID: 25111119]
[76]
Akbari V, Abedi D, Pardakhty A, Sadeghi-Aliabadi H. Release studies on ciprofloxacin loaded non-ionic surfactant vesicles. Avicenna J Med Biotechnol 2015; 7(2): 69-75.
[PMID: 26140184]
[77]
Dhangar R, Bhowmick M, Parihar SS, Upmanyu N, Dubey B. Design and evaluation of proniosomes as drug carrier for ocular delivery of levofloxacin. J Drug Deliv Ther 2014; 4(5): 182-9.
[http://dx.doi.org/10.22270/jddt.v4i5.740]
[78]
Taha EI, El-Anazi MH, El-Bagory IM, Bayomi MA. Design of liposomal colloidal systems for ocular delivery of ciprofloxacin. Saudi Pharm J 2014; 22(3): 231-9.
[http://dx.doi.org/10.1016/j.jsps.2013.07.003] [PMID: 25061409]
[79]
Kaskoos R. Investigation of moxifloxacin loaded chitosan-dextran nanoparticles for topical instillation into eye: In-vitro and ex-vivo evaluation. Int J Pharm Investig 2014; 4(4): 164-73.
[http://dx.doi.org/10.4103/2230-973X.143114] [PMID: 25426437]
[80]
Alhajlan M, Alhariri M, Omri A. Efficacy and safety of liposomal clarithromycin and its effect on Pseudomonas aeruginosa virulence factors. Antimicrob Agents Chemother 2013; 57(6): 2694-704.
[http://dx.doi.org/10.1128/AAC.00235-13] [PMID: 23545534]
[81]
Shah M, Agrawal YK, Garala K, Ramkishan A. Solid lipid nanoparticles of a water soluble drug, ciprofloxacin hydrochloride. Indian J Pharm Sci 2012; 74(5): 434-42.
[http://dx.doi.org/10.4103/0250-474X.108419] [PMID: 23716872]
[82]
Zaki NM, Hafez MM. Enhanced antibacterial effect of ceftriaxone sodium-loaded chitosan nanoparticles against intracellular Salmonella typhimurium. AAPS PharmSciTech 2012; 13(2): 411-21.
[http://dx.doi.org/10.1208/s12249-012-9758-7] [PMID: 22359159]
[83]
Hao J, Fang X, Zhou Y, et al. Development and optimization of solid lipid nanoparticle formulation for ophthalmic delivery of chloramphenicol using a Box-Behnken design. Int J Nanomedicine 2011; 6: 683-92.
[PMID: 21556343]
[84]
Gupta H, Aqil M, Khar RK, Ali A, Bhatnagar A, Mittal G. Sparfloxacin-loaded PLGA nanoparticles for sustained ocular drug delivery. Nanomedicine 2010; 6(2): 324-33.
[http://dx.doi.org/10.1016/j.nano.2009.10.004] [PMID: 19857606]
[85]
Kim EK, Kim HB. Pharmacokinetics of intravitreally injected liposome-encapsulated tobramycin in normal rabbits. Yonsei Med J 1990; 31(4): 308-14.
[http://dx.doi.org/10.3349/ymj.1990.31.4.308] [PMID: 2077755]
[86]
Almeida H, Amaral M, Lobao P, Frigerio C, Sousa Lobo J. Nanoparticles in ocular drug delivery systems for topical administration: Promises and challenges. Curr Pharm Des 2015; 21(36): 5212-24.
[http://dx.doi.org/10.2174/1381612821666150923095155] [PMID: 26412360]
[87]
Zhou HY, Hao JL, Wang S, Zheng Y, Zhang WS. Nanoparticles in the ocular drug delivery. Int J Ophthalmol 2013; 6(3): 390-6.
[PMID: 23826539]
[88]
Das S, Suresh PK, Desmukh R. Design of eudragit RL 100 nanoparticles by nanoprecipitation method for ocular drug delivery. Nanomedicine 2010; 6(2): 318-23.
[http://dx.doi.org/10.1016/j.nano.2009.09.002] [PMID: 19800990]
[89]
Mandal B, Alexander KS, Riga AT. Sulfacetamide loaded Eudragit® RL100 nanosuspension with potential for ocular delivery. J Pharm Pharm Sci 2010; 13(4): 510-23.
[http://dx.doi.org/10.18433/J3SW2T] [PMID: 21486528]
[90]
Ibrahim HK, El-Leithy IS, Makky AA. Mucoadhesive nanoparticles as carrier systems for prolonged ocular delivery of gatifloxacin/prednisolone bitherapy. Mol Pharm 2010; 7(2): 576-85.
[http://dx.doi.org/10.1021/mp900279c] [PMID: 20163167]
[91]
Janagam DR, Wu L, Lowe TL. Nanoparticles for drug delivery to the anterior segment of the eye. Adv Drug Deliv Rev 2017; 122(122): 31-64.
[http://dx.doi.org/10.1016/j.addr.2017.04.001] [PMID: 28392306]
[92]
Duxfield L, Sultana R, Wang R, et al. Development of gatifloxacin-loaded cationic polymeric nanoparticles for ocular drug delivery. Pharm Dev Technol 2016; 21(2): 172-9.
[http://dx.doi.org/10.3109/10837450.2015.1091839] [PMID: 26794936]
[93]
Makadia HK, Siegel SJ. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers 2011; 3(3): 1377-97.
[94]
Lee MY, Bourgeois S, Almouazen E, et al. Microencapsulation of rifampicin for the prevention of endophthalmitis: in vitro release studies and antibacterial assessment. Int J Pharm 2016; 505(1-2): 262-70.
[http://dx.doi.org/10.1016/j.ijpharm.2016.03.026] [PMID: 26997423]
[95]
Hachicha W, Kodjikian L, Fessi H. Preparation of vancomycin microparticles: Importance of preparation parameters. Int J Pharm 2006; 324(2): 176-84.
[http://dx.doi.org/10.1016/j.ijpharm.2006.06.005] [PMID: 16876347]
[96]
Gupta H, Aqil M, Khar RK, Ali A, Bhatnagar A, Mittal G. Biodegradable levofloxacin nanoparticles for sustained ocular drug delivery. J Drug Target 2011; 19(6): 409-17.
[http://dx.doi.org/10.3109/1061186X.2010.504268] [PMID: 20678034]
[97]
Öztürk AA, Yenilmez E, Özarda MG. Clarithromycin-loaded poly (Lactic-co-glycolic Acid) (PLGA) nanoparticles for oral administration: Effect of polymer molecular weight and surface modification with chitosan on formulation, nanoparticle characterization and antibacterial effects. Polymers 2019; 11(10): 1632.
[http://dx.doi.org/10.3390/polym11101632] [PMID: 31600969]
[98]
Mohammadi G, Nokhodchi A, Barzegar-Jalali M, et al. Physicochemical and anti-bacterial performance characterization of clarithromycin nanoparticles as colloidal drug delivery system. Colloids Surf B Biointerfaces 2011; 88(1): 39-44.
[http://dx.doi.org/10.1016/j.colsurfb.2011.05.050] [PMID: 21752610]
[99]
Iwano H, Inoue Y, Takasago T, et al. Bacteriophage ΦSA012 has a broad host range against staphylococcus aureus and effective lytic capacity in a mouse mastitis model. Biology 2018; 7(1): 8.
[http://dx.doi.org/10.3390/biology7010008]
[100]
Pokharkar V, Patil V, Mandpe L. Engineering of polymer–surfactant nanoparticles of doxycycline hydrochloride for ocular drug delivery. Drug Deliv 2015; 22(7): 955-68.
[http://dx.doi.org/10.3109/10717544.2014.893381] [PMID: 24601827]
[101]
Motwani SK, Chopra S, Talegaonkar S, Kohli K, Ahmad FJ, Khar RK. Chitosan-sodium alginate nanoparticles as submicroscopic reservoirs for ocular delivery: formulation, optimisation and in vitro characterisation. Eur J Pharm Biopharm 2008; 68(3): 513-25.
[PMID: 17983737]
[102]
Arozal W, Louisa M, Rahmat D, Chendrana P, Sandhiutami NMD. Development, characterization and pharmacokinetic profile of Chitosan-Sodium tripolyphosphate nanoparticles based drug delivery systems for curcumin. Adv Pharm Bull 2020; 11(1): 77-85.
[http://dx.doi.org/10.34172/apb.2021.008] [PMID: 33747854]
[103]
Silva NC, Silva S, Sarmento B, Pintado M. Chitosan nanoparticles for daptomycin delivery in ocular treatment of bacterial endophthalmitis. Drug Deliv 2015; 22(7): 885-93.
[http://dx.doi.org/10.3109/10717544.2013.858195] [PMID: 24266551]
[104]
Costa JR, Silva NC, Sarmento B, Pintado M. Potential chitosan-coated alginate nanoparticles for ocular delivery of daptomycin. Eur J Clin Microbiol Infect Dis 2015; 34(6): 1255-62.
[http://dx.doi.org/10.1007/s10096-015-2344-7] [PMID: 25754770]
[105]
Kalam MA, Sultana Y, Ali A, Aqil M, Mishra AK, Chuttani K. Preparation, characterization, and evaluation of gatifloxacin loaded solid lipid nanoparticles as colloidal ocular drug delivery system. J Drug Target 2010; 18(3): 191-204.
[http://dx.doi.org/10.3109/10611860903338462] [PMID: 19839712]
[106]
Varma V, Agarwal A, Verma S, Tyagi S. An overview on ophthalmic drug delivery systems. World J Pharm Pharm Sci 2021; 1(10): 1635-49.
[107]
Kalam MA, Sultana Y, Ali A, et al. Part I: Development and optimization of solid-lipid nanoparticles using Box-Behnken statistical design for ocular delivery of gatifloxacin. J Biomed Mater Res A 2013; 101A(6): 1813-27. a
[http://dx.doi.org/10.1002/jbm.a.34453] [PMID: 23255511]
[108]
Abul Kalam M, Sultana Y, Ali A, et al. Part II: Enhancement of transcorneal delivery of gatifloxacin by solid lipid nanoparticles in comparison to commercial aqueous eye drops. J Biomed Mater Res A 2013; 101A(6): 1828-36. b
[http://dx.doi.org/10.1002/jbm.a.34467] [PMID: 23184654]
[109]
Baig MS, Ahad A, Aslam M, Imam SS, Aqil M, Ali A. Application of Box–Behnken design for preparation of levofloxacin-loaded stearic acid solid lipid nanoparticles for ocular delivery: Optimization, in vitro release, ocular tolerance, and antibacterial activity. Int J Biol Macromol 2016; 85: 258-70.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.12.077] [PMID: 26740466]
[110]
Souto EB, Dias-Ferreira J, López-Machado A, Ettcheto M, Cano A. Advanced formulation approaches for ocular drug delivery: State-of-the-art and recent patents. Pharmaceutics 2019; 11(9): 460.
[111]
Yousry C, Fahmy RH, Essam T, El-laithy HM, Elkheshen SA. Nanoparticles as tool for enhanced ophthalmic delivery of vancomycin: a multidistrict-based microbiological study, solid lipid nanoparticles formulation and evaluation. Drug Dev Ind Pharm 2016; 42(11): 1752-62.
[http://dx.doi.org/10.3109/03639045.2016.1171335] [PMID: 27093938]
[112]
van Hoogevest P, Wendel A. The use of natural and synthetic phospholipids as pharmaceutical excipients. Eur J Lipid Sci Technol 2014; 116(9): 1088-107.
[http://dx.doi.org/10.1002/ejlt.201400219] [PMID: 25400504]
[113]
Nakhaei P, Margiana R, Bokov DO, Abdelbasset WK. Liposomes: Structure, biomedical applications, and stability parameters with emphasis on cholesterol. Front Bioeng Biotechnol 2021; 9: 705886.
[114]
Swamy NGN, Abbas Z. Preparation and in vitro characterization of mucoadhesive hydroxypropyl guar microspheres containing amlodipine besylate for nasal administration. Indian J Pharm Sci 2011; 73(6): 608-14.
[http://dx.doi.org/10.4103/0250-474X.100233] [PMID: 23112393]
[115]
Mehanna MM, Elmaradny HA, Samaha MW. Mucoadhesive liposomes as ocular delivery system: physical, microbiological, and in vivo assessment. Drug Dev Ind Pharm 2010; 36(1): 108-18.
[http://dx.doi.org/10.3109/03639040903099751] [PMID: 19656004]
[116]
Chetoni P, Monti D, Tampucci S, et al. Liposomes as a potential ocular delivery system of distamycin A. Int J Pharm 2015; 492(1-2): 120-6.
[http://dx.doi.org/10.1016/j.ijpharm.2015.05.055] [PMID: 26183332]
[117]
Asadi S, Mortezagholi B, Hadizadeh A, et al. Ciprofloxacin-loaded titanium nanotubes coated with chitosan: A promising formulation with sustained release and enhanced antibacterial properties. Pharmaceutics 2022; 14(7): 1359.
[118]
Abdelbary G. Ocular ciprofloxacin hydrochloride mucoadhesive chitosan-coated liposomes. Pharm Dev Technol 2011; 16(1): 44-56.
[http://dx.doi.org/10.3109/10837450903479988] [PMID: 20025433]
[119]
Budai L, Hajdú M, Budai M, et al. Gels and liposomes in optimized ocular drug delivery: Studies on ciprofloxacin formulations. Int J Pharm 2007; 343(1-2): 34-40.
[http://dx.doi.org/10.1016/j.ijpharm.2007.04.013] [PMID: 17537601]
[120]
Hosny KM. Preparation and evaluation of thermosensitive liposomal hydrogel for enhanced transcorneal permeation of ofloxacin. AAPS PharmSciTech 2009; 10(4): 1336-42.
[http://dx.doi.org/10.1208/s12249-009-9335-x] [PMID: 19902361]
[121]
Arafa MG, Ayoub BM. DOE optimization of nano-based carrier of pregabalin as hydrogel: New therapeutic & chemometric approaches for controlled drug delivery systems. Sci Rep 2017; 7: 41503.
[122]
Hosny KM. Ciprofloxacin as ocular liposomal hydrogel. AAPS PharmSciTech 2010; 11(1): 241-6.
[http://dx.doi.org/10.1208/s12249-009-9373-4] [PMID: 20151337]
[123]
Radhika M, Mithal K, Bawdekar A, et al. Pharmacokinetics of intravitreal antibiotics in endophthalmitis. J Ophthalmic Inflamm Infect 2014; 4: 22.
[124]
Zeng S, Hu C, Wei H, et al. Intravitreal pharmacokinetics of liposome-encapsulated amikacin in a rabbit model. Ophthalmology 1993; 100(11): 1640-4.
[http://dx.doi.org/10.1016/S0161-6420(93)31423-5] [PMID: 8233389]
[125]
Wiechens B, Krausse R, Grammer JB, Neumann D, Pleyer U, Duncker GI. Clearance of liposome-incorporated ciprofloxacin after intravitreal injection in rabbit eyes. Klin Monatsbl Augenheilkd 1998; 213(5): 284-92.
[http://dx.doi.org/10.1055/s-2008-1034989] [PMID: 9888133]
[126]
Wong CW, Czarny B, Metselaar JM, et al. Evaluation of subconjunctival liposomal steroids for the treatment of experimental uveitis. Sci Rep 2018; 8(1): 6604.
[127]
Kaiser JM, Imai H, Haakenson JK, et al. Nanoliposomal minocycline for ocular drug delivery. Nanomedicine 2013; 9(1): 130-40.
[http://dx.doi.org/10.1016/j.nano.2012.03.004] [PMID: 22465498]
[128]
Urtti A. Delivery of antiglaucoma drugs: Ocular vs. systemic absorption. J Ocul Pharmacol Spring 1994; 10(1): 349-57.
[129]
Verma P, Gupta RN, Jha AK, Pandey R. Development, in vitro and in vivo characterization of Eudragit RL 100 nanoparticles for improved ocular bioavailability of acetazolamide. Drug Deliv 2013; 20(7): 269-76.
[http://dx.doi.org/10.3109/10717544.2013.834417] [PMID: 24044644]
[130]
Abdelmonem R, Elhabal SF, Abdelmalak NS, El-Nabarawi MA, Teaima MH. Formulation and characterization of acetazolamide/carvedilol niosomal gel for glaucoma treatment: in vitro, and in vivo study. Pharmaceutics 2021; 13(2): 221.
[131]
Aggarwal D, Pal D, Mitra AK, Kaur IP. Study of the extent of ocular absorption of acetazolamide from a developed niosomal formulation, by microdialysis sampling of aqueous humor. Int J Pharm 2007; 338(1-2): 21-6.
[http://dx.doi.org/10.1016/j.ijpharm.2007.01.019] [PMID: 17300885]
[132]
Dandgavhal K, Bhandari D, Saindane H, Deore N, Amrutkar S. Niosomes as a potential drug delivery system. Int J Pharm Sci Rev Res 2021; 15: 68.
[133]
Stangogiannis-Druya E, Stangogiannis-Druya C, Naranjo-Tackman R, Vanzzini V, Villar-Kurí J. Úlcera corneal bacteriana tratada con antibiótico intraestromal: Modelo experimental in vivo. Arch Soc Esp Oftalmol 2009; 84(3): 123-32.
[http://dx.doi.org/10.4321/S0365-66912009000300004] [PMID: 19340717]
[134]
Bressler NM, Bressler SB. Photodynamic therapy with verteporfin (Visudyne): Impact on ophthalmology and visual sciences. Invest Ophthalmol Vis Sci 2000; 41(3): 624-8.
[135]
Moshirfar M, Pierson K, Hanamaikai K, Santiago-Caban L, Muthappan V, Passi SF. Artificial tears potpourri: A literature review. Clin Ophthalmol 2014; 8: 1419-33.
[PMID: 25114502]
[136]
Baskaran R, Lee J, Yang SG. Clinical development of photodynamic agents and therapeutic applications. Biomater Res 2018; 22(1): 25.
[http://dx.doi.org/10.1186/s40824-018-0140-z] [PMID: 30275968]
[137]
Stankiewicz A, Kosatka M, Goś A. Clinical efficacy of ciprofloxacin 0.3%9 (Ciloxan) in the treatment of bacterial infections of the external eye segment. Klin Oczna 2003; 105(6): 407-9.
[PMID: 15049266]
[138]
Morigi V, Tocchio A, Bellavite Pellegrini C, Sakamoto JH, Arnone M, Tasciotti E. Nanotechnology in medicine: from inception to market domination. J Drug Deliv 2012; 2012: 1-7.
[http://dx.doi.org/10.1155/2012/389485] [PMID: 22506121]
[139]
Nijhara R, Balakrishnan K. Bringing nanomedicines to market: regulatory challenges, opportunities, and uncertainties. Nanomedicine 2006; 2(2): 127-36.
[http://dx.doi.org/10.1016/j.nano.2006.04.005] [PMID: 17292125]
[140]
Weissig V, Pettinger T, Murdock N. Nanopharmaceuticals (part 1): Products on the market. Int J Nanomedicine 2014; 9: 4357-73.
[http://dx.doi.org/10.2147/IJN.S46900] [PMID: 25258527]
[141]
Ventola CL. The nanomedicine revolution: part 2: Current and future clinical applications. P&T 2012; 37(10): 582-91.
[PMID: 23115468]
[142]
Koppa Raghu P, Bansal KK, Thakor P, et al. Evolution of nanotechnology in delivering drugs to eyes, skin and wounds via topical route. Pharmaceuticals 2020; 13(8): 167.
[143]
Reimondez-Troitiño S, Csaba N, Alonso MJ, de la Fuente M. Nanotherapies for the treatment of ocular diseases. Eur J Pharm Biopharm 2015; 95(Pt B): 279-93.
[http://dx.doi.org/10.1016/j.ejpb.2015.02.019] [PMID: 25725262]
[144]
Pooja D, Kadari A, Kulhari H, Sistla R. Lipid-based nanomedicines: Current clinical status and future perspectives. In: Lipid Nanocarriers for Drug Targeting. (1st ed.). Cambridge, MA, USA: William Andrew Publishing 2018; pp. 509-28.
[http://dx.doi.org/10.1016/B978-0-12-813687-4.00013-X]
[145]
Grumezescu AM. Design of Nanostructures for Versatile Therapeutic Applications. (1st ed.), Cambridge, MA, USA: William Andrew Publishing 2018.
[146]
Patra JK, Das G, Fraceto LF, et al. Nano based drug delivery systems: Recent developments and future prospects. J Nanobiotechnology 2018; 16(1): 71.
[147]
Das B, Chattopadhyay D, Rana D. The gamut of perspectives, challenges, and recent trends for in situ hydrogels: A smart ophthalmic drug delivery vehicle. Biomater Sci 2020; 8(17): 4665-91.
[http://dx.doi.org/10.1039/D0BM00532K] [PMID: 32760957]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy