Generic placeholder image

Pharmaceutical Nanotechnology

Editor-in-Chief

ISSN (Print): 2211-7385
ISSN (Online): 2211-7393

Review Article

Niosomes: A Smart Drug Delivery System for Brain Targeting

Author(s): Sandesh Varshney, Md. Aftab Alam*, Awaneet Kaur and Shivang Dhoundiyal

Volume 12, Issue 2, 2024

Published on: 07 July, 2023

Page: [108 - 125] Pages: 18

DOI: 10.2174/2211738511666230524143832

Price: $65

conference banner
Abstract

Niosomes are lipid-based nanovesicles that have the potential to act as drug-delivery vehicles for a variety of agents. They are effective drug delivery systems for both ASOs and AAV vectors, with advantages such as improved stability, bioavailability, and targeted administration. In the context of brain-targeted drug delivery, niosomes have been investigated as a drug delivery system for brain targeting, but more research is needed to optimize their formulation to improve their stability and release profile and address the challenges of scale-up and commercialization. Despite these challenges, several applications of niosomes have demonstrated the potential of novel nanocarriers for targeted drug delivery to the brain. This review briefly overviews the current use of niosomes in treating brain disorders and diseases.

Next »
Graphical Abstract

[1]
Moghassemi S, Hadjizadeh A. Nano-niosomes as nanoscale drug delivery systems: An illustrated review. J Control Release 2014; 185: 22-36.
[http://dx.doi.org/10.1016/j.jconrel.2014.04.015] [PMID: 24747765]
[2]
Bragagni M, Mennini N, Furlanetto S, Orlandini S, Ghelardini C, Mura P. Development and characterization of functionalized niosomes for brain targeting of dynorphin-B. Eur J Pharm Biopharm 2014; 87(1): 73-9.
[http://dx.doi.org/10.1016/j.ejpb.2014.01.006] [PMID: 24462793]
[3]
Upadhyay RK. Drug delivery systems, CNS protection, and the blood brain barrier. Biomed Res Int 2014; 2014: 869269.
[4]
Sweeney MD, Zhao Z, Montagne A, Nelson AR, Zlokovic BV. Blood-brain barrier: From physiology to disease and back. Physiol Rev 2019; 99(1): 21-78.
[http://dx.doi.org/10.1152/physrev.00050.2017] [PMID: 30280653]
[5]
Misra A, Ganesh S, Shahiwala A, Shah SP. Drug delivery to the central nervous system: A review. J Pharm Pharm Sci 2003; 6(2): 252-73.
[PMID: 12935438]
[6]
Abdelkader H, Alani AWG, Alany RG. Recent advances in non-ionic surfactant vesicles (niosomes): Self-assembly, fabrication, characterization, drug delivery applications and limitations. Drug Deliv 2014; 21(2): 87-100.
[http://dx.doi.org/10.3109/10717544.2013.838077] [PMID: 24156390]
[7]
Jain KK. Nanopharmaceuticals. In: The Handbook of Nanomedicine. New York, NY: Humana Press 2017; pp. 201-71.
[http://dx.doi.org/10.1007/978-1-4939-6966-1_5]
[8]
Patel MM, Goyal BR, Bhadada SV, Bhatt JS, Amin AF. Getting into the Brain. CNS Drugs 2009; 23(1): 35-58.
[http://dx.doi.org/10.2165/0023210-200923010-00003] [PMID: 19062774]
[9]
Beer R, Lackner P, Pfausler B, Schmutzhard E. Nosocomial ventriculitis and meningitis in neurocritical care patients. J Neurol 2008; 255(11): 1617-24.
[http://dx.doi.org/10.1007/s00415-008-0059-8] [PMID: 19156484]
[10]
Ge X, Wei M, He S, Yuan WE. Advances of non-ionic surfactant vesicles (niosomes) and their application in drug delivery. Pharmaceutics 2019; 11(2): 55.
[http://dx.doi.org/10.3390/pharmaceutics11020055] [PMID: 30700021]
[11]
Rathod S, Desai H, Patil R, Sarolia J. Non-ionic surfactants as a P-glycoprotein(P-gp) efflux inhibitor for optimal drug delivery—A concise outlook. AAPS PharmSciTech 2022; 23(1): 55.
[http://dx.doi.org/10.1208/s12249-022-02211-1] [PMID: 35043278]
[12]
Hoffmann MM, Heitz MP, Carr JB, Tubbs JD. Surfactants in green solvent systems—current and future research directions. J Dispers Sci Technol 2003; 24(2): 155-71.
[http://dx.doi.org/10.1081/DIS-120019966]
[13]
Kumar GP, Rajeshwarrao P. Nonionic surfactant vesicular systems for effective drug delivery—an overview. Acta Pharm Sin B 2011; 1(4): 208-19.
[http://dx.doi.org/10.1016/j.apsb.2011.09.002]
[14]
Gharbavi M, Amani J, Kheiri-Manjili H, Danafar H, Sharafi A. Niosome: A promising nanocarrier for natural drug delivery through blood-brain barrier. Adv Pharmacol Sci 2018; 2018: 1-15.
[http://dx.doi.org/10.1155/2018/6847971] [PMID: 30651728]
[15]
Khoee S, Yaghoobian M. Niosomes: A novel approach in modern drug delivery systems. Nanostructures for Drug Delivery. Elsevier 2017; pp. 207-37.
[http://dx.doi.org/10.1016/B978-0-323-46143-6.00006-3]
[16]
Manosroi A, Wongtrakul P, Manosroi J, et al. Characterization of vesicles prepared with various non-ionic surfactants mixed with cholesterol. Colloids Surf B Biointerfaces 2003; 30(1-2): 129-38.
[http://dx.doi.org/10.1016/S0927-7765(03)00080-8]
[17]
Bouwstra JA, van Hal DA, Hofland HEJ, Junginger HE. Preparation and characterization of nonionic surfactant vesicles. Colloids Surf A Physicochem Eng Asp 1997; 123-124: 71-80.
[http://dx.doi.org/10.1016/S0927-7757(96)03800-9]
[18]
Ag Seleci D, Seleci M, Walter JG, Stahl F, Scheper T. Niosomes as nanoparticular drug carriers: Fundamentals and recent applications. J Nanomater 2016.
[http://dx.doi.org/10.1155/2016/7372306]
[19]
Sankhyan A, Pawar P. Recent trends in niosome as vesicular drug delivery system. J Appl Pharm Sci 2012; 2(6): 20-32.
[20]
Rajera R, Nagpal K, Singh SK, Mishra DN. Niosomes: A controlled and novel drug delivery system. Biol Pharm Bull 2011; 34(7): 945-53.
[http://dx.doi.org/10.1248/bpb.34.945] [PMID: 21719996]
[21]
Madhav NV, Saini A. Niosomes: A novel drug delivery system. Int J Res Pharm Chem 2011; 1(3): 498-511.
[22]
Elbakary B, Badhan RKS. A dynamic perfusion based blood-brain barrier model for cytotoxicity testing and drug permeation. Sci Rep 2020; 10(1): 3788.
[http://dx.doi.org/10.1038/s41598-020-60689-w] [PMID: 32123236]
[23]
Weksler B, Romero IA, Couraud PO. The hCMEC/D3 cell line as a model of the human blood brain barrier. Fluids Barriers CNS 2013; 10(1): 16.
[http://dx.doi.org/10.1186/2045-8118-10-16] [PMID: 23531482]
[24]
Zihni C, Mills C, Matter K, Balda MS. Tight junctions: From simple barriers to multifunctional molecular gates. Nat Rev Mol Cell Biol 2016; 17(9): 564-80.
[http://dx.doi.org/10.1038/nrm.2016.80] [PMID: 27353478]
[25]
Macknight AD, DiBona DR, Leaf A. Sodium transport across toad urinary bladder: A model “tight” epithelium. Physiol Rev 1980; 60(3): 615-715.
[http://dx.doi.org/10.1152/physrev.1980.60.3.615] [PMID: 6248906]
[26]
Liu WY, Wang ZB, Zhang LC, Wei X, Li L. Tight junction in blood-brain barrier: An overview of structure, regulation, and regulator substances. CNS Neurosci Ther 2012; 18(8): 609-15.
[http://dx.doi.org/10.1111/j.1755-5949.2012.00340.x] [PMID: 22686334]
[27]
Tsukita S, Furuse M. Occludin and claudins in tight-junction strands: Leading or supporting players? Trends Cell Biol 1999; 9(7): 268-73.
[http://dx.doi.org/10.1016/S0962-8924(99)01578-0] [PMID: 10370242]
[28]
Liebner S, Fischmann A, Rascher G, et al. Claudin-1 and claudin-5 expression and tight junction morphology are altered in blood vessels of human glioblastoma multiforme. Acta Neuropathol 2000; 100(3): 323-31.
[http://dx.doi.org/10.1007/s004010000180] [PMID: 10965803]
[29]
Khatoon R, Alam MA, Sharma PK. Current approaches and prospective drug targeting to brain. J Drug Deliv Sci Technol 2021; 61: 102098.
[http://dx.doi.org/10.1016/j.jddst.2020.102098]
[30]
Klabunde KJ. Introduction to nanotechnology. Nanoscale Materials in Chemistry 2001; pp. 1-3.
[http://dx.doi.org/10.1002/0471220620.ch1]
[31]
Li X, Tsibouklis J, Weng T, et al. Nano carriers for drug transport across the blood–brain barrier. J Drug Target 2017; 25(1): 17-28.
[http://dx.doi.org/10.1080/1061186X.2016.1184272] [PMID: 27126681]
[32]
Honary S, Zahir F. Effect of zeta potential on the properties of nano-drug delivery systems-a review (Part 1). Trop J Pharm Res 2013; 12(2): 255-64.
[33]
Bhaskar S, Tian F, Stoeger T, et al. Multifunctional Nanocarriers for diagnostics, drug delivery and targeted treatment across blood-brain barrier: Perspectives on tracking and neuroimaging. Part Fibre Toxicol 2010; 7(1): 3.
[http://dx.doi.org/10.1186/1743-8977-7-3] [PMID: 20199661]
[34]
Patel MM, Patel BM. Crossing the blood–brain barrier: Recent advances in drug delivery to the brain. CNS Drugs 2017; 31(2): 109-33.
[http://dx.doi.org/10.1007/s40263-016-0405-9] [PMID: 28101766]
[35]
J SJ. Jimena CF, Dalet FE, Guadalupe TJ, Antonio SM. Scope of lipid nanoparticles in neuroscience: Impact on the treatment of neuro-degenerative diseases. Curr Pharm Des 2017; 23(21): 3120-33.
[PMID: 28260513]
[36]
Alexander A, Agrawal M, Uddin A, et al. Recent expansions of novel strategies towards the drug targeting into the brain. Int J Nanomedicine 2019; 14: 5895-909.
[http://dx.doi.org/10.2147/IJN.S210876] [PMID: 31440051]
[37]
Kamalinia G, Khodagholi F, Shaerzadeh F, et al. Cationic albumin-conjugated chelating agent as a novel brain drug delivery system in neurodegeneration. Chem Biol Drug Des 2015; 86(5): 1203-14.
[http://dx.doi.org/10.1111/cbdd.12586] [PMID: 25976552]
[38]
Bartels AL. Blood-brain barrier P-glycoprotein function in neurodegenerative disease. Curr Pharm Des 2011; 17(26): 2771-7.
[http://dx.doi.org/10.2174/138161211797440122] [PMID: 21831040]
[39]
Bain LJ, LeBlanc GA. Interaction of structurally diverse pesticides with thehuman MDR1 gene product P-glycoprotein. Toxicol Appl Pharmacol 1996; 141(1): 288-98.
[http://dx.doi.org/10.1016/S0041-008X(96)80035-4] [PMID: 8917702]
[40]
Pardridge WM. Transport of nutrients and hormones through the blood-brain barrier. Diabetologia 1981; 20(S1): 246-54.
[http://dx.doi.org/10.1007/BF00254490]
[41]
Alam MI, Beg S, Samad A, et al. Strategy for effective brain drug delivery. Eur J Pharm Sci 2010; 40(5): 385-403.
[http://dx.doi.org/10.1016/j.ejps.2010.05.003] [PMID: 20497904]
[42]
Malakoutikhah M, Teixidó M, Giralt E. Toward an optimal blood-brain barrier shuttle by synthesis and evaluation of peptide libraries. J Med Chem 2008; 51(16): 4881-9.
[http://dx.doi.org/10.1021/jm800156z] [PMID: 18666771]
[43]
Pardridge WM. The blood-brain barrier: Bottleneck in brain drug development. NeuroRx 2005; 2(1): 3-14.
[http://dx.doi.org/10.1602/neurorx.2.1.3] [PMID: 15717053]
[44]
Ayub A, Wettig S. An Overview of Nanotechnologies for Drug Delivery to the Brain. Pharmaceutics 2022; 14(2): 224.
[http://dx.doi.org/10.3390/pharmaceutics14020224] [PMID: 35213957]
[45]
Dautry-Varsat A. Receptor-mediated endocytosis: The intracellular journey of transferrin and its receptor. Biochimie 1986; 68(3): 375-81.
[http://dx.doi.org/10.1016/S0300-9084(86)80004-9] [PMID: 2874839]
[46]
Arunothayanun P, Bernard MS, Craig DQM, Uchegbu IF, Florence AT. The effect of processing variables on the physical characteristics of non-ionic surfactant vesicles (niosomes) formed from a hexadecyl diglycerol ether. Int J Pharm 2000; 201(1): 7-14.
[http://dx.doi.org/10.1016/S0378-5173(00)00362-8] [PMID: 10867260]
[47]
Pardakhty A, Varshosaz J, Rouholamini A. In vitro study of polyoxyethylene alkyl ether niosomes for delivery of insulin. Int J Pharm 2007; 328(2): 130-41.
[http://dx.doi.org/10.1016/j.ijpharm.2006.08.002] [PMID: 16997517]
[48]
Manconi M, Valenti D, Sinico C, Lai F, Loy G, Fadda AM. Niosomes as carriers for tretinoin II. Influence of vesicular incorporation on tretinoin photostability. Int J Pharm 2003; 260(2): 261-72.
[http://dx.doi.org/10.1016/S0378-5173(03)00268-0] [PMID: 12842345]
[49]
Bayindir ZS, Yuksel N. Characterization of niosomes prepared with various nonionic surfactants for paclitaxel oral delivery. J Pharm Sci 2010; 99(4): 2049-60.
[http://dx.doi.org/10.1002/jps.21944] [PMID: 19780133]
[50]
Paolino D, Cosco D, Muzzalupo R, Trapasso E, Picci N, Fresta M. Innovative bola-surfactant niosomes as topical delivery systems of 5-fluorouracil for the treatment of skin cancer. Int J Pharm 2008; 353(1-2): 233-42.
[http://dx.doi.org/10.1016/j.ijpharm.2007.11.037]
[51]
Paolino D, Muzzalupo R, Ricciardi A, Celia C, Picci N, Fresta M. In vitro and in vivo evaluation of Bola-surfactant containing niosomes for transdermal delivery. Biomed Microdevices 2007; 9(4): 421-33.
[http://dx.doi.org/10.1007/s10544-007-9046-6] [PMID: 17252206]
[52]
Yoshioka T, Sternberg B, Florence A. Preparation and properties of vesicles (niosomes) of sorbitan monoesters (Span 20, 40, 60 and 80) and a sorbitan triester (Span 85). Int J Pharm 1994; 105(1): 1-6.
[http://dx.doi.org/10.1016/0378-5173(94)90228-3]
[53]
Okore VC, Attama AA, Ofokansi KC, Esimone CO, Onuigbo EB. Formulation and evaluation of niosomes. Indian J Pharm Sci 2011; 73(3): 323-8.
[PMID: 22457561]
[54]
Akhilesh D, Bini KB, Kamath JV. Review on span-60 based non-ionic surfactant vesicles (niosomes) as novel drug delivery. Int J Res Pharm Biomed Sci 2012; 3: 6-12.
[55]
Jain CP, Vyas SP. Preparation and characterization of niosomes containing rifampicin for lung targeting. J Microencapsul 1995; 12(4): 401-7.
[http://dx.doi.org/10.3109/02652049509087252] [PMID: 8583314]
[56]
Marianecci C, Rinaldi F, Mastriota M, et al. Anti-inflammatory activity of novel ammonium glycyrrhizinate/niosomes delivery system: Human and murine models. J Control Release 2012; 164(1): 17-25.
[http://dx.doi.org/10.1016/j.jconrel.2012.09.018] [PMID: 23041542]
[57]
Mandal S, Banerjee C, Ghosh S, Kuchlyan J, Sarkar N. Modulation of the photophysical properties of curcumin in nonionic surfactant (Tween-20) forming micelles and niosomes: A comparative study of different microenvironments. J Phys Chem B 2013; 117(23): 6957-68.
[http://dx.doi.org/10.1021/jp403724g] [PMID: 23682632]
[58]
Di Marzio L, Marianecci C, Petrone M, Rinaldi F, Carafa M. Novel pH-sensitive non-ionic surfactant vesicles: Comparison between Tween 21 and Tween 20. Colloids Surf B Biointerfaces 2011; 82(1): 18-24.
[http://dx.doi.org/10.1016/j.colsurfb.2010.08.004] [PMID: 20832262]
[59]
Imran M, Shah MR, Ullah F, et al. Glycoside-based niosomal nanocarrier for enhanced in-vivo performance of Cefixime. Int J Pharm 2016; 505(1-2): 122-32.
[http://dx.doi.org/10.1016/j.ijpharm.2016.03.042] [PMID: 27050867]
[60]
Manconi M, Sinico C, Valenti D, Lai F, Fadda AM. Niosomes as carriers for tretinoin. Int J Pharm 2006; 311(1-2): 11-9.
[http://dx.doi.org/10.1016/j.ijpharm.2005.11.045] [PMID: 16439071]
[61]
Bandyopadhyay P, Johnson M. Fatty alcohols or fatty acids as niosomal hybrid carrier: Effect on vesicle size, encapsulation efficiency and in vitro dye release. Colloids Surf B Biointerfaces 2007; 58(1): 68-71.
[http://dx.doi.org/10.1016/j.colsurfb.2007.01.014] [PMID: 17339104]
[62]
Tavano L, Muzzalupo R, Mauro L, Pellegrino M, Andò S, Picci N. Transferrin-conjugated pluronic niosomes as a new drug delivery system for anticancer therapy. Langmuir 2013; 29(41): 12638-46.
[http://dx.doi.org/10.1021/la4021383] [PMID: 24040748]
[63]
Muzzalupo R, Tavano L, Cassano R, Trombino S, Ferrarelli T, Picci N. A new approach for the evaluation of niosomes as effective transdermal drug delivery systems. Eur J Pharm Biopharm 2011; 79(1): 28-35.
[http://dx.doi.org/10.1016/j.ejpb.2011.01.020] [PMID: 21303691]
[64]
Vyas S, Singh R, Jain S, et al. Non-ionic surfactant based vesicles (niosomes) for non-invasive topical genetic immunization against hepatitis B. Int J Pharm 2005; 296(1-2): 80-6.
[http://dx.doi.org/10.1016/j.ijpharm.2005.02.016] [PMID: 15885458]
[65]
Junyaprasert VB, Teeranachaideekul V, Supaperm T. Effect of charged and non-ionic membrane additives on physicochemical properties and stability of niosomes. AAPS PharmSciTech 2008; 9(3): 851-9.
[http://dx.doi.org/10.1208/s12249-008-9121-1] [PMID: 18636334]
[66]
Jiao J. Polyoxyethylated nonionic surfactants and their applications in topical ocular drug delivery. Adv Drug Deliv Rev 2008; 60(15): 1663-73.
[http://dx.doi.org/10.1016/j.addr.2008.09.002] [PMID: 18845195]
[67]
Uchegbu IF, Florence AT. Non-ionic surfactant vesicles (niosomes): Physical and pharmaceutical chemistry. Adv Colloid Interface Sci 1995; 58(1): 1-55.
[http://dx.doi.org/10.1016/0001-8686(95)00242-I]
[68]
Shahiwala A, Misra A. Studies in topical application of niosomally entrapped Nimesulide. J Pharm Pharm Sci 2002; 5(3): 220-5.
[PMID: 12553889]
[69]
Israelachvili JN. Intermolecular and Surface Forces, 1985. New York, NY, USA: Academic Press 1985.
[70]
Uchegbu IF, Vyas SP. Non-ionic surfactant based vesicles (niosomes) in drug delivery. Int J Pharm 1998; 172(1-2): 33-70.
[http://dx.doi.org/10.1016/S0378-5173(98)00169-0]
[71]
Marianecci C, Di Marzio L, Rinaldi F, et al. Niosomes from 80s to present: The state of the art. Adv Colloid Interface Sci 2014; 205: 187-206.
[http://dx.doi.org/10.1016/j.cis.2013.11.018] [PMID: 24369107]
[72]
Chen S, Hanning S, Falconer J, Locke M, Wen J. Recent advances in non-ionic surfactant vesicles (niosomes): Fabrication, characterization, pharmaceutical and cosmetic applications. Eur J Pharm Biopharm 2019; 144: 18-39.
[http://dx.doi.org/10.1016/j.ejpb.2019.08.015] [PMID: 31446046]
[73]
Thabet Y, Elsabahy M, Eissa NG. Methods for preparation of niosomes: A focus on thin-film hydration method. Methods 2022; 199: 9-15.
[http://dx.doi.org/10.1016/j.ymeth.2021.05.004] [PMID: 34000392]
[74]
Zidan AS, Rahman Z, Khan MA. Product and process understanding of a novel pediatric anti-HIV tenofovir niosomes with a high-pressure homogenizer. Eur J Pharm Sci 2011; 44(1-2): 93-102.
[http://dx.doi.org/10.1016/j.ejps.2011.06.012] [PMID: 21726640]
[75]
Verma S, Singh SK, Syan N, Mathur P, Valecha V. Nanoparticle vesicular systems: A versatile tool for drug delivery. J Chem Pharm Res 2010; 2(2): 496-509.
[76]
Manosroi A, Chutoprapat R, Abe M, Manosroi J. Characteristics of niosomes prepared by supercritical carbon dioxide (scCO2) fluid. Int J Pharm 2008; 352(1-2): 248-55.
[http://dx.doi.org/10.1016/j.ijpharm.2007.10.013] [PMID: 18036754]
[77]
Manosroi A, Ruksiriwanich W, Abe M, Sakai H, Manosroi W, Manosroi J. Biological activities of the rice bran extract and physical characteristics of its entrapment in niosomes by supercritical carbon dioxide fluid. J Supercrit Fluids 2010; 54(2): 137-44.
[http://dx.doi.org/10.1016/j.supflu.2010.05.002]
[78]
Yasam VR, Jakki SL, Natarajan J, Kuppusamy G. A review on novel vesicular drug delivery: Proniosomes. Drug Deliv 2014; 21(4): 243-9.
[http://dx.doi.org/10.3109/10717544.2013.841783] [PMID: 24128089]
[79]
Yadav JD, Kulkarni PR, Vaidya KA, Shelke GT. Niosomes: A review. J Pharm Res 2011; 4(3): 632-6.
[80]
Talsma H, Van Steenbergen MJ, Borchert JCH, Crommelin DJA. A novel technique for the one-step preparation of liposomes and nonionic surfactant vesicles without the use of organic solvents. Liposome formation in a continuous gas stream: the ‘bubble’ method. J Pharm Sci 1994; 83(3): 276-80.
[http://dx.doi.org/10.1002/jps.2600830303] [PMID: 8207668]
[81]
Azeem A, Anwer MK, Talegaonkar S. Niosomes in sustained and targeted drug delivery: Some recent advances. J Drug Target 2009; 17(9): 671-89.
[http://dx.doi.org/10.3109/10611860903079454] [PMID: 19845484]
[82]
Momekova DB, Gugleva VE, Petrov PD. Nanoarchitectonics of multifunctional niosomes for advanced drug delivery. ACS Omega 2021; 6(49): 33265-73.
[http://dx.doi.org/10.1021/acsomega.1c05083] [PMID: 34926878]
[83]
Lu W, Zhang Y, Tan YZ, Hu KL, Jiang XG, Fu SK. Cationic albumin-conjugated pegylated nanoparticles as novel drug carrier for brain delivery. J Control Release 2005; 107(3): 428-48.
[http://dx.doi.org/10.1016/j.jconrel.2005.03.027] [PMID: 16176844]
[84]
Georgieva J, Hoekstra D, Zuhorn I. Smuggling drugs into the brain: An overview of ligands targeting transcytosis for drug delivery across the blood–brain barrier. Pharmaceutics 2014; 6(4): 557-83.
[http://dx.doi.org/10.3390/pharmaceutics6040557] [PMID: 25407801]
[85]
Attia IA, El-Gizawy SA, Fouda MA, Donia AM. Influence of a niosomal formulation on the oral bioavailability of acyclovir in rabbits. AAPS PharmSciTech 2007; 8(4): 206-12.
[http://dx.doi.org/10.1208/pt0804106] [PMID: 18181527]
[86]
Makeshwar KB, Wasankar SR. Niosome: A novel drug delivery system. Asian J Pharm Res 2013; 3(1): 16-20.
[87]
Hao Y, Zhao F, Li N, Yang Y, Li K. Studies on a high encapsulation of colchicine by a niosome system. Int J Pharm 2002; 244(1-2): 73-80.
[http://dx.doi.org/10.1016/S0378-5173(02)00301-0] [PMID: 12204566]
[88]
Yoshida H, Lehr CM, Kok W, Junginger HE, Verhoef JC, Bouwstra JA. Niosomes for oral delivery of peptide drugs. J Control Release 1992; 21(1-3): 145-53.
[http://dx.doi.org/10.1016/0168-3659(92)90016-K]
[89]
Varshosaz J, Pardakhty A, Hajhashemi V, Najafabadi AR. Development and physical characterization of sorbitan monoester niosomes for insulin oral delivery. Drug Deliv 2003; 10(4): 251-62.
[http://dx.doi.org/10.1080/drd_10_4_251] [PMID: 14612341]
[90]
Han HK, Amidon GL. Targeted prodrug design to optimize drug delivery. AAPS PharmSci 2000; 2(1): 48-58.
[http://dx.doi.org/10.1208/ps020106] [PMID: 11741222]
[91]
van Hal DA, Jeremiasse E, de Vringer T, Junginger HE, Bouwstra JA. Encapsulation of lidocaine base and hydrochloride into non-ionic surfactant vesicles (NSVs) and diffusion through human stratum corneum in vitro. Eur J Pharm Sci 1996; 4(3): 147-57.
[http://dx.doi.org/10.1016/0928-0987(95)00043-7]
[92]
Brewer JM, Alexander J. The adjuvant activity of non-ionic surfactant vesicles (niosomes) on the BALB/c humoral response to bovine serum albumin. Immunology 1992; 75(4): 570-5.
[PMID: 1592432]
[93]
Sheena IP, Singh UV, Kamath R, Devi PU, Udupa N. Niosomal withaferin A with better antitumor efficacy. Indian J Pharm Sci 1998; 60(1): 45-8.
[94]
Abdelbary G, El-gendy N. Niosome-encapsulated gentamicin for ophthalmic controlled delivery. AAPS PharmSciTech 2008; 9(3): 740-7.
[http://dx.doi.org/10.1208/s12249-008-9105-1] [PMID: 18563578]
[95]
Aggarwal D, Garg A, Kaur IP. Development of a topical niosomal preparation of acetazolamide: Preparation and evaluation. J Pharm Pharmacol 2010; 56(12): 1509-17.
[http://dx.doi.org/10.1211/0022357044896] [PMID: 15563757]
[96]
Dufes C, Schätzlein AG, Tetley L, et al. Niosomes and polymeric chitosan based vesicles bearing transferrin and glucose ligands for drug targeting. Pharm Res 2000; 17(10): 1250-8.
[http://dx.doi.org/10.1023/A:1026422915326] [PMID: 11145231]
[97]
Azmin MN, Florence AT, Handjani-Vila RM, Stuart JFB, Vanlerberghe G, Whittaker JS. The effect of niosomes and polysorbate 80 on the metabolism and excretion of methotrexate in the mouse. J Microencapsul 1986; 3(2): 95-100.
[http://dx.doi.org/10.3109/02652048609031563] [PMID: 3508183]
[98]
Bhattacharya T, Soares GAB, Chopra H, et al. Applications of phyto-nanotechnology for the treatment of neurodegenerative disorders. Materials 2022; 15(3): 804.
[http://dx.doi.org/10.3390/ma15030804] [PMID: 35160749]
[99]
Lakshmi PK, Devi G, Bhaskaran S, Sacchidanand S. Niosomal methotrexate gel in the treatment of localized psoriasis: Phase I and phase II studies. Indian J Dermatol Venereol Leprol 2007; 73(3): 157-61.
[http://dx.doi.org/10.4103/0378-6323.32709] [PMID: 17558046]
[100]
Moser P, Marchand-Arvier M, Labrude P, Handjani-Vila RM, Vigneron C. Hemoglobin niosomes. I. Preparation, functional and physico-chemical properties, and stability. Pharm Acta Helv 1989; 64(7): 192-202.
[PMID: 2762361]
[101]
Moser P, Marchand-Arvier M, Labrude P, Vigneron C. Hemoglobin niosomes. II. In vitro interactions of plasma proteins and phagocytes. Pharm Acta Helv 1990; 65(3): 82-92.
[PMID: 2185479]
[102]
Azmin MN, Florence AT, Handjani-Vila RM, Stuart J F B, Vanlerberghe G, Whittaker JS. The effect of non-ionic surfactant vesicle (niosome) entrapment on the absorption and distribution of methotrexate in mice. J Pharm Pharmacol 2011; 37(4): 237-42.
[http://dx.doi.org/10.1111/j.2042-7158.1985.tb05051.x] [PMID: 2860220]
[103]
Licciardi M, Giammona G, Fresta M, Cavallaro G, Cosco D, Paolino D. Polyaspartylhydrazide copolymer-based supramolecular vesicular aggregates as delivery devices for anticancer drugs. Biomacromolecules 2008; 9(4): 1117-30.
[104]
Grazia Calvagno M, Celia C, Paolino D, et al. Effects of lipid composition and preparation conditions on physical-chemical properties, technological parameters and in vitro biological activity of gemcitabine-loaded liposomes. Curr Drug Deliv 2007; 4(1): 89-101.
[http://dx.doi.org/10.2174/156720107779314749] [PMID: 17269921]
[105]
Paolino D, Cosco D, Cilurzo F, Fresta M. Innovative drug delivery systems for the administration of natural compounds. Curr Bioact Compd 2007; 3(4): 262-77.
[http://dx.doi.org/10.2174/157340707783220301]
[106]
Marianecci C, Paolino D, Celia C, Fresta M, Carafa M, Alhaique F. Non-ionic surfactant vesicles in pulmonary glucocorticoid delivery: Characterization and interaction with human lung fibroblasts. J Control Release 2010; 147(1): 127-35.
[http://dx.doi.org/10.1016/j.jconrel.2010.06.022] [PMID: 20603167]
[107]
Manconi M, Sinico C, Valenti D, Loy G, Fadda AM. Niosomes as carriers for tretinoin. I. Preparation and properties. Int J Pharm 2002; 234(1-2): 237-48.
[http://dx.doi.org/10.1016/S0378-5173(01)00971-1] [PMID: 11839454]
[108]
Hofland HEJ, Bouwstra JA, Verhoef JC, et al. Safety aspects of non-ionic surfactant vesicles: A toxicity study related to the physicochemical characteristics of non-ionic surfactants. J Pharm Pharmacol 2011; 44(4): 287-94.
[http://dx.doi.org/10.1111/j.2042-7158.1992.tb03608.x] [PMID: 1355538]
[109]
Dimitrijevic D, Lamandin C, Uchegbu IF, Shaw AJ, Florence AT. The effect of monomers and of micellar and vesicular forms of non-ionic surfactants (Solulan C24 and Solulan 16) on Caco-2 cell monolayers. J Pharm Pharmacol 2011; 49(6): 611-6.
[http://dx.doi.org/10.1111/j.2042-7158.1997.tb06854.x] [PMID: 9330201]
[110]
Dufes C, Gaillard F, Uchegbu IF, Schätzlein AG, Olivier JC, Muller JM. Glucose-targeted niosomes deliver vasoactive intestinal peptide (VIP) to the brain. Int J Pharm 2004; 285(1-2): 77-85.
[http://dx.doi.org/10.1016/j.ijpharm.2004.07.020] [PMID: 15488681]
[111]
Choeiri C, Staines W, Messier C. Immunohistochemical localization and quantification of glucose transporters in the mouse brain. Neuroscience 2002; 111(1): 19-34.
[http://dx.doi.org/10.1016/S0306-4522(01)00619-4] [PMID: 11955709]
[112]
Kim JS, Lee SY, Yoon J, Vicens J. Hyperbranched calixarenes: Synthesis and applications as fluorescent probes. Chem Commun 2009; (32): 4791-802.
[http://dx.doi.org/10.1039/b900328b] [PMID: 19652785]
[113]
Murakami Y, Hayashida O. Supramolecular effects and molecular discrimination by macrocyclic hosts embedded in synthetic bilayer membranes. Proc Natl Acad Sci USA 1993; 90(4): 1140-5.
[http://dx.doi.org/10.1073/pnas.90.4.1140] [PMID: 8433975]
[114]
Monnaert V, Tilloy S, Bricout H, Fenart L, Cecchelli R, Monflier E. Behavior of α-, β-, and γ-cyclodextrins and their derivatives on an in vitro model of blood-brain barrier. J Pharmacol Exp Ther 2004; 310(2): 745-51.
[http://dx.doi.org/10.1124/jpet.104.067512] [PMID: 15082751]
[115]
Hirayama F, Uekama K. Cyclodextrin-based controlled drug release system. Adv Drug Deliv Rev 1999; 36(1): 125-41.
[http://dx.doi.org/10.1016/S0169-409X(98)00058-1] [PMID: 10837712]
[116]
Laza-Knoerr AL, Gref R, Couvreur P. Cyclodextrins for drug delivery. J Drug Target 2010; 18(9): 645-56.
[http://dx.doi.org/10.3109/10611861003622552] [PMID: 20497090]
[117]
Stella V, Rao VM, Zannou EA, Zia V. Mechanisms of drug release from cyclodextrin complexes. Adv Drug Deliv Rev 1999; 36(1): 3-16.
[http://dx.doi.org/10.1016/S0169-409X(98)00052-0] [PMID: 10837705]
[118]
Szejtli J. Introduction and general overview of cyclodextrin chemistry. Chem Rev 1998; 98(5): 1743-54.
[http://dx.doi.org/10.1021/cr970022c] [PMID: 11848947]
[119]
Camargo F, Erickson RP, Garver WS, et al. Cyclodextrins in the treatment of a mouse model of Niemann-Pick C disease. Life Sci 2001; 70(2): 131-42.
[http://dx.doi.org/10.1016/S0024-3205(01)01384-4] [PMID: 11787939]
[120]
Haimhoffer Á, Rusznyák Á, Réti-Nagy K, et al. Cyclodextrins in drug delivery systems and their effects on biological barriers. Sci Pharm 2019; 87(4): 33.
[http://dx.doi.org/10.3390/scipharm87040033]
[121]
Tilloy S, Monnaert V, Fenart L, Bricout H, Cecchelli R, Monflier E. Methylated β-cyclodextrin as P-gp modulators for deliverance of doxorubicin across an in vitro model of blood–brain barrier. Bioorg Med Chem Lett 2006; 16(8): 2154-7.
[http://dx.doi.org/10.1016/j.bmcl.2006.01.049] [PMID: 16464592]
[122]
Dehouck MP, Jolliet-Riant P, Brée F, Fruchart JC, Cecchelli R, Tillement JP. Drug transfer across the blood-brain barrier: Correlation between in vitro and in vivo models. J Neurochem 1992; 58(5): 1790-7.
[http://dx.doi.org/10.1111/j.1471-4159.1992.tb10055.x] [PMID: 1560234]
[123]
Loftsson T, Duchêne D. Cyclodextrins and their pharmaceutical applications. Int J Pharm 2007; 329(1-2): 1-11.
[http://dx.doi.org/10.1016/j.ijpharm.2006.10.044] [PMID: 17137734]
[124]
Puglisi G, Fresta M, Ventura CA. Interaction of natural and modified β-cyclodextrins with a biological membrane model of dipalmitoylphosphatidylcholine. J Colloid Interface Sci 1996; 180(2): 542-7.
[http://dx.doi.org/10.1006/jcis.1996.0335] [PMID: 8978558]
[125]
Ohtani Y, Irie T, Uekama K, Fukunaga K, Pitha J. Differential effects of α‐, β‐and γ‐cyclodextrins on human erythrocytes. Eur J Biochem 1989; 186(1‐2): 17-22.
[http://dx.doi.org/10.1111/j.1432-1033.1989.tb15171.x] [PMID: 2598927]
[126]
Vinogradov SV, Batrakova EV, Kabanov AV. Nanogels for oligonucleotide delivery to the brain. Bioconjug Chem 2004; 15(1): 50-60.
[http://dx.doi.org/10.1021/bc034164r] [PMID: 14733583]
[127]
Vinogradov SV, Bronich TK, Kabanov AV. Nanosized cationic hydrogels for drug delivery: Preparation, properties and interactions with cells. Adv Drug Deliv Rev 2002; 54(1): 135-47.
[http://dx.doi.org/10.1016/S0169-409X(01)00245-9] [PMID: 11755709]
[128]
Vinogradov S, Batrakova E, Li S, Kabanov A. Polyion complex micelles with protein-modified corona for receptor-mediated delivery of oligonucleotides into cells. Bioconjug Chem 1999; 10(5): 851-60.
[http://dx.doi.org/10.1021/bc990037c] [PMID: 10502353]
[129]
Alakhov V, Lemieux P, Klinski E, Kabanov A, Pietrzynski G. Block copolymeric biotransport carriers as versatile vehicles for drug delivery. Expert Opin Biol Ther 2001; 1(4): 583-602.
[http://dx.doi.org/10.1517/14712598.1.4.583] [PMID: 11727496]
[130]
Soni S, Babbar A, Sharma R, Maitra A. Delivery of hydrophobised 5-fluorouracil derivative to brain tissue through intravenous route using surface modified nanogels. J Drug Target 2006; 14(2): 87-95.
[http://dx.doi.org/10.1080/10611860600635608] [PMID: 16608735]
[131]
Ambruosi A, Khalansky AS, Yamamoto H, Gelperina SE, Begley DJ, Kreuter J. Biodistribution of polysorbate 80-coated doxorubicin-loaded [ 14 C]-poly(butyl cyanoacrylate) nanoparticles after intravenous administration to glioblastoma-bearing rats. J Drug Target 2006; 14(2): 97-105.
[http://dx.doi.org/10.1080/10611860600636135] [PMID: 16608736]
[132]
Ribovski L, de Jong E, Mergel O, et al. Low nanogel stiffness favors nanogel transcytosis across an in vitro blood–brain barrier. Nanomedicine 2021; 34: 102377.
[http://dx.doi.org/10.1016/j.nano.2021.102377] [PMID: 33621652]
[133]
Gessner A, Olbrich C, Schröder W, Kayser O, Müller RH. The role of plasma proteins in brain targeting: Species dependent protein adsorption patterns on brain-specific lipid drug conjugate (LDC) nanoparticles. Int J Pharm 2001; 214(1-2): 87-91.
[http://dx.doi.org/10.1016/S0378-5173(00)00639-6] [PMID: 11282243]
[134]
Göppert TM, Müller RH. Adsorption kinetics of plasma proteins on solid lipid nanoparticles for drug targeting. Int J Pharm 2005; 302(1-2): 172-86.
[http://dx.doi.org/10.1016/j.ijpharm.2005.06.025] [PMID: 16098695]
[135]
Bewersdorff T, Gruber A, Eravci M, Dumbani M, Klinger D, Haase A. Amphiphilic nanogels: Influence of surface hydrophobicity on protein corona, biocompatibility and cellular uptake. Int J Nanomedicine 2019; 14: 7861-78.
[http://dx.doi.org/10.2147/IJN.S215935] [PMID: 31576128]
[136]
Taylor KMG. The design of dosage forms. Pharmaceutics: The Science of Dosage Form Design. (2nd Edition.), London: Churchill Living-stone 2001.
[137]
Chmiel T, Mieszkowska A, Kempińska-Kupczyk D, Kot-Wasik A, Namieśnik J, Mazerska Z. The impact of lipophilicity on environmental processes, drug delivery and bioavailability of food components. Microchem J 2019; 146: 393-406.
[http://dx.doi.org/10.1016/j.microc.2019.01.030]
[138]
Xu J, Tao J, Wang J. Design and application in delivery system of intranasal antidepressants. Front Bioeng Biotechnol 2020; 8: 626882.
[http://dx.doi.org/10.3389/fbioe.2020.626882] [PMID: 33409272]
[139]
Ul Ain Q, Chung H, Chung JY, Choi JH, Kim YH. Amelioration of atherosclerotic inflammation and plaques via endothelial adrenoceptor-targeted eNOS gene delivery using redox-sensitive polymer bearing l -arginine. J Control Release 2017; 262: 72-86.
[http://dx.doi.org/10.1016/j.jconrel.2017.07.019] [PMID: 28710003]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy