Generic placeholder image

Current Drug Safety

Editor-in-Chief

ISSN (Print): 1574-8863
ISSN (Online): 2212-3911

Mini-Review Article

Multiple Sclerosis Risk Among Anti-tumor Necrosis Factor Alpha Users: A Methodological Review of Observational Studies Based on Real-world Data

Author(s): Lingyi Li, Mahyar Etminan*, Gilaad G. Kaplan, Helen Tremlett, Hui Xie and J. Antonio Aviña-Zubieta*

Volume 19, Issue 2, 2024

Published on: 03 August, 2023

Page: [200 - 207] Pages: 8

DOI: 10.2174/1574886318666230726162245

Price: $65

Abstract

Epidemiologic studies on the risk of multiple sclerosis (MS) or demyelinating events associated with anti-tumor necrosis factor alpha (TNFα) use among patients with rheumatic diseases or inflammatory bowel diseases have shown conflicting results. Causal directed acyclic graphs (cDAGs) are useful tools for understanding the differing results and identifying the structure of potential contributing biases. Most of the available literature on cDAGs uses language that might be unfamiliar to clinicians. This article demonstrates how cDAGs can be used to determine whether there is a confounder, a mediator or collider-stratification bias and when to adjust for them appropriately. We also use a case study to show how to control for potential biases by drawing a cDAG depicting anti-TNFα use and its potential to contribute to MS onset. Finally, we describe potential biases that might have led to contradictory results in previous studies that examined the effect of anti-TNFα and MS, including confounding, confounding by contraindication, and bias due to measurement error. Clinicians and researchers should be cognizant of confounding, confounding by contraindication, and bias due to measurement error when reviewing future studies on the risk of MS or demyelinating events associated with anti-TNFα use. cDAGs are a useful tool for selecting variables and identifying the structure of different biases that can affect the validity of observational studies.

Graphical Abstract

[1]
Monaco C, Nanchahal J, Taylor P, Feldmann M. Anti-TNF therapy: Past, present and future. Int Immunol 2015; 27(1): 55-62.
[http://dx.doi.org/10.1093/intimm/dxu102] [PMID: 25411043]
[2]
Lin J, Ziring D, Desai S, et al. TNFα blockade in human diseases: An overview of efficacy and safety. Clin Immunol 2008; 126(1): 13-30.
[http://dx.doi.org/10.1016/j.clim.2007.08.012] [PMID: 17916445]
[3]
Adegbola SO, Sahnan K, Warusavitarne J, Hart A, Tozer P. Anti-TNF therapy in Crohn’s disease. Int J Mol Sci 2018; 19(8): 2244.
[http://dx.doi.org/10.3390/ijms19082244] [PMID: 30065229]
[4]
Li L, Aviña-Zubieta JA, Bernstein CN, et al. Risk of multiple sclerosis among users of antitumor necrosis factor α in 4 canadian provinces. Neurology 2023; 100(6): e558-67.
[http://dx.doi.org/10.1212/WNL.0000000000201472] [PMID: 36307225]
[5]
Boggs JME, Barnes L. Demyelination during anti-tumour necrosis factor therapy for psoriasis. Clin Exp Dermatol 2018; 43(5): 577-8.
[http://dx.doi.org/10.1111/ced.13412] [PMID: 29464730]
[6]
Theibich A, Dreyer L, Magyari M, Locht H. Demyelinizing neurological disease after treatment with tumor necrosis factor alpha-inhibiting agents in a rheumatological outpatient clinic: Description of six cases. Clin Rheumatol 2014; 33(5): 719-23.
[http://dx.doi.org/10.1007/s10067-013-2419-8] [PMID: 24202614]
[7]
Chey SY, Kermode AG. Central nervous system demyelination related to tumour necrosis factor alpha inhibitor. Mult Scler J Exp Transl Clin 2022; 8(1): 20552173211070750.
[http://dx.doi.org/10.1177/20552173211070750] [PMID: 35024163]
[8]
Hutto SK, Rice DR, Mateen FJ. CNS demyelination with TNFα inhibitor exposure: A retrospective cohort study. J Neuroimmunol 2021; 356: 577587.
[http://dx.doi.org/10.1016/j.jneuroim.2021.577587] [PMID: 33945946]
[9]
Kemanetzoglou E, Andreadou E. CNS Demyelination with TNF-α Blockers. Curr Neurol Neurosci Rep 2017; 17(4): 36.
[http://dx.doi.org/10.1007/s11910-017-0742-1] [PMID: 28337644]
[10]
The Lenercept Multiple Sclerosis Study Group and The University of British Columbia MS/MRI Analysis Group TNF neutralization in MS: Results of a randomized, placebo-controlled multicenter study. Neurology 1999; 53(3): 457-65.
[http://dx.doi.org/10.1212/WNL.53.3.457] [PMID: 10449104]
[11]
Kopp TI, Delcoigne B, Arkema EV, et al. Risk of neuroinflammatory events in arthritis patients treated with tumour necrosis factor alpha inhibitors: A collaborative population-based cohort study from Denmark and Sweden. Ann Rheum Dis 2020; 79(5): 566-72.
[http://dx.doi.org/10.1136/annrheumdis-2019-216693] [PMID: 32161058]
[12]
Dreyer L, Magyari M, Laursen B, Cordtz R, Sellebjerg F, Locht H. Risk of multiple sclerosis during tumour necrosis factor inhibitor treatment for arthritis: A population-based study from DANBIO and the Danish Multiple Sclerosis Registry. Ann Rheum Dis 2016; 75(4): 785-6.
[http://dx.doi.org/10.1136/annrheumdis-2015-208490] [PMID: 26698850]
[13]
Bernatsky S, Renoux C, Suissa S. Demyelinating events in rheumatoid arthritis after drug exposures. Ann Rheum Dis 2010; 69(9): 1691-3.
[http://dx.doi.org/10.1136/ard.2009.111500] [PMID: 19628820]
[14]
Kunchok A, Aksamit AJ Jr, Davis JM III, et al. Association between tumor necrosis factor inhibitor exposure and inflammatory central nervous system events. JAMA Neurol 2020; 77(8): 937-46.
[http://dx.doi.org/10.1001/jamaneurol.2020.1162] [PMID: 32421186]
[15]
Taylor TRP, Galloway J, Davies R, Hyrich K, Dobson R. Demyelinating events following initiation of anti-tnfα therapy in the british society for rheumatology biologics registry in rheumatoid arthritis. Neurol Neuroimmunol neuroinflammation 2021; 8(3): e992.
[http://dx.doi.org/ 10.1212/NXI.0000000000000992]
[16]
Nyboe Andersen N, Pasternak B, Andersson M, Nielsen NM, Jess T. Risk of demyelinating diseases in the central nervous system in patientswith inflammatory bowel disease treatedwith tumor necrosis factor inhibitors. JAMA Intern Med 2015; 175(12): 1990-2.
[http://dx.doi.org/10.1001/jamainternmed.2015.5396] [PMID: 26437461]
[17]
Etminan M, Collins GS, Mansournia MA. Using causal diagrams to improve the design and interpretation of medical research. Chest 2020; 158(1): S21-8.
[http://dx.doi.org/10.1016/j.chest.2020.03.011] [PMID: 32658648]
[18]
Greenland S, Pearl J, Robins JM. Causal diagrams for epidemiologic research. Epidemiology 1999; 10(1): 37-48.
[http://dx.doi.org/10.1097/00001648-199901000-00008] [PMID: 9888278]
[19]
Etminan M, Brophy JM, Collins G, Nazemipour M, Mansournia MA. To adjust or not to adjust: The role of different covariates in cardiovascular observational studies. Am Heart J 2021; 237: 62-7.
[http://dx.doi.org/10.1016/j.ahj.2021.03.008] [PMID: 33722586]
[20]
Suzuki E, Shinozaki T, Yamamoto E. Causal diagrams: Pitfalls and tips. J Epidemiol 2020; 30(4): 153-62.
[http://dx.doi.org/10.2188/jea.JE20190192] [PMID: 32009103]
[21]
Shrier I, Platt RW. Reducing bias through directed acyclic graphs. BMC Med Res Methodol 2008; 8(1): 70.
[http://dx.doi.org/10.1186/1471-2288-8-70] [PMID: 18973665]
[22]
Chima M, Lebwohl M. TNF inhibitors for psoriasis. Semin Cutan Med Surg 2018; 37(3): 134-42.
[http://dx.doi.org/10.12788/j.sder.2018.039] [PMID: 30215629]
[23]
Islam MM, Poly TN, Yang HC, Wu CC, Li YC. Increase risk of multiple sclerosis in patients with psoriasis disease: An evidence of observational studies. Neuroepidemiology 2019; 52(3-4): 152-60.
[http://dx.doi.org/10.1159/000495112] [PMID: 30669146]
[24]
Hernán MA, Robins JM. Causal inference: What If. Boca] Raton. Chapman & Hall/CRC 2020; pp. 83-94.
[25]
Suttorp MM, Siegerink B, Jager KJ, Zoccali C, Dekker FW. Graphical presentation of confounding in directed acyclic graphs. Nephrol Dial Transplant 2015; 30(9): 1418-23.
[http://dx.doi.org/10.1093/ndt/gfu325] [PMID: 25324358]
[26]
VanderWeele TJ, Hernán MA, Robins JM. Causal directed acyclic graphs and the direction of unmeasured confounding bias. Epidemiology 2008; 19(5): 720-8.
[http://dx.doi.org/10.1097/EDE.0b013e3181810e29] [PMID: 18633331]
[27]
Hernán MA, Hernández-Díaz S, Werler MM, Mitchell AA. Causal knowledge as a prerequisite for confounding evaluation: An application to birth defects epidemiology. Am J Epidemiol 2002; 155(2): 176-84.
[http://dx.doi.org/10.1093/aje/155.2.176] [PMID: 11790682]
[28]
Shifti DM, Chojenta C, Holliday EG, Loxton D. Maternal anemia and baby birth size mediate the association between short birth interval and under-five undernutrition in Ethiopia: A generalized structural equation modeling approach. BMC Pediatr 2022; 22(1): 108.
[http://dx.doi.org/10.1186/s12887-022-03169-6] [PMID: 35227241]
[29]
Rosso M, Chitnis T. Association between cigarette smoking and multiple sclerosis. JAMA Neurol 2020; 77(2): 245-53.
[http://dx.doi.org/10.1001/jamaneurol.2019.4271] [PMID: 31841592]
[30]
Richiardi L, Bellocco R, Zugna D. Mediation analysis in epidemiology: Methods, interpretation and bias. Int J Epidemiol 2013; 42(5): 1511-9.
[http://dx.doi.org/10.1093/ije/dyt127] [PMID: 24019424]
[31]
Schisterman EF, Cole SR, Platt RW. Overadjustment bias and unnecessary adjustment in epidemiologic studies. Epidemiology 2009; 20(4): 488-95.
[http://dx.doi.org/10.1097/EDE.0b013e3181a819a1] [PMID: 19525685]
[32]
Bakhtiyari M, Schmidt N, Hadaegh F, et al. Direct and indirect effects of central and general adiposity on cardiovascular diseases: The tehran lipid and glucose study. Eur J Prev Cardiol 2018; 25(11): 1170-81.
[http://dx.doi.org/10.1177/2047487318780030] [PMID: 29856228]
[33]
Kyriacou DN, Greenland P, Mansournia MA. Using causal diagrams for biomedical research. Ann Emerg Med 2023; 81(5): 606-13.
[http://dx.doi.org/10.1016/j.annemergmed.2022.08.014] [PMID: 36328854]
[34]
Bjornevik K, Cortese M, Healy BC, et al. Longitudinal analysis reveals high prevalence of Epstein-Barr virus associated with multiple sclerosis. Science 2022; 375(6578): 296-301.
[http://dx.doi.org/10.1126/science.abj8222] [PMID: 35025605]
[35]
Luque-Fernandez MA, Schomaker M, Redondo-Sanchez D, Perez MJS, Vaidya A, Schnitzer ME. Educational note: Paradoxical collider effect in the analysis of non-communicable disease epidemiological data: A reproducible illustration and web application. Int J Epidemiol 2021; 50(2): 699.
[http://dx.doi.org/10.1093/ije/dyab006] [PMID: 33462617]
[36]
Greenland S. Quantifying biases in causal models: Classical confounding vs. collider-stratification bias. Epidemiology 2003; 14(3): 300-6.
[http://dx.doi.org/10.1097/01.EDE.0000042804.12056.6C] [PMID: 12859030]
[37]
Hernán MA, Hernández-Díaz S, Robins JM. A structural approach to selection bias. Epidemiology 2004; 15(5): 615-25.
[http://dx.doi.org/10.1097/01.ede.0000135174.63482.43] [PMID: 15308962]
[38]
Egeberg A, Mallbris L, Gislason GH, Skov L, Hansen PR. Risk of multiple sclerosis in patients with psoriasis: A Danish nationwide cohort study. J Invest Dermatol 2016; 136(1): 93-8.
[http://dx.doi.org/10.1038/JID.2015.350] [PMID: 26763428]
[39]
Gupta G, Gelfand JM, Lewis JD. Increased risk for demyelinating diseases in patients with inflammatory bowel disease. Gastroenterology 2005; 129(3): 819-26.
[http://dx.doi.org/10.1053/j.gastro.2005.06.022] [PMID: 16143121]
[40]
Romano PS, Roos LL, Jollis JG. Presentation adapting a clinical comorbidity index for use with ICD-9-CM administrative data: Differing perspectives. J Clin Epidemiol 1993; 46(10): 1075-9.
[http://dx.doi.org/10.1016/0895-4356(93)90103-8] [PMID: 8410092]
[41]
Li L, Lu N, Avina-Galindo AM, et al. The risk and trend of pulmonary embolism and deep vein thrombosis in rheumatoid arthritis: A general population-based study. Rheumatology 2021; 60(1): 188-95.
[http://dx.doi.org/10.1093/rheumatology/keaa262] [PMID: 32617563]
[42]
Tatangelo MR, Tomlinson G, Keystone E, Paterson JM, Bansback N, Bombardier C. Comorbidities before and after the diagnosis of rheumatoid arthritis: A matched longitudinal study. ACR Open Rheumatol 2020; 2(11): 648-56.
[http://dx.doi.org/10.1002/acr2.11182] [PMID: 33104286]
[43]
Giraud EL, Jessurun NT, van Hunsel FPAM, et al. Frequency of real-world reported adverse drug reactions in rheumatoid arthritis patients. Expert Opin Drug Saf 2020; 19(12): 1617-24.
[http://dx.doi.org/10.1080/14740338.2020.1830058] [PMID: 32990050]
[44]
Miller LW. Cardiovascular toxicities of immunosuppressive agents. Am J Transplant 2002; 2(9): 807-18.
[http://dx.doi.org/10.1034/j.1600-6143.2002.20902.x] [PMID: 12392286]
[45]
Bally M, Dendukuri N, Rich B, et al. Risk of acute myocardial infarction with NSAIDs in real world use: bayesian meta-analysis of individual patient data. BMJ 2017; 357: j1909.
[http://dx.doi.org/10.1136/bmj.j1909] [PMID: 28487435]
[46]
Aviña-Zubieta JA, Abrahamowicz M, De Vera MA, et al. Immediate and past cumulative effects of oral glucocorticoids on the risk of acute myocardial infarction in rheumatoid arthritis: A population-based study. Rheumatology 2013; 52(1): 68-75.
[http://dx.doi.org/10.1093/rheumatology/kes353] [PMID: 23192907]
[47]
Costenbader KH, Karlson EW. Cigarette smoking and autoimmune disease: what can we learn from epidemiology? Lupus 2006; 15(11): 737-45.
[http://dx.doi.org/10.1177/0961203306069344] [PMID: 17153844]
[48]
Wingerchuk DM. Smoking: effects on multiple sclerosis susceptibility and disease progression. Ther Adv Neurol Disord 2012; 5(1): 13-22.
[http://dx.doi.org/10.1177/1756285611425694] [PMID: 22276073]
[49]
Soldan SS, Lieberman PM. Epstein–Barr virus and multiple sclerosis. Nat Rev Microbiol 2023; 21(1): 51-64.
[http://dx.doi.org/10.1038/s41579-022-00770-5] [PMID: 35931816]
[50]
Gequelin LCF, Riediger IN, Nakatani SM, Biondo AW, Bonfim CM. Epstein-Barr virus. Rev Bras Hematol Hemoter 2011; 33(5): 383-8.
[http://dx.doi.org/10.5581/1516-8484.20110103] [PMID: 23049344]
[51]
Staplin N, Herrington WG, Judge PK, et al. Use of causal diagrams to inform the design and interpretation of observational studies: An example from the study of heart and renal protection (SHARP). Clin J Am Soc Nephrol 2017; 12(3): 546-52.
[http://dx.doi.org/10.2215/CJN.02430316] [PMID: 27553952]
[52]
Haneuse S. Distinguishing selection bias and confounding bias in comparative effectiveness research. Med Care 2016; 54(4): e23-9.
[http://dx.doi.org/10.1097/MLR.0000000000000011] [PMID: 24309675]
[53]
VanderWeele TJ, Ding P. Sensitivity analysis in observational research: Introducing the E-Value. Ann Intern Med 2017; 167(4): 268-74.
[http://dx.doi.org/10.7326/M16-2607] [PMID: 28693043]
[54]
Joseph KS, Mehrabadi A, Lisonkova S. Confounding by indication and related concepts. Curr Epidemiol Rep 2014; 1(1): 1-8.
[http://dx.doi.org/10.1007/s40471-013-0004-y]
[55]
Feenstra H, Grobbee RE. in’t Veld BA, Stricker BHC. Confounding by contraindication in a nationwide cohort study of risk for death in patients taking ibopamine. Ann Intern Med 2001; 134(7): 569-72.
[http://dx.doi.org/10.7326/0003-4819-134-7-200104030-00010] [PMID: 11281739]
[56]
Ledingham J, Deighton C. Update on the British Society for Rheumatology guidelines for prescribing TNF blockers in adults with rheumatoid arthritis (update of previous guidelines of April 2001). Rheumatology 2005; 44(2): 157-63.
[http://dx.doi.org/10.1093/rheumatology/keh464] [PMID: 15637039]
[57]
Shahar E, Shahar DJ, Shahar E. Causal diagrams, information bias, and thought bias. Pragmat Obs Res 2010; 1: 33-47.
[http://dx.doi.org/10.2147/POR.S13335] [PMID: 27774007]
[58]
Tremlett H, Munger KL, Makhani N. The multiple sclerosis prodrome: Evidence to action. Front Neurol 2022; 12: 761408.
[http://dx.doi.org/10.3389/fneur.2021.761408] [PMID: 35173664]
[59]
Tremlett H, Marrie RA. The multiple sclerosis prodrome: Emerging evidence, challenges, and opportunities. Mult Scler 2021; 27(1): 6-12.
[http://dx.doi.org/10.1177/1352458520914844] [PMID: 32228281]
[60]
Faillie JL. Indication bias or protopathic bias? Br J Clin Pharmacol 2015; 80(4): 779-80.
[http://dx.doi.org/10.1111/bcp.12705] [PMID: 26119706]
[61]
Wijnands JMA, Kingwell E, Zhu F, et al. Health-care use before a first demyelinating event suggestive of a multiple sclerosis prodrome: A matched cohort study. Lancet Neurol 2017; 16(6): 445-51.
[http://dx.doi.org/10.1016/S1474-4422(17)30076-5] [PMID: 28434855]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy