Generic placeholder image

Current Drug Safety

Editor-in-Chief

ISSN (Print): 1574-8863
ISSN (Online): 2212-3911

Review Article

Current Landscape on Development of Phenylalanine and Toxicity of its Metabolites - A Review

Author(s): Samrat Bose*, Shirsendu Mandal, Rajesh Khan, Himangshu Sekhar Maji and Sumel Ashique

Volume 19, Issue 2, 2024

Published on: 04 May, 2023

Page: [208 - 217] Pages: 10

DOI: 10.2174/1574886318666230331112800

Price: $65

Abstract

Phenylalanine, an essential amino acid, is the "building block" of protein. It has a tremendous role in different aspects of metabolic events. The tyrosine pathway is the prime one and is typically used to degrade dietary phenylalanine. Phenylalanine exceeds its limit in bodily fluids and the brain when the enzyme, phenylalanine decarboxylase, phenylalanine transaminase, phenylalanine hydroxylase (PAH) or its cofactor tetrahydrobiopterin (BH4) is deficient causes phenylketonuria, schizophrenia, attentiondeficit/ hyperactivity disorder and another neuronal effect. Tyrosine, an amino acid necessary for synthesizing the pigments in melanin, is produced by its primary metabolic pathway. Deficiency/abnormality in metabolic enzymes responsible for the catabolism pathway of Phenylalanine causes an accumulation of the active intermediate metabolite, resulting in several abnormalities, such as developmental delay, tyrosinemias, alkaptonuria, albinism, hypotension and several other undesirable conditions. Dietary restriction of the amino acid(s) can be a therapeutic approach to avoid such undesirable conditions when the level of metabolic enzyme is unpredictable. After properly identifying the enzymatic level, specific pathophysiological conditions can be managed more efficiently.

Graphical Abstract

[1]
Parthasarathy A, Cross PJ, Dobson RCJ, Adams LE, Savka MA, Hudson AO. A three-ring circus: Metabolism of the three proteogenic aromatic amino acids and their role in the health of plants and animals. Front Mol Biosci 2018; 5(APR): 29.
[http://dx.doi.org/10.3389/fmolb.2018.00029] [PMID: 29682508]
[2]
Patrícia FS, Fernanda M, José HC, Fabiola C, Emilio LS, Gustavo CF. Phenylketonuria pathophysiology: On the role of metabolic alterations. Aging Dis 2015; 6(5): 390-9.
[http://dx.doi.org/10.14336/AD.2015.0827] [PMID: 26425393]
[3]
Phe P. Metabolism of tyrosine and phenylalanine Slideshare 2017. Available from: https://www.slideshare.net/ashokktt/metabolism-of-phenylalanine-and-tyrosine
[4]
Flydal MI, Martinez A. Phenylalanine hydroxylase: Function, structure, and regulation. IUBMB Life 2013; 65(4): 341-9.
[http://dx.doi.org/10.1002/iub.1150] [PMID: 23457044]
[5]
Kapalka GM. Nutritional and herbal therapies for children and adolescents Elsevier: Amsterdam,. 2010; 1: pp. 141-87.
[6]
Fernstrom JD, Fernstrom MH. Tyrosine, phenylalanine, and catecholamine synthesis and function in the brain. J Nutr 2007; 137(6): S1539-47.
[http://dx.doi.org/10.1093/jn/137.6.1539S] [PMID: 17513421]
[7]
Akram M, Daniyal M, Ali A, Zainab R, Shah SMA, Munir N. Role of Phenylalanine and its Metabolites in Health and Neurological Disorders. In: Biochemistry and role in diseases. Intech Open 2020.
[http://dx.doi.org/10.5772/intechopen.83648]
[8]
Dixon DP, Edwards R. Enzymes of tyrosine catabolism in Arabidopsis thaliana. Plant Sci 2006; 171(3): 360-6.
[http://dx.doi.org/10.1016/j.plantsci.2006.04.008] [PMID: 22980205]
[9]
Ferreira GK, Carvalho-Silva M, Gonçalves CL, Vieira JS, Scaini G. Ghedim F V. L-Tyrosine administration increases acetylcholinesterase activity in rats. Neurochem Int 2012; 61(8): 1370-4.
[http://dx.doi.org/10.1016/j.neuint.2012.09.017]
[10]
Fu Y, Liu YX, Kang T, Sun YN, Li JZ, Ye F. Identification of novel inhibitors of p-hydroxyphenylpyruvate dioxygenase using receptor-based virtual screening. J Taiwan Inst Chem Eng 2019; 103: 33-43.
[http://dx.doi.org/10.1016/j.jtice.2019.08.005]
[11]
Heylen E, Scherer G, Vincent MF, Marie S, Fischer J, Nassogne MC. Tyrosinemia Type III detected via neonatal screening: Management and outcome. Mol Genet Metab 2012; 107(3): 605-7.
[http://dx.doi.org/10.1016/j.ymgme.2012.09.002]
[12]
Galderisi S, Milella MS, Rossi M, Cicaloni V, Rossi R, Giustarini D. Homogentisic acid induces autophagy alterations leading to chondroptosis in human chondrocytes: Implications in Alkaptonuria. Arch Biochem Biophys 2022; 717: 109137.
[http://dx.doi.org/10.1016/j.abb.2022.109137]
[13]
Bartlett DC, Lloyd C, McKiernan PJ, Newsome PN. Early nitisinone treatment reduces the need for liver transplantation in children with tyrosinaemia type 1 and improves post-transplant renal function. J Inherit Metab Dis 2014; 37(5): 745-52.
[http://dx.doi.org/10.1007/s10545-014-9683-x] [PMID: 24515874]
[14]
Santra S, Preece MA, Hulton SA, McKiernan PJ. Renal tubular function in children with tyrosinaemia type I treated with nitisinone. J Inherit Metab Dis 2008; 31(3): 399-402.
[http://dx.doi.org/10.1007/s10545-008-0817-x] [PMID: 18509744]
[15]
Cooney CA. Dietary effects on epigenetics with aging bioact food as diet. Interv Aging Popul 2013; pp. 21-32.
[16]
Güven KC, Percot A, Sezik E. Alkaloids in marine algae. Mar Drugs 2010; 8(2): 269-84.
[http://dx.doi.org/10.3390/md8020269] [PMID: 20390105]
[17]
Kim B, Byun BY, Mah JH. Biogenic amine formation and bacterial contribution in Natto products. Food Chem 2012; 135(3): 2005-11.
[http://dx.doi.org/10.1016/j.foodchem.2012.06.091] [PMID: 22953951]
[18]
Smith TA. Phenethylamine and related compounds in plants. Phytochemistry 1977; 16(1): 9-18.
[http://dx.doi.org/10.1016/0031-9422(77)83004-5]
[19]
Montioli R, Voltattorni CB. Aromatic amino acid decarboxylase deficiency: The added value of biochemistry. Int J Mol Sci 2021; 22(6): 1-15.
[http://dx.doi.org/10.3390/ijms22063146] [PMID: 33808712]
[20]
Pons R. Aromatic amino acid decarboxylase deficiency. Encycl Mov Disord 2010; pp. 64-8.
[21]
Mosnaim AD, Wolf ME, O’Donnell JJ, Hudzik T. β-Phenylethylamine and various monomethylated and para-halogenated analogs. Acute toxicity studies in mice. Drug Chem Toxicol 2020; 43(4): 369-72.
[http://dx.doi.org/10.1080/01480545.2018.1551899]
[22]
Gainetdinov RR, Hoener MC, Berry MD. Trace amines and their receptors. Pharmacol Rev 2018; 70(3): 549-620.
[http://dx.doi.org/10.1124/pr.117.015305] [PMID: 29941461]
[23]
Pei Y, Asif-Malik A, Canales JJ. Trace amines and the trace amine-associated receptor 1: Pharmacology, neurochemistry, and clinical implications. Front Neurosci 2016; 10(APR): 148.
[http://dx.doi.org/10.3389/fnins.2016.00148] [PMID: 27092049]
[24]
Leo D, Espinoza S. Trace Amine-Associated Receptor 1 Modulation of Dopamine System. In: Trace amines and neurological disorders: Potential mechanisms and risk factors. Elsevier Inc: Amsterdam 2016; pp. 125-37.
[http://dx.doi.org/10.1016/B978-0-12-803603-7.00009-4]
[25]
Irsfeld M, Spadafore M, Prüß BM. β-phenylethylamine, a small molecule with a large impact. Webmedcentral 2013; 4(9): 1-15.
[PMID: 24482732]
[26]
Borowsky B, Adham N, Jones KA, et al. Trace amines: Identification of a family of mammalian G protein-coupled receptors. Proc Natl Acad Sci 2001; 98(16): 8966-71.
[http://dx.doi.org/10.1073/pnas.151105198] [PMID: 11459929]
[27]
Zucchi R, Chiellini G, Scanlan TS, Grandy DK. Trace amine‐associated receptors and their ligands. Br J Pharmacol 2006; 149(8): 967-78.
[http://dx.doi.org/10.1038/sj.bjp.0706948] [PMID: 17088868]
[28]
Sotnikova TD, Caron MG, Gainetdinov RR. Trace amine-associated receptors as emerging therapeutic targets. Mol Pharmacol 2009; 76(2): 229-35.
[http://dx.doi.org/10.1124/mol.109.055970] [PMID: 19389919]
[29]
Lindemann L, Hoener MC. A renaissance in trace amines inspired by a novel GPCR family. Trends Pharmacol Sci 2005; 26(5): 274-81.
[http://dx.doi.org/10.1016/j.tips.2005.03.007] [PMID: 15860375]
[30]
Litwack G. Metabolism of amino acids. Hum Biochem 2018; pp. 359-94.
[31]
Ali SA, Naaz I. Biochemical aspects of mammalian melanocytes and the emerging role of melanocyte stem cells in dermatological therapies. Int J Health Sci 2018; 12(1): 69.
[PMID: 29623021]
[32]
Lai X, Wichers HJ, Soler-Lopez M, Dijkstra BW. Structure and function of human tyrosinase and tyrosinase-related proteins. Chem– A Eur J 2018; 24(1): 47-55.
[http://dx.doi.org/10.1002/chem.201704410]
[33]
Duker JS. Oculocutaneous albinism. Atlas Retin OCT Opt Coherence Tomogr 2018; pp. 80-1.
[http://dx.doi.org/10.1016/B978-0-323-46121-4.00035-2]
[34]
De Avelar Alchorne MM, De Abreu MAMM. Pigmentary Disorders Trop Dermatology. (2nd ed.). Elsevier Inc. 2016; pp. 433-42.
[35]
Tran MM, Cohen BA. Congenital and Hereditary Disorders of the Skin Avery’s Dis Newborn. 9th ed. Elsevier Inc: Amsterdam 2012; pp. 1373-89.
[http://dx.doi.org/10.1016/B978-1-4377-0134-0.10098-8]
[36]
Bloemendaal M, Froböse MI, Wegman J, et al. Neuro-cognitive effects of acute tyrosine administration on reactive and proactive response inhibition in healthy older adults. eNeuro 2018; 5(2): 35-52.
[http://dx.doi.org/10.1523/ENEURO.0035-17.2018]
[37]
Miyake N, Thompson J, Skinbjerg M, Abi-Dargham A. Presynaptic dopamine in schizophrenia. CNS Neurosci Ther 2011; 17(2): 104-9.
[http://dx.doi.org/10.1111/j.1755-5949.2010.00230.x]
[38]
Meiser J, Weindl D, Hiller K. Complexity of dopamine metabolism. Cell Commun Signal 2013; 11(1): 1-18.
[http://dx.doi.org/10.1186/1478-811X-11-34]
[39]
Daubner SC, Le T, Wang S. Tyrosine hydroxylase and regulation of dopamine synthesis. Arch Biochem Biophys 2011; 508(1): 1-12.
[http://dx.doi.org/10.1016/j.abb.2010.12.017] [PMID: 21176768]
[40]
Lapadatescu C, Giniès C, Le Quéré JL, Bonnarme P. Novel scheme for biosynthesis of aryl metabolites from L-phenylalanine in the fungus Bjerkandera adusta. Appl Environ Microbiol 2000; 66(4): 1517-22.
[http://dx.doi.org/10.1128/AEM.66.4.1517-1522.2000] [PMID: 10742235]
[41]
Best JA, Nijhout HF, Reed MC. Homeostatic mechanisms in dopamine synthesis and release: A mathematical model. Theor Biol Med Model 2009; 6(1): 21.
[http://dx.doi.org/10.1186/1742-4682-6-21] [PMID: 19740446]
[42]
Malenka R, Nestler E, Hyman S. Molecular Neuropharmacology: A Foundation for Clinical Neuroscience2nd ed McGraw-Hill: Medical New York, USA. 2009.
[43]
Wilson MD, Rudel LL. Review of cholesterol absorption with emphasis on dietary and biliary cholesterol. J Lipid Res 1994; 35(6): 943-55.
[PMID: 8077852]
[44]
Bohlen und Halbach O von Dermietzel R Neurotransmitters and neuromodulators : Handbook of receptors and biological effects. Wiley-VCH: Weinhein, Germany 2006; p. 386.
[45]
Kirshner N, Goodall M. The formation of adrenaline from noradrenaline. Biochim Biophys Acta 1957; 24(3): 658-9.
[http://dx.doi.org/10.1016/0006-3002(57)90271-8] [PMID: 13436503]
[46]
Outschoorn AS. The hormones of the adrenal medulla and their release. Br J Pharmacol Chemother 1952; 7(4): 605-15.
[http://dx.doi.org/10.1111/j.1476-5381.1952.tb00728.x] [PMID: 13019029]
[47]
Feldberg W, Minz B, Tsudzimura H. The mechanism of the nervous discharge of adrenaline. J Physiol 1934; 81(3): 286-304.
[http://dx.doi.org/10.1113/jphysiol.1934.sp003136] [PMID: 16994544]
[48]
Wright A, Jones C. Chromaffin tissue in the lizard adrenal gland. Nature 1955; 175(4466): 1001-2.
[http://dx.doi.org/10.1038/1751001b0] [PMID: 14394091]
[49]
Weber G. Inhibition of human brain pyruvate kinase and hexokinase by phenylalanine and phenylpyruvate: Possible relevance to phenylketonuric brain damage. Proc Natl Acad Sci 1969; 63(4): 1365-9.
[http://dx.doi.org/10.1073/pnas.63.4.1365] [PMID: 5260939]
[50]
Weber G, Glazer RI, Ross RA. Regulation of human and rat brain metabolism: Inhibitory action of phenylalanine and phenylpyruvate on glycolysis, protein, lipid, DNA and RNA metabolism. Adv Enzyme Regul 1970; 8(C): 13-36.
[http://dx.doi.org/10.1016/0065-2571(70)90006-3] [PMID: 5476653]
[51]
Feksa LR, Cornelio AR, Dutra-Filho CS, de Souza Wyse AT, Wajner M, Wannmacher CMD. Characterization of the inhibition of pyruvate kinase caused by phenylalanine and phenylpyruvate in rat brain cortex. Brain Res 2003; 968(2): 199-205.
[http://dx.doi.org/10.1016/S0006-8993(03)02239-X] [PMID: 12663089]
[52]
Boylen JB, Quastel JH. Effects of l -phenylalanine and sodium phenylpyruvate on the formation of adrenaline from l -tyrosine in adrenal medulla in vitro. Biochem J 1961; 80(3): 644-8.
[http://dx.doi.org/10.1042/bj0800644] [PMID: 16748929]
[53]
de Groot MJ, Hoeksma M, Blau N, Reijngoud DJ, van Spronsen FJ. Pathogenesis of cognitive dysfunction in phenylketonuria: Review of hypotheses. Mol Genet Metab 2010; 99(S1): S86-9.
[http://dx.doi.org/10.1016/j.ymgme.2009.10.016]
[54]
Moyle JJ, Fox AM, Arthur M, Bynevelt M, Burnett JR. Meta-analysis of neuropsychological symptoms of adolescents and adults with PKU. Neuropsychol Rev 2007; 17(2): 91-101.
[http://dx.doi.org/10.1007/s11065-007-9021-2] [PMID: 17410469]
[55]
Sitta A, Barschak AG, Deon M, et al. Effect of short‐ and long‐term exposition to high phenylalanine blood levels on oxidative damage in phenylketonuric patients. Int J Dev Neurosci 2009; 27(3): 243-7.
[http://dx.doi.org/10.1016/j.ijdevneu.2009.01.001] [PMID: 19429389]
[56]
Mainka T, Fischer JF, Huebl J, et al. The neurological and neuropsychiatric spectrum of adults with late-treated phenylketonuria. Parkinsonism Relat Disord 2021; 89: 167-75.
[http://dx.doi.org/10.1016/j.parkreldis.2021.06.011] [PMID: 34391119]
[57]
Bayat A, Møller LB, Lund AM. Diagnostics and treatment of phenylketonuria. Ugeskr Laeger 2015; 177(8): V07140383.
[PMID: 25697170]
[58]
Lee N, Kim D. Toxic metabolites and inborn errors of amino acid metabolism: What one informs about the other. Metab 2022; 12(6): 527.
[59]
Tharini G, Ravindran V, Hema N, Prabhavathy D, Parveen B. Alkaptonuria. Indian J Dermatol 2011; 56(2): 194.
[60]
Shefer S, Tint GS, Jean-Guillaume D, et al. Is there a relationship between 3-hydroxy-3-methylglutaryl coenzyme a reductase activity and forebrain pathology in the PKU mouse? J Neurosci Res 2000; 61(5): 549-63.
[http://dx.doi.org/10.1002/1097-4547(20000901)61:5<549:AID-JNR10>3.0.CO;2-0] [PMID: 10956425]
[61]
Joseph B, Dyer CA. Relationship between myelin production and dopamine synthesis in the PKU mouse brain. J Neurochem 2003; 86(3): 615-26.
[http://dx.doi.org/10.1046/j.1471-4159.2003.01887.x] [PMID: 12859675]
[62]
Schindeler S, Ghosh-Jerath S, Thompson S, et al. The effects of large neutral amino acid supplements in PKU: An MRS and neuropsychological study. Mol Genet Metab 2007; 91(1): 48-54.
[http://dx.doi.org/10.1016/j.ymgme.2007.02.002] [PMID: 17368065]
[63]
Möller HE, Weglage J, Wiedermann D, Ullrich K. Blood-brain barrier phenylalanine transport and individual vulnerability in phenylketonuria. J Cereb Blood Flow Metab 1998; 18(11): 1184-91.
[http://dx.doi.org/10.1097/00004647-199811000-00004] [PMID: 9809507]
[64]
Ogawa S, Ichinose H. Effect of metals and phenylalanine on the activity of human tryptophan hydroxylase-2: Comparison with that on tyrosine hydroxylase activity. Neurosci Lett 2006; 401(3): 261-5.
[http://dx.doi.org/10.1016/j.neulet.2006.03.031] [PMID: 16581181]
[65]
Pietz J, Rupp A, Ebinger F, et al. Cerebral energy metabolism in phenylketonuria: Findings by quantitative in vivo 31P MR spectroscopy. Pediatr Res 2003; 53(4): 654-62.
[http://dx.doi.org/10.1203/01.PDR.0000055867.83310.9E] [PMID: 12612190]
[66]
Jakubovič A. Phenylalanine-hydroxylating system in the human fetus at different developmental ages. Biochim Biophys Acta, Gen Subj 1971; 237(3): 469-75.
[http://dx.doi.org/10.1016/0304-4165(71)90265-0] [PMID: 4330267]
[67]
Følling I. The discovery of phenylketonuria. Acta Paediatr 1994; 83(s407): 4-10.
[http://dx.doi.org/10.1111/j.1651-2227.1994.tb13440.x] [PMID: 7766954]
[68]
Anderson PJ, Leuzzi V. White matter pathology in phenylketonuria. Mol Genet Metab 2010; 99(S1): S3-9.
[http://dx.doi.org/10.1016/j.ymgme.2009.10.005]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy