Generic placeholder image

Current Psychiatry Research and Reviews

Editor-in-Chief

ISSN (Print): 2666-0822
ISSN (Online): 2666-0830

Review Article

An Updated Review on Possible Therapeutic Role of Vincamine Via 5-HT Receptors in the Treatment of Depression

Author(s): Rizwana Bee, Mohammad Ahmad*, Shashi Verma, Badruddeen, Juber Akhtar and Mohd. Irfan Khan

Volume 20, Issue 3, 2024

Published on: 15 August, 2023

Page: [199 - 208] Pages: 10

DOI: 10.2174/2666082219666230726123452

Price: $65

conference banner
Abstract

Background: Serotonin is a neurotransmitter that regulates neuronal activity and a variety of cognitive functions, and medicines that target serotonin receptors are frequently utilized in psychiatry and neurology. Clinical and preclinical research on the role of serotonin in major depressive disorder is growing. These findings demonstrate the intricacy of serotonin transmission across multiple receptors, in a variety of brain areas, and across the lifespan. The serotonin transporter's significance in major depressive disorder has been highlighted in geneenvironment association studies, as well as its participation in the mechanism of the most successful antidepressant medications, selective serotonin reuptake inhibitors. While most of the 15 known serotonin receptors have been linked to depression or depressive-like behaviour, the serotonin 1A (5-HT) and 1B (5-HT) receptors have received the most attention.

Objectives: The primary goal of this study is to review the antidepressant effect of herbal medications by modifying serotonin receptors in the future.

Result: Human brain imaging and genetic studies suggest that 5-HT and 5-HT receptors play a role in major depressive disorder and antidepressant treatment response. The availability of tissue-specific and inducible knockout mice lines in rodents has allowed for the detection of 5- HT and 5-HT receptor involvement throughout development and in cell-type specific ways. It may be found that herbal drugs will be effective as the serotonin reuptake inhibitors.

Conclusion: This and other future preclinical pharmacology studies show that these receptors' autoreceptor and heteroreceptor populations play different roles in modulating depressionrelated behaviour and antidepressant responses, as well as having different functions during early postnatal development versus adulthood. According to analysis of our research findings, alkaloids may have some therapeutic promise as natural antidepressants. Given their widespread distribution in nature, alkaloids might be a cheap way to treat depression.

[1]
Krishnan V, Nestler EJ. The molecular neurobiology of depression. Nature 2008; 455(7215): 894-902.
[http://dx.doi.org/10.1038/nature07455] [PMID: 18923511]
[2]
Baldessarini RJ. The basis for amine hypotheses in affective disorders. A critical evaluation. Arch Gen Psychiatry 1975; 32(9): 1087-93.
[http://dx.doi.org/10.1001/archpsyc.1975.01760270019001] [PMID: 241308]
[3]
Graeff FG, Guimarães FS, De Andrade TGCS, Deakin JFW. Role of 5-HT in stress, anxiety, and depression. Pharmacol Biochem Behav 1996; 54(1): 129-41.
[http://dx.doi.org/10.1016/0091-3057(95)02135-3] [PMID: 8728550]
[4]
Ressler KJ, Nemeroff CB. Role of serotonergic and noradrenergic systems in the pathophysiology of depression and anxiety disorders. Depress Anxiety 2000; 12(S1) (Suppl. 1): 2-19.
[http://dx.doi.org/10.1002/1520-6394(2000)12:1+<2:AID-DA2>3.0.CO;2-4] [PMID: 11098410]
[5]
International Statistical Classification of Diseases and related health problems, tenth revision. 1992. Available from: https://apps.who.int/iris/handle/10665/246208
[6]
Murray CJL, Lopez AD. Global mortality, disability, and the contribution of risk factors: Global Burden of Disease Study. Lancet 1997; 349(9063): 1436-42.
[http://dx.doi.org/10.1016/S0140-6736(96)07495-8] [PMID: 9164317]
[7]
Campbell S, Marriott M, Nahmias C, MacQueen GM. Lower hippocampal volume in patients suffering from depression: a meta-analysis. Am J Psychiatry 2004; 161(4): 598-607.
[http://dx.doi.org/10.1176/appi.ajp.161.4.598] [PMID: 15056502]
[8]
Harrison PJ. The neuropathology of primary mood disorder. Brain 2002; 125(7): 1428-49.
[http://dx.doi.org/10.1093/brain/awf149] [PMID: 12076995]
[9]
Michel TM, Frangou S, Thiemeyer D, et al. Evidence for oxidative stress in the frontal cortex in patients with recurrent depressive disorder—a postmortem study. Psychiatry Res 2007; 151(1-2): 145-50.
[http://dx.doi.org/10.1016/j.psychres.2006.04.013] [PMID: 17296234]
[10]
Winblad B. Piracetam: a review of pharmacological properties and clinical uses. CNS Drug Rev 2005; 11(2): 169-82.
[http://dx.doi.org/10.1111/j.1527-3458.2005.tb00268.x] [PMID: 16007238]
[11]
Heckman PRA, Wouters C, Prickaerts J. Phosphodiesterase inhibitors as a target for cognition enhancement in aging and Alzheimer’s disease: a translational overview. Curr Pharm Des 2014; 21(3): 317-31.
[http://dx.doi.org/10.2174/1381612820666140826114601] [PMID: 25159073]
[12]
Fischhof PK, Möslinger-Gehmayr R, Herrmann WM, Friedmann A. Ruβmann DL. Therapeutic efficacy of vincamine in dementia. Neuropsychobiology 1996; 34(1): 29-35.
[http://dx.doi.org/10.1159/000119288] [PMID: 8884757]
[13]
Hadjiev D. Asymptomatic ischemic cerebrovascular disorders and neuroprotection with vinpocetine. Ideggyogy Sz 56:166–172 disease: a translational overview. Curr Pharm Des 2003; 21: 317-31.
[14]
Wu L, Ye M, Zhang J. Vincamine prevents lipopolysaccharide induced inflammation and oxidative stress via thioredoxin reductase activation in human corneal epithelial cells. Am J Transl Res 2018; 10(7): 2195-204.
[PMID: 30093956]
[15]
Ahmad SS, Akhtar S. Danish Rizvi SM, et al. Screening and elucidation of selected natural compounds for anti-Alzheimer’s potential targeting BACE-1 enzyme: a case computational study. Curr Computeraided Drug Des 2017; 13(4): 311-8.
[PMID: 28413992]
[16]
Fandy TE, Abdallah I, Khayat M, Colby DA, Hassan HE. In vitro characterization of transport and metabolism of the alkaloids: vincamine, vinpocetine and eburnamonine. Cancer Chemother Pharmacol 2016; 77(2): 259-67.
[http://dx.doi.org/10.1007/s00280-015-2924-3] [PMID: 26666648]
[17]
Fayed AHA. Brain trace element concentration of rats treated with the plant alkaloid, vincamine. Biol Trace Elem Res 2010; 136(3): 314-9.
[http://dx.doi.org/10.1007/s12011-009-8550-3] [PMID: 19902161]
[18]
Han J, Qu Q, Qiao J, Zhang J. Vincamine alleviates amyloid-β 25-35 peptides-induced cytotoxicity in PC12 cells. Pharmacogn Mag 2017; 13(49): 123-8.
[http://dx.doi.org/10.4103/0973-1296.196309] [PMID: 28216895]
[19]
Lim CC, Cook PJ, James IM. The effect of an acute infusion of vincamine and ethyl apovincaminate on cerebral blood flow in healthy volunteers. Br J Clin Pharmacol 1980; 9(1): 100-1.
[http://dx.doi.org/10.1111/j.1365-2125.1980.tb04806.x] [PMID: 7356869]
[20]
Hasa D, Perissutti B, Dall’Acqua S, et al. Rationale of using Vinca minor Linne dry extract phytocomplex as a vincamine’s oral bioavailability enhancer. Eur J Pharm Biopharm 2013; 84(1): 138-44.
[http://dx.doi.org/10.1016/j.ejpb.2012.11.025] [PMID: 23238273]
[21]
Rapport MM, Green AA, Page IH. Serum vasoconstrictor, serotonin; isolation and characterization. J Biol Chem 1948; 176(3): 1243-51.
[http://dx.doi.org/10.1016/S0021-9258(18)57137-4] [PMID: 18100415]
[22]
Roth BL, Ed. The serotonin receptors from molecular pharmacology to human therapeutics. Totowa, N.J.: Humana Press 2007.
[23]
Roth B. Multiple serotonin receptors: clinical and experimental aspects. Ann Clin Psychiatry 1994; 6(2): 67-78.
[http://dx.doi.org/10.3109/10401239409148985] [PMID: 7804391]
[24]
Roth BL, Xia Z. Molecular and cellular mechanisms for the polarized sorting of serotonin receptors: relevance for genesis and treatment of psychosis. Crit Rev Neurobiol 2004; 16(4): 229-36.
[http://dx.doi.org/10.1615/CritRevNeurobiol.v16.i4.10] [PMID: 15862107]
[25]
Gershon MD, Tack J. The serotonin signaling system: from basic understanding to drug development for functional GI disorders. Gastroenterology 2007; 132(1): 397-414.
[http://dx.doi.org/10.1053/j.gastro.2006.11.002] [PMID: 17241888]
[26]
Mengod G, Vilaro MT, Cortes R. Chemical neuroanatomy of 5-HT receptor subtypes in the mammalian brain. The Serotonin Receptors. From Molecular Pharmacology to Human Therapeutics. 2007. Available from: https://www.semanticscholar.org/paper/Chemical-Neuroanatomy-of-5-HT-Receptor-Subtypes-in-Mengod-Vilar%C3%B3/295fe948ff6fc8bf8902dc20ca9d93ae0d95daba
[27]
Araneda R, Andrade R. 5-Hydroxytryptamine2 and 5-hydroxytryptamine1A receptors mediate opposing responses on membrane excitability in rat association cortex. Neuroscience 1991; 40(2): 399-412.
[http://dx.doi.org/10.1016/0306-4522(91)90128-B] [PMID: 1851255]
[28]
Gross C, Hen R. The developmental origins of anxiety. Nat Rev Neurosci 2004; 5(7): 545-52.
[http://dx.doi.org/10.1038/nrn1429] [PMID: 15208696]
[29]
Lesch KP. Serotonergic gene inactivation in mice: models for anxiety and aggression? Novartis Found Symp 2008; 268: 111-46.
[http://dx.doi.org/10.1002/0470010703.ch9] [PMID: 16206878]
[30]
Palchaudhuri M, Flügge G. 5-HT1A receptor expression in pyramidal neurons of cortical and limbic brain regions. Cell Tissue Res 2005; 321(2): 159-72.
[http://dx.doi.org/10.1007/s00441-005-1112-x] [PMID: 15947971]
[31]
Haddjeri N, Blier P, de Montigny C. Long-term antidepressant treatments result in a tonic activation of forebrain 5-HT1A receptors. J Neurosci 1998; 18(23): 10150-6.
[http://dx.doi.org/10.1523/JNEUROSCI.18-23-10150.1998] [PMID: 9822768]
[32]
Ögren SO, Eriksson TM, Elvander-Tottie E, et al. The role of 5-HT1A receptors in learning and memory. Behav Brain Res 2008; 195(1): 54-77.
[http://dx.doi.org/10.1016/j.bbr.2008.02.023] [PMID: 18394726]
[33]
Radley JJ, Jacobs BL. 5-HT1A receptor antagonist administration decreases cell proliferation in the dentate gyrus. Brain Res 2002; 955(1-2): 264-7.
[http://dx.doi.org/10.1016/S0006-8993(02)03477-7] [PMID: 12419546]
[34]
Gryglewski G, Lanzenberger R, Kranz GS, Cumming P. Meta-analysis of molecular imaging of serotonin transporters in major depression. J Cereb Blood Flow Metab 2014; 34(7): 1096-103.
[http://dx.doi.org/10.1038/jcbfm.2014.82] [PMID: 24802331]
[35]
Agren H, Reibring L, Hartvig P, et al. Low brain uptake of L-[11 C]5-hydroxytryptophan in major depression: a positron emission tomography study on patients and healthy volunteers. Acta Psychiatr Scand 1991; 83(6): 449-55.
[http://dx.doi.org/10.1111/j.1600-0447.1991.tb05574.x] [PMID: 1882697]
[36]
Nugent AC, Bain EE, Carlson PJ, et al. Reduced post-synaptic serotonin type 1A receptor binding in bipolar depression. Eur Neuropsychopharmacol 2013; 23(8): 822-9.
[http://dx.doi.org/10.1016/j.euroneuro.2012.11.005] [PMID: 23434290]
[37]
Parsey RV, Hastings RS, Oquendo MA, et al. Lower serotonin transporter binding potential in the human brain during major depressive episodes. Am J Psychiatry 2006; 163(1): 52-8.
[http://dx.doi.org/10.1176/appi.ajp.163.1.52] [PMID: 16390889]
[38]
Karlsson H, Hirvonen J, Salminen JK, Hietala J. No association between serotonin 5-HT1A receptors and spirituality among patients with major depressive disorders or healthy volunteers. Mol Psychiatry 2011; 16(3): 282-5.
[http://dx.doi.org/10.1038/mp.2009.126] [PMID: 19935737]
[39]
Lan MJ, Hesselgrave N, Ciarleglio A, et al. Higher pretreatment 5-HT 1A receptor binding potential in bipolar disorder depression is associated with treatment remission: A naturalistic treatment pilot PET study. Synapse 2013; 67(11): 773-8.
[http://dx.doi.org/10.1002/syn.21684] [PMID: 23720414]
[40]
Lanzenberger R, Baldinger P, Hahn A, et al. Global decrease of serotonin-1A receptor binding after electroconvulsive therapy in major depression measured by PET. Mol Psychiatry 2013; 18(1): 93-100.
[http://dx.doi.org/10.1038/mp.2012.93] [PMID: 22751491]
[41]
Miller JM, Brennan KG, Ogden TR, et al. Elevated serotonin 1A binding in remitted major depressive disorder: evidence for a trait biological abnormality. Neuropsychopharmacology 2009; 34(10): 2275-84.
[http://dx.doi.org/10.1038/npp.2009.54] [PMID: 19458612]
[42]
Smith KA, Cowen PJ. Serotonin and depressionDepression: Neurobiological, Psychopathological and Therapeutic Advances. New York, NY: John Wiley & Sons Inc. 1997; pp. 129-46.
[43]
John Mann J, Anne McBride P, Anderson GM, Mieczkowski TA. Platelet and whole blood serotonin content in depressed inpatients: Correlations with acute and life-time psychopathology. Biol Psychiatry 1992; 32(3): 243-57.
[http://dx.doi.org/10.1016/0006-3223(92)90106-A] [PMID: 1420642]
[44]
Coppen A, Rowsell AR, Turner P, Padgham C. 5-Hydroxytryptamine (5-HT) in the whole-blood of patients with depressive illness. Postgrad Med J 1976; 52(605): 156-8.
[http://dx.doi.org/10.1136/pgmj.52.605.156] [PMID: 1264939]
[45]
van Praag HM, de Haan S. Central serotonin metabolism and frequency of depression. Psychiatry Res 1979; 1(3): 219-24.
[http://dx.doi.org/10.1016/0165-1781(79)90002-7] [PMID: 95233]
[46]
Åsberg M, Bertilsson L, Mårtensson B, Scalia-Tomba GP, Thorén P, Träskman-Bendz L. CSF monoamine metabolites in melancholia. Acta Psychiatr Scand 1984; 69(3): 201-19.
[http://dx.doi.org/10.1111/j.1600-0447.1984.tb02488.x] [PMID: 6201041]
[47]
Karege F, Widmer J, Bovier P, Gaillard JM. Platelet serotonin and plasma tryptophan in depressed patients: effect of drug treatment and clinical outcome. Neuropsychopharmacology 1994; 10(3): 207-14.
[http://dx.doi.org/10.1038/npp.1994.23] [PMID: 7916918]
[48]
Ogawa S, Fujii T, Koga N, et al. Plasma L-tryptophan concentration in major depressive disorder: new data and meta-analysis. J Clin Psychiatry 2014; 75(9): e906-15.
[http://dx.doi.org/10.4088/JCP.13r08908] [PMID: 25295433]
[49]
Gaspar P, Cases O, Maroteaux L. The developmental role of serotonin: news from mouse molecular genetics. Nat Rev Neurosci 2003; 4(12): 1002-12.
[http://dx.doi.org/10.1038/nrn1256] [PMID: 14618156]
[50]
Patel JG, Bartoszyk GD, Edwards E. The highly selective 5-hydroxytryptamine (5-HT)2A receptor antagonist, EMD 281014, significantly increases swimming and decreases immobility in male congenital learned helpless rats in the forced swim test. Synapse 2004; 52(1): 73-5.
[51]
Weisstaub NV, Zhou M, Lira A, et al. Cortical 5-HT2A receptor signaling modulates anxiety-like behaviors in mice. Science 2006; 313(5786): 536-40.
[http://dx.doi.org/10.1126/science.1123432] [PMID: 16873667]
[52]
Diaz SL, Doly S, Narboux-Nême N, et al. 5-HT2B receptors are required for serotonin-selective antidepressant actions. Mol Psychiatry 2012; 17(2): 154-63.
[http://dx.doi.org/10.1038/mp.2011.159] [PMID: 22158014]
[53]
Bevilacqua L, Doly S, Kaprio J, et al. A population-specific HTR2B stop codon predisposes to severe impulsivity. Nature 2010; 468(7327): 1061-6.
[http://dx.doi.org/10.1038/nature09629] [PMID: 21179162]
[54]
Cryan JF, Lucki I. Antidepressant-like behavioral effects mediated by 5-Hydroxytryptamine(2C) receptors. J Pharmacol Exp Ther 2000; 295(3): 1120-6.
[PMID: 11082448]
[55]
Ramamoorthy R, Radhakrishnan M, Borah M. Antidepressant-like effects of serotonin type-3 antagonist, ondansetron: an investigation in behaviour-based rodent models. Behav Pharmacol 2008; 19(1): 29-40.
[http://dx.doi.org/10.1097/FBP.0b013e3282f3cfd4] [PMID: 18195592]
[56]
Kondo M, Nakamura Y, Ishida Y, Shimada S. The 5-HT3 receptor is essential for exercise-induced hippocampal neurogenesis and antidepressant effects. Mol Psychiatry 2015; 20(11): 1428-37.
[http://dx.doi.org/10.1038/mp.2014.153] [PMID: 25403840]
[57]
Lucas G, Rymar VV, Du J, et al. Serotonin(4) (5-HT(4)) receptor agonists are putative antidepressants with a rapid onset of action. Neuron 2007; 55(5): 712-25.
[http://dx.doi.org/10.1016/j.neuron.2007.07.041] [PMID: 17785179]
[58]
Compan V, Zhou M, Grailhe R, et al. Attenuated response to stress and novelty and hypersensitivity to seizures in 5-HT4 receptor knock-out mice. J Neurosci 2004; 24(2): 412-9.
[http://dx.doi.org/10.1523/JNEUROSCI.2806-03.2004] [PMID: 14724239]
[59]
Waeber C, Grailhe R, Yu X-J, Hen R, Moskowitz MA. Putative 5-ht5 receptors: localization in the mouse CNS and lack of effect in the inhibition of dural protein extravasation. Ann N Y Acad Sci 1998; 861(1 ADVANCES IN S): 85-90.
[http://dx.doi.org/10.1111/j.1749-6632.1998.tb10177.x] [PMID: 9928243]
[60]
Hamon M, Doucet E, Lefèvre K, et al. Antibodies and antisense oligonucleotide for probing the distribution and putative functions of central 5-HT6 receptors. Neuropsychopharmacology 1999; 21(2) (Suppl.): 68S-76S.
[http://dx.doi.org/10.1016/S0893-133X(99)00044-5] [PMID: 10432491]
[61]
Guscott M, Bristow LJ, Hadingham K, et al. Genetic knockout and pharmacological blockade studies of the 5-HT7 receptor suggest therapeutic potential in depression. Neuropharmacology 2005; 48(4): 492-502.
[http://dx.doi.org/10.1016/j.neuropharm.2004.11.015] [PMID: 15755477]
[62]
Ramos BP, Arnsten AFT. Adrenergic pharmacology and cognition: Focus on the prefrontal cortex. Pharmacol Ther 2007; 113(3): 523-36.
[http://dx.doi.org/10.1016/j.pharmthera.2006.11.006] [PMID: 17303246]
[63]
Drago A, Crisafulli C, Sidoti A, Serretti A. The molecular interaction between the glutamatergic, noradrenergic, dopaminergic and serotoninergic systems informs a detailed genetic perspective on depressive phenotypes. Prog Neurobiol 2011; 94(4): 418-60.
[http://dx.doi.org/10.1016/j.pneurobio.2011.05.009] [PMID: 21723912]
[64]
Arnsten AFT, Wang MJ, Paspalas CD. Neuromodulation of thought: flexibilities and vulnerabilities in prefrontal cortical network synapses. Neuron 2012; 76(1): 223-39.
[http://dx.doi.org/10.1016/j.neuron.2012.08.038] [PMID: 23040817]
[65]
Chamberlain SR, Robbins TW. Noradrenergic modulation of cognition: Therapeutic implications. J Psychopharmacol 2013; 27(8): 694-718.
[http://dx.doi.org/10.1177/0269881113480988] [PMID: 23518815]
[66]
Hein L. Adrenoceptors and signal transduction in neurons. Cell Tissue Res 2006; 326(2): 541-51.
[http://dx.doi.org/10.1007/s00441-006-0285-2] [PMID: 16896948]
[67]
Jin X, Li S, Bondy B, et al. Identification of a group of GABAergic neurons in the dorsomedial area of the locus coeruleus. PLoS One 2016; 11(1): e0146470.
[http://dx.doi.org/10.1371/journal.pone.0146470] [PMID: 26785258]
[68]
Atzori M, Cuevas-Olguin R, Esquivel-Rendon E, et al. Locus coeruleus norepinephrine release: a central regulator of CNS spatio-temporal activation? Front Synaptic Neurosci 2016; 8: 25.
[http://dx.doi.org/10.3389/fnsyn.2016.00025] [PMID: 27616990]
[69]
Asnis GM, Sanderson WC, van Praag HM. Cortisol response to intramuscular desipramine in patients with major depression and normal control subjects: A replication study. Psychiatry Res 1992; 44(3): 237-50.
[http://dx.doi.org/10.1016/0165-1781(92)90027-Z] [PMID: 1289921]
[70]
Ordway GA, Schenk J, Stockmeier CA, May W, Klimek V. Elevated agonist binding to α2-adrenoceptors in the locus coeruleus in major depression. Biol Psychiatry 2003; 53(4): 315-23.
[http://dx.doi.org/10.1016/S0006-3223(02)01728-6] [PMID: 12586450]
[71]
García-Sevilla JA, Escribá PV, Ozaita A, et al. Up-regulation of immunolabeled alpha2A-adrenoceptors, Gi coupling proteins, and regulatory receptor kinases in the prefrontal cortex of depressed suicides. J Neurochem 1999; 72(1): 282-91.
[http://dx.doi.org/10.1046/j.1471-4159.1999.0720282.x] [PMID: 9886080]
[72]
Wingenfeld K, Kuffel A, Uhlmann C, et al. Effects of noradrenergic stimulation on memory in patients with major depressive disorder. Stress 2013; 16(2): 191-201.
[http://dx.doi.org/10.3109/10253890.2012.708951] [PMID: 22746337]
[73]
Gold PW. The organization of the stress system and its dysregulation in depressive illness. Mol Psychiatry 2015; 20(1): 32-47.
[http://dx.doi.org/10.1038/mp.2014.163] [PMID: 25486982]
[74]
Edgar N, McClung CA. Major depressive disorder: A loss of circadian synchrony? BioEssays 2013; 35(11): 940-4.
[http://dx.doi.org/10.1002/bies.201300086] [PMID: 24003004]
[75]
Li JZ, Bunney BG, Meng F, et al. Circadian patterns of gene expression in the human brain and disruption in major depressive disorder. Proc Natl Acad Sci 2013; 110(24): 9950-5.
[http://dx.doi.org/10.1073/pnas.1305814110] [PMID: 23671070]
[76]
Nutt D, Wilson S, Paterson L. Sleep disorders as core symptoms of depression. Dialogues Clin Neurosci 2008; 10(3): 329-36.
[http://dx.doi.org/10.31887/DCNS.2008.10.3/dnutt] [PMID: 18979946]
[77]
Wong ML, Kling MA, Munson PJ, et al. Pronounced and sustained central hypernoradrenergic function in major depression with melancholic features: Relation to hypercortisolism and corticotropin-releasing hormone. Proc Natl Acad Sci 2000; 97(1): 325-30.
[http://dx.doi.org/10.1073/pnas.97.1.325] [PMID: 10618417]
[78]
Vladimir M, Anna E, Keva G, Steve J. Duffy the role of norepinephrine and its α-adrenergic receptors in the pathophysiology and treatment of major depressive disorder and schizophrenia. Syst Rev 2017; 8: 3.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy