Generic placeholder image

Infectious Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5265
ISSN (Online): 2212-3989

Review Article

An Overview of the Global Alarming Increase of Multiple Drug Resistant: A Major Challenge in Clinical Diagnosis

Author(s): John Adewole Alara* and Oluwaseun Ruth Alara

Volume 24, Issue 3, 2024

Published on: 31 October, 2023

Article ID: e250723219043 Pages: 17

DOI: 10.2174/1871526523666230725103902

Price: $65

Abstract

The increased spreading of antibiotic resistance among different infectious agents has been a fast-growing public health challenge worldwide; this is because of the discovery of new resistance mechanisms and the reduction in quality and effective treatments of general pathogenic infections. This has caused unsuccessful microbial responses to standard therapy, which could lead to a higher risk of mortality, prolonged illness, and more expenditures for health care. Most parasites, bacteria, fungi, and viruses can produce a higher degree of multidrug resistance (MDR) with increased mortality and morbidity. Moreover, the establishment of MDR can be a natural phenomenon, improper utilization of antimicrobial drugs, lack of proper sanitary conditions, poor method of food handling, and absence of infection prevention and control (IPC), which could be responsible for the further spreading of MDR. Moreover, MDR helminth’s mechanism of action can occur via genetic alterations in the drug transport, metabolisms and target sites. MDR bacterial mode of action such as cell wall synthesis inhibitors, DNA synthesis inhibitors and so on. However, there have been different approaches to managing and preventing multi-drug resistance. Hence, this review’s aim is to educate the public about the global increase of multiple drug resistance and the danger ahead if appropriate measures are not put in place to combat microbial infections.

Graphical Abstract

[1]
Johansson, M.H.K.; Bortolaia, V.; Tansirichaiya, S.; Aarestrup, F.M.; Roberts, A.P.; Petersen, T.N. Detection of mobile genetic elements associated with antibiotic resistance in Salmonella enterica using a newly developed web tool: MobileElementFinder. J. Antimicrob. Chemother., 2021, 76(1), 101-109.
[http://dx.doi.org/10.1093/jac/dkaa390]
[2]
Doremalen, N.; Doremalen, Neeltje van, Lambe, Teresa, Spencer, Alexandra, BelijRammerstorfer, Sandra, Purushotham, Jyothi N., Port, Julia R., Avanzato, Victoria, Bushmaker, Trenton, Flaxman, Amy, Ulaszewska, Marta, Feldmann, Friederike, Allen, Elizabeth R., Sharpe, Hann. BioResources, 2020.
[3]
Elizabeth Gall, M.H.S.; Anna, Long.; M.P.H.; Kendall K. Hall, M.D. Infections Due to Other Multidrug-Resistant Organisms; In: Making Healthcare Safer III: A Critical Analysis of Existing and Emerging Patient Safety Practices;, 2020.
[4]
Kwonjune, J.S.; Salmaan, K.; Michael, L.R. Multidrug-resistant tuberculosis and extensively drug-resistant tuberculosis. Natl. Libr. Med., 2020, 5(9), a017863.
[5]
WHO: . Antimicrobial resistance; World Health Organization, 2021.
[6]
HIV drug resistance; WHO,. 2022, 1-4.
[7]
Strasfeld, L.; Chou, S. Antiviral drug resistance: Mechanisms and clinical implications. Infect. Dis. Clin. North Am., 2010, 24(2), 413-437.
[http://dx.doi.org/10.1016/j.idc.2010.01.001] [PMID: 20466277]
[8]
Margeridon-Thermet, S.; Shafer, R.W. Comparison of the mechanisms of drug resistance among HIV, hepatitis B, and hepatitis C. Viruses, 2010, 2(12), 2696-2739.
[http://dx.doi.org/10.3390/v2122696] [PMID: 21243082]
[9]
Majumder, M.A.A.; Rahman, S.; Cohall, D.; Bharatha, A.; Singh, K.; Haque, M.; Gittens-St Hilaire, M. Antimicrobial stewardship: Fighting antimicrobial resistance and protecting global public health. Infect. Drug Resist., 2020, 13, 4713-4738.
[http://dx.doi.org/10.2147/IDR.S290835] [PMID: 33402841]
[10]
World Health Organization Director-general opening’s remarks at media briefing on COVID-19; WHO, 2020.
[11]
World Antimicrobial Awareness Week; WHO, 2020.
[12]
O’Neill, J. Tackling drug-resistant infections globally: final report and recommendations; Government of the United Kingdom, 2016.
[13]
de Kraker, M.E.A.; Stewardson, A.J.; Harbarth, S. Will 10 million people die a year due to antimicrobial resistance by 2050? PLoS One, 2016, 13(11), e1002184.
[14]
NOAH response to final O’Neill AMR review report July 2016; NAOH, 2016.
[15]
Antibiotic resistance threats in the United States; CDC,. 2019.
[16]
Prestinaci, F.; Pezzotti, P.; Pantosti, A. Antimicrobial resistance: A global multifaceted phenomenon. Pathog. Glob. Health, 2015, 109(7), 309-318.
[http://dx.doi.org/10.1179/2047773215Y.0000000030] [PMID: 26343252]
[17]
WHO Global action plan on antimicrobial resistance; WHO,. 2015.
[18]
Naylor, N.R.; Atun, R.; Zhu, N.; Kulasabanathan, K.; Silva, S.; Chatterjee, A.; Knight, G.M.; Robotham, J.V. Estimating the burden of antimicrobial resistance: A systematic literature review. Antimicrob. Resist. Infect. Control, 2018, 7(1), 58-68.
[http://dx.doi.org/10.1186/s13756-018-0336-y] [PMID: 29713465]
[19]
Likotrafiti, E. EU-FORA SERIES 1 risk assessment of antimicrobial resistance along the food chain through culture-independent methodologies. Eur. Food Saf. Auth. J., 2018, 16(S1), 1-8.
[20]
Pérez-Rodríguez, F.; Mercanoglu, T.B. A state-of-art review on multi-drug resistant pathogens in foods of animal origin: Risk factors and mitigation strategies. Front. Microbiol., 2019, 10, 2091.
[http://dx.doi.org/10.3389/fmicb.2019.02091] [PMID: 31555256]
[21]
Van Boeckel, T.P.; Brower, C.; Gilbert, M.; Grenfell, B.T.; Levin, S.A.; Robinson, T.P.; Teillant, A.; Laxminarayan, R. Global trends in antimicrobial use in food animals. Proc. Natl. Acad. Sci. USA, 2015, 112(18), 5649-5654.
[http://dx.doi.org/10.1073/pnas.1503141112] [PMID: 25792457]
[22]
Meletis, G. Carbapenem resistance: Overview of the problem and future perspectives. Ther. Adv. Infect. Dis., 2016, 3(1), 15-21.
[http://dx.doi.org/10.1177/2049936115621709] [PMID: 26862399]
[23]
Centers for Disease Control (2013); Antibiotic resistance threats in the: United States; CDC, 2013.
[24]
Liu, Y.Y.; Wang, Y.; Walsh, T.R.; Yi, L.X.; Zhang, R.; Spencer, J.; Doi, Y.; Tian, G.; Dong, B.; Huang, X.; Yu, L.F.; Gu, D.; Ren, H.; Chen, X.; Lv, L.; He, D.; Zhou, H.; Liang, Z.; Liu, J.H.; Shen, J. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: A microbiological and molecular biological study. Lancet Infect. Dis., 2016, 16(2), 161-168.
[http://dx.doi.org/10.1016/S1473-3099(15)00424-7] [PMID: 26603172]
[25]
Capita, R.; Alonso-Calleja, C. Antibiotic-resistant bacteria: A challenge for the food industry. Crit. Rev. Food Sci. Nutr., 2013, 53(1), 11-48.
[http://dx.doi.org/10.1080/10408398.2010.519837] [PMID: 23035919]
[26]
Pokharel, S.; Raut, S.; Adhikari, B. Tackling antimicrobial resistance in low-income and middle-income countries. BMJ Glob. Health, 2019, 4(6), e002104.
[http://dx.doi.org/10.1136/bmjgh-2019-002104] [PMID: 31799007]
[27]
Kuehn, B.M. Excessive antibiotic prescribing for sore throat and acute bronchitis remains common. JAMA, 2013, 310(20), 2135-2136.
[http://dx.doi.org/10.1001/jama.2013.281452] [PMID: 24281441]
[28]
Michael, C.A.; Dominey-Howes, D.; Labbate, M. The antimicrobial resistance crisis: Causes, consequences, and management. Front. Public Health, 2014, 2(145), 145.
[http://dx.doi.org/10.3389/fpubh.2014.00145] [PMID: 25279369]
[29]
Byarugaba, D.K. Antimicrobial resistance in developing countries and responsible risk factors. Int. J. Antimicrob. Agents, 2004, 24(2), 105-110.
[http://dx.doi.org/10.1016/j.ijantimicag.2004.02.015] [PMID: 15288307]
[30]
Cave, E. COVID-19 super-spreaders: Definitional quandaries and implications. Asian Bioeth. Rev., 2020, 12(2), 235-242.
[http://dx.doi.org/10.1007/s41649-020-00118-2]
[31]
Shears, P. Antimicrobial resistance in the tropics. Trop. Doct., 2000, 30(2), 114-116.
[http://dx.doi.org/10.1177/004947550003000225] [PMID: 10842568]
[32]
Wernli, D.; Jørgensen, P.S.; Morel, C.M.; Carroll, S.; Harbarth, S.; Levrat, N.; Pittet, D. Mapping global policy discourse on antimicrobial resistance. BMJ Glob. Health, 2017, 2(2), e000378.
[http://dx.doi.org/10.1136/bmjgh-2017-000378] [PMID: 29225939]
[33]
Catry, B.; Laevens, H.; Devriese, L.A.; Opsomer, G.; de Kruif, A. Antimicrobial resistance in livestock. J. Vet. Pharmacol. Ther., 2003, 26(2), 81-93.
[http://dx.doi.org/10.1046/j.1365-2885.2003.00463.x] [PMID: 12667177]
[34]
Antimicrobial Resistance Global Report on Surveillance; World Health Organization,. 2014.
[35]
Mittal, A.K.; Bhardwaj, R.; Mishra, P.; Rajput, S.K. Antimicrobials misuse/overuse: Adverse Effect, mechanism, challenges and strategies to combat resistance. Open Biotechnol. J., 2020, 14(1), 107-112.
[http://dx.doi.org/10.2174/1874070702014010107]
[36]
Ahmed, J.; de Mohac, L.; Mackey, T.; Raimi-Abraham, B. A critical review on the availability of substandard and falsified medicines online: Incidence, challenges and perspectives,". J. Med. Acess, 2022, 6, 1-18.
[37]
Maxim, L.D.; Niebo, R.; Utell, M.J. Screening tests: a review with examples. Inhal. Toxicol., 2014, 26(13), 811-828.
[http://dx.doi.org/10.3109/08958378.2014.955932] [PMID: 25264934]
[38]
Huang, L.; Ahmed, S.; Gu, Y.; Huang, J.; An, B.; Wu, C.; Zhou, Y.; Cheng, G. The effects of natural products and environmental conditions on antimicrobial resistance. Molecules, 2021, 26(14), 4277.
[http://dx.doi.org/10.3390/molecules26144277] [PMID: 34299552]
[39]
Almagor, J.; Temkin, E.; Benenson, I.; Fallach, N.; Carmeli, Y. The impact of antibiotic use on transmission of resistant bacteria in hospitals: Insights from an agent-based model. PLoS One, 2018, 13(5), e0197111.
[http://dx.doi.org/10.1371/journal.pone.0197111] [PMID: 29758063]
[40]
Bharadwaj, A.; Rastogi, A.; Pandey, S.; Gupta, S.; Sohal, J.S. Multidrug-resistant bacteria: Their mechanism of action and prophylaxis. BioMed Res. Int., 2022, 2022, 1-17.
[http://dx.doi.org/10.1155/2022/5419874] [PMID: 36105930]
[41]
What are Multi drug resistant MDR- bacteria; NHS,. 2017.
[42]
Vos, T.; Lim, S.S.; Abbafati, C. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet, 2020, 396(10258), 1204-1222.
[http://dx.doi.org/10.1016/S0140-6736(20)30925-9] [PMID: 33069326]
[43]
Tanwar, J.; Das, S.; Fatima, Z.; Hameed, S. Multidrug resistance: An emerging crisis. Interdiscip. Perspect. Infect. Dis., 2014, 2014, 1-7.
[http://dx.doi.org/10.1155/2014/541340] [PMID: 25140175]
[44]
Bennett, J.W.; Robertson, J.L.; Hospenthal, D.R.; Wolf, S.E.; Chung, K.K.; Mende, K.; Murray, C.K. Impact of extended spectrum beta-lactamase producing Klebsiella pneumoniae infections in severely burned patients. J. Am. Coll. Surg., 2010, 211(3), 391-399.
[http://dx.doi.org/10.1016/j.jamcollsurg.2010.03.030] [PMID: 20800197]
[45]
Olasehinde, G.; Ojurongbe, O. In vitro studies on the sensitivity pattern of Plasmodium falciparum to anti-malarial drugs and local herbal extracts. Malar J, 2014, 13, 63.
[46]
Loeffler, J.; Stevens, D.A. Antifungal drug resistance. Clin. Infect. Dis., 2003, 36(S1), S31-S41.
[http://dx.doi.org/10.1086/344658] [PMID: 12516028]
[47]
Wartu, J. Multidrug resistance by microorganisms: A review. Scientific World J., 2019, 14(4), 49-56.
[48]
Jassal, M.; Bishai, W. Extensively drug-resistant tuberculosis. Lancent Infect. Dis, 2009, 22(2), 167-173.
[49]
Saha, M.; Sarkar, A. Review on multiple facets of drug resistance: A rising challenge in the 21st century. J. Xenobiot., 2021, 11(4), 197-214.
[http://dx.doi.org/10.3390/jox11040013] [PMID: 34940513]
[50]
Ndagi, U.; Falaki, A.A.; Abdullahi, M.; Lawal, M.M.; Soliman, M.E. Antibiotic resistance: bioinformatics-based understanding as a functional strategy for drug design. RSC Advances, 2020, 10(31), 18451-18468.
[http://dx.doi.org/10.1039/D0RA01484B] [PMID: 35685616]
[51]
Cao, S. Alternative evolutionary pathways for drug-resistant small colony variant mutants in Staphylococcus aureus. ASM J., 2017, 8(3)
[52]
Alav, I.; Sutton, J.M.; Rahman, K.M. Role of bacterial efflux pumps in biofilm formation. J. Antimicrob. Chemother., 2018, 73(8), 2003-2020.
[http://dx.doi.org/10.1093/jac/dky042] [PMID: 29506149]
[53]
Ogawara, H. Comparison of antibiotic resistance mechanisms in antibiotic-producing and pathogenic bacteria. Molecules, 2019, 24(19), 3430.
[http://dx.doi.org/10.3390/molecules24193430] [PMID: 31546630]
[54]
Sultan, I.; Rahman, S.; Jan, A.; Siddiqui, M.; Mondal, A.; Haq, Q.M. Antibiotics, resistome and resistance rechanisms: A bacterial perspective. Front. Microbiol., 2018, 9, 2066.
[55]
Pang, Z.; Raudonis, R.; Glick, B.R.; Lin, T.J.; Cheng, Z. Antibiotic resistance in Pseudomonas aeruginosa: Mechanisms and alternative therapeutic strategies. Biotechnol. Adv., 2019, 37(1), 177-192.
[http://dx.doi.org/10.1016/j.biotechadv.2018.11.013] [PMID: 30500353]
[56]
Chuanchuen, R.; Karkhoff-Schweizer, R.R.; Schweizer, H.P. High-level triclosan resistance in Pseudomonas aeruginosa is solely a result of efflux. Am. J. Infect. Control, 2003, 31(2), 124-127.
[http://dx.doi.org/10.1067/mic.2003.11] [PMID: 12665747]
[57]
Alekshun, M.N.; Levy, S.B. Molecular mechanisms of antibacterial multidrug resistance. Cell, 2007, 128(6), 1037-1050.
[http://dx.doi.org/10.1016/j.cell.2007.03.004] [PMID: 17382878]
[58]
Giguère, S.; John, F.; Desmond, J. Antimicrobial Drug Action and Interaction: An Introduction; In: Antimicrobial therapy in Veterinary Medicine,: 4th ed.;, 2006.
[59]
Randall, C.P.; Mariner, K.R.; Chopra, I.; O’Neill, A.J. The target of daptomycin is absent from Escherichia coli and other gram-negative pathogens. Antimicrob. Agents Chemother., 2013, 57(1), 637-639.
[http://dx.doi.org/10.1128/AAC.02005-12] [PMID: 23114759]
[60]
Lebeaux, D.; Ghigo, J.M.; Beloin, C. Biofilm-related infections: bridging the gap between clinical management and fundamental aspects of recalcitrance toward antibiotics. Microbiol. Mol. Biol. Rev., 2014, 78(3), 510-543.
[http://dx.doi.org/10.1128/MMBR.00013-14] [PMID: 25184564]
[61]
Darwich, L. High prevalence and diversity of extended-spectrum β-lactamase and emergence of oxa-48 producing enterobacterales in wildlife in catalonia. PLoS One, 2019, 14(8), e0210686.
[http://dx.doi.org/10.1371/journal.pone.0210686]
[62]
Muktan, B. Plasmid mediated colistin resistant Mcr-1 and co-existence of OXA-48 among escherichia coli from clinical and poultry isolates: First report from Nepal. Gut Pathog, 2020, 12, 44.
[63]
Anyanwu, M.U.; Jaja, I.F.; Nwobi, O.C. Occurrence and characteristics of mobile colistin resistance (Mcr) gene-containing isolates from the environment. A review. Int. J. Environ. Res. Public Health, 2020, 17(3), 1028.
[http://dx.doi.org/10.3390/ijerph17031028] [PMID: 32041167]
[64]
Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; Paterson, D.L.; Rice, L.B.; Stelling, J.; Struelens, M.J.; Vatopoulos, A.; Weber, J.T.; Monnet, D.L. Multidrugresistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect., 2012, 18(3), 268-281.
[http://dx.doi.org/10.1111/j.1469-0691.2011.03570.x] [PMID: 21793988]
[65]
Mazel, D. Integrons: Agents of bacterial evolution. Nat. Rev. Microbiol., 2006, 4(8), 608-620.
[http://dx.doi.org/10.1038/nrmicro1462] [PMID: 16845431]
[66]
Rozwandowicz, M.; Brouwer, M.S.M.; Fischer, J.; Wagenaar, J.A.; Gonzalez-Zorn, B.; Guerra, B.; Mevius, D.J.; Hordijk, J. Plasmids carrying antimicrobial resistance genes in Enterobacteriaceae. J. Antimicrob. Chemother., 2018, 73(5), 1121-1137.
[http://dx.doi.org/10.1093/jac/dkx488] [PMID: 29370371]
[67]
Hardison, R. Classes of Transposable Elements; Biology, 2021.
[68]
Santoro, F.; Vianna, M.E.; Roberts, A.P. Variation on a theme; An overview of the Tn916/Tn1545 family of mobile genetic elements in the oral and nasopharyngeal streptococci. Front. Microbiol., 2014, 5.
[http://dx.doi.org/10.3389/fmicb.2014.00535]
[69]
Smillie, C.; Garcillán-Barcia, M.P.; Francia, M.V.; Rocha, E.P.C.; de la Cruz, F. Mobility of plasmids. Microbiol. Mol. Biol. Rev., 2010, 74(3), 434-452.
[http://dx.doi.org/10.1128/MMBR.00020-10] [PMID: 20805406]
[70]
Mahillon, J.; Chandler, M. Insertion sequences. Microbiol. Mol. Biol. Rev., 1998, 62(3), 725-774.
[http://dx.doi.org/10.1128/MMBR.62.3.725-774.1998] [PMID: 9729608]
[71]
Agnė, G.; Astra, V. Antibiotic resistance mechanisms of clinically important bacteria. Med., 2011, 47(3), 137-146.
[72]
He, X.; Li, S.; Kaminskyj, S.G.W. Using Aspergillus nidulans to identify antifungal drug resistance mutations. Eukaryot. Cell, 2014, 13(2), 288-294.
[http://dx.doi.org/10.1128/EC.00334-13] [PMID: 24363365]
[73]
Multi-drug resistant gonorrhoea; World Health Organization,. 2021.
[74]
McKeegan, K.S.; Borges-Walmsley, M.I.; Walmsley, A.R. Microbial and viral drug resistance mechanisms. Trends Microbiol., 2002, 10(S10), s8-s14.
[http://dx.doi.org/10.1016/S0966-842X(02)02429-0] [PMID: 12377562]
[75]
Vaz-Moreira, I.; Nunes, O.C.; Manaia, C.M. Bacterial diversity and antibiotic resistance in water habitats: Searching the links with the human microbiome. FEMS Microbiol. Rev., 2014, 38(4), 761-778.
[http://dx.doi.org/10.1111/1574-6976.12062] [PMID: 24484530]
[76]
Siddiqui, A.; Koirala, J. Methicillin resistant Staphylococcus aureus; National Center for Emerging and Zoonotic Infectious Diseases (NCEZID); , 2022.
[77]
Singh, R.; Dwivedi, S.P.; Gaharwar, U.S.; Meena, R.; Rajamani, P.; Prasad, T. Recent updates on drug resistance in Mycobacterium tuberculosis. J. Appl. Microbiol., 2020, 128(6), 1547-1567.
[http://dx.doi.org/10.1111/jam.14478] [PMID: 31595643]
[78]
Ejiofor, I.M.I.; Zaman, K.; Das, A. Antidiabetic evaluations of different parts of vernonia amygdalina. IOSR J. Pharm. Biol. Sci., 2017, 12(4), 23-28.
[79]
Peterson, E.; Kaur, P. Antibiotic resistance mechanisms in bacteria: relationships between resistance determinants of antibiotic producers, environmental bacteria, and clinical pathogens. Front. Microbiol., 2018, 9, 2928.
[http://dx.doi.org/10.3389/fmicb.2018.02928] [PMID: 30555448]
[80]
C Reygaert, W. An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiol., 2018, 4(3), 482-501.
[http://dx.doi.org/10.3934/microbiol.2018.3.482] [PMID: 31294229]
[81]
Zaman, S.; Hussain, M.; Nye, R.; Mehta, K.; Mamun, K.; Hossain, N. A review on antibiotic resistance: Alarm bells are ringing., Cureus, 2017, 9(6), e1403.
[82]
Das, B.; Verma, J.; Kumar, P.; Ghosh, A.; Ramamurthy, T. Antibiotic resistance in vibrio cholerae: Understanding the ecology of resistance genes and mechanisms. Vaccine., 2019, 38(1), A83-A92.
[83]
Hotez, P.J.; Brindley, P.J.; Bethony, J.M.; King, C.H.; Pearce, E.J.; Jacobson, J. Helminth infections: The great neglected tropical diseases. J. Clin. Invest., 2008, 118(4), 1311-1321.
[http://dx.doi.org/10.1172/JCI34261] [PMID: 18382743]
[84]
Antibiotic resistance; World Health Organization, . 2020.
[85]
Engemann, J.J.; Carmeli, Y.; Cosgrove, S.E.; Fowler, V.G.; Bronstein, M.Z.; Trivette, S.L.; Briggs, J.P.; Sexton, D.J.; Kaye, K.S. Adverse clinical and economic outcomes attributable to methicillin resistance among patients with Staphylococcus aureus surgical site infection. Clin. Infect. Dis., 2003, 36(5), 592-598.
[http://dx.doi.org/10.1086/367653] [PMID: 12594640]
[86]
Rottier, W.C.; Ammerlaan, H.S.M.; Bonten, M.J.M. Effects of confounders and intermediates on the association of bacteraemia caused by extended-spectrum β-lactamase-producing Enterobacteriaceae and patient outcome: A meta-analysis. J. Antimicrob. Chemother., 2012, 67(6), 1311-1320.
[http://dx.doi.org/10.1093/jac/dks065] [PMID: 22396430]
[87]
Borer, A.; Saidel-Odes, L.; Riesenberg, K.; Eskira, S.; Peled, N.; Nativ, R.; Schlaeffer, F.; Sherf, M. Attributable mortality rate for carbapenem-resistant Klebsiella pneumoniae bacteremia. Infect. Control Hosp. Epidemiol., 2009, 30(10), 972-976.
[http://dx.doi.org/10.1086/605922] [PMID: 19712030]
[88]
Unemo, M.; Shafer, W.M. Antimicrobial resistance in Neisseria gonorrhoeae in the 21st century: Past, evolution, and future. Clin. Microbiol. Rev., 2014, 27(3), 587-613.
[http://dx.doi.org/10.1128/CMR.00010-14] [PMID: 24982323]
[89]
Williamson, D.A.; Barrett, L.K.; Rogers, B.A.; Freeman, J.T.; Hadway, P.; Paterson, D.L. Infectious complications following transrectal ultrasound-guided prostate biopsy: new challenges in the era of multidrug-resistant Escherichia coli. Clin. Infect. Dis., 2013, 57(2), 267-274.
[http://dx.doi.org/10.1093/cid/cit193] [PMID: 23532481]
[90]
Kim, J.; Kang, C.; Joo, E.; Ha, Y.; Cho, S.; Gwak, G. Risk factors of community-onset spontaneous bacterial peritonitis caused by fluoroquinolone-resistant Escherichia coli in patients with cirrhosis,”. Liver Int., 2014, 34, 695-699.
[http://dx.doi.org/10.1111/liv.12374] [PMID: 24267669]
[91]
One health action plan against antimicrobial resistance; European Commission, 2017.
[92]
10 threats to global health in 2018; World Health Organization,. 2018.
[93]
Muaz, K.; Riaz, M.; Akhtar, S.; Park, S.; Ismail, A. Antibiotic residues in chicken meat: Global prevalence, threats, and decontamination strategies: A review. J. Food Prot., 2018, 81(4), 619-627.
[http://dx.doi.org/10.4315/0362-028X.JFP-17-086] [PMID: 29537307]
[94]
Lee, J.H. Methicillin (Oxacillin)-resistant Staphylococcus aureus strains isolated from major food animals and their potential transmission to humans. Appl. Environ. Microbiol., 2003, 69(11), 6489-6494.
[http://dx.doi.org/10.1128/AEM.69.11.6489-6494.2003] [PMID: 14602604]
[95]
Normanno, G.; Corrente, M.; La Salandra, G.; Dambrosio, A.; Quaglia, N.C.; Parisi, A.; Greco, G.; Bellacicco, A.L.; Virgilio, S.; Celano, G.V. Methicillin-resistant Staphylococcus aureus (MRSA) in foods of animal origin product in Italy. Int. J. Food Microbiol., 2007, 117(2), 219-222.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2007.04.006] [PMID: 17533002]
[96]
Castellano, P.; Pérez Ibarreche, M.; Blanco Massani, M.; Fontana, C.; Vignolo, G. Strategies for pathogen biocontrol using lactic acid bacteria and their metabolites: a focus on meat ecosystems and industrial environments. Microorganisms, 2017, 5(3), 38.
[http://dx.doi.org/10.3390/microorganisms5030038] [PMID: 28696370]
[97]
Gálvez, A.; Abriouel, H.; Benomar, N.; Lucas, R. Microbial antagonists to food-borne pathogens and biocontrol. Curr. Opin. Biotechnol., 2010, 21(2), 142-148.
[http://dx.doi.org/10.1016/j.copbio.2010.01.005] [PMID: 20149633]
[98]
Shlaes, D.M.; Gerding, D.N.; John, J.F., Jr; Craig, W.A.; Bornstein, D.L.; Duncan, R.A.; Eckman, M.R.; Farrer, W.E.; Greene, W.H.; Lorian, V.; Levy, S.; McGowan, J.E., Jr; Paul, S.M.; Ruskin, J.; Tenover, F.C.; Watanakunakorn, C. Guidelines for the prevention of antimicrobial resistance in hospitals. Infect. Control Hosp. Epidemiol., 1997, 18(4), 275-291.
[http://dx.doi.org/10.2307/30141215] [PMID: 9131374]
[99]
WHO Global Action Plan on Antimicrobial Resistance; World Health Organization, 2016.
[100]
Yang, F.; Yan, J. Antibiotic resistance and treatment options for multidrug-resistant gonorrhea. IMD, 2020, 2(2), 67-76.
[http://dx.doi.org/10.1097/IM9.0000000000000024]
[101]
Han, Y.; Yin, Y.; Dai, X.; Chen, S.; Yang, L.; Zhu, B.; Zhong, N.; Cao, W.; Zhang, X.; Wu, Z.; Yuan, L.; Zheng, Z.; Feng, L.; Liu, J.; Chen, X. Widespread use of high-dose ceftriaxone therapy for uncomplicated gonorrhea without reported ceftriaxone treatment failure: Results from 5 years of multicenter surveillance data in China. Clin. Infect. Dis., 2020, 70(1), 99-105.
[http://dx.doi.org/10.1093/cid/ciz170] [PMID: 30838398]
[102]
Harris, A. Patient education: Methicillin-resistant Staphylococcus aureus (MRSA); Beyond the Basics, 2022, pp. 1-4.
[103]
Choo, E.J.; Chambers, H.F. Treatment of methicillin-resistant staphylococcus aureus bacteremia. Infect. Chemother., 2016, 48(4), 267-273.
[http://dx.doi.org/10.3947/ic.2016.48.4.267] [PMID: 28032484]
[104]
Brown, N.M.; Goodman, A.L.; Horner, C.; Jenkins, A.; Brown, E.M. Treatment of methicillin-resistant Staphylococcus aureus (MRSA): Updated guidelines from the UK. JAC-Antimicrob, 2021, 3(1), dlaa114.
[http://dx.doi.org/10.1093/jacamr/dlaa114] [PMID: 34223066]
[105]
Novel antibiotic shows promise in treatment of uncomplicated gonorrhea; NIAID, 2018, 1-3.
[106]
The CARB-X 2022-2023 funding rounds have three distinct product themes: Oral therapeutics,, vaccines for neonata spsis, and gonorrhea products; CARB-X, 2023.
[107]
Hua, Y.; Luo, T.; Yang, Y.; Dong, D.; Wang, R.; Wang, Y.; Xu, M.; Guo, X.; Hu, F.; He, P. Phage therapy as a promising new treatment for lung in-fection caused by carbapenem-resistant Acinetobacter baumannii in mice. Front. Microbiol., 2018, 8, 2659.
[http://dx.doi.org/10.3389/fmicb.2017.02659] [PMID: 29375524]
[108]
Nwaiwu, O.; Aduba, C.C. An in silico analysis of acquired antimicrobial resistance genes in Aeromonas plasmids. AIMS Microbiol., 2020, 6(1), 75-91.
[PMID: 32226916]
[109]
Panja, A.S.; Sarkar, A.; Biswas, R.; Bandyopadhyay, B.; Bandopadhyay, R. Modification of drug-binding proteins associated with the efflux pump in MDR-MTB in course of evolution: an unraveled clue based on in silico approach. J. Antibiot., 2019, 72(5), 282-290.
[http://dx.doi.org/10.1038/s41429-019-0146-3] [PMID: 30799437]
[110]
Feldgarden, M.; Brover, V.; Gonzalez-Escalona, N.; Frye, J.G.; Haendiges, J.; Haft, D.H.; Hoffmann, M.; Pettengill, J.B.; Prasad, A.B.; Tillman, G.E.; Tyson, G.H.; Klimke, W. AMRFinderPlus and the reference gene catalog facilitate examination of the genomic links among antimicrobial resistance, stress response, and virulence. Sci. Rep., 2021, 11(1), 12728.
[http://dx.doi.org/10.1038/s41598-021-91456-0] [PMID: 34135355]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy