Generic placeholder image

Current Molecular Medicine

Editor-in-Chief

ISSN (Print): 1566-5240
ISSN (Online): 1875-5666

Review Article

LncRNA FTH1P3: A New Biomarker for Cancer-Related Therapeutic Development

Author(s): Maryam Darvish*

Volume 24, Issue 5, 2024

Published on: 04 October, 2023

Page: [576 - 584] Pages: 9

DOI: 10.2174/1566524023666230724141353

Price: $65

Abstract

Cancer is a persistent and urgent health problem that affects the entire world. Not long ago, regulatory biomolecules referred to as long noncoding RNAs (lncRNAs) might have value for their innate abundance and stability. These single-stranded RNAs potentially interfere with several physiological and biochemical cellular processes involved in many human pathological situations, particularly cancer diseases. Ferritin heavy chain1 pseudogene 3 (FTH1P3), a lncRNA that is ubiquitously transcribed and belongs to the ferritin heavy chain (FHC) family, represents a novel class of lncRNAs primarily found in oral squamous cell carcinoma. Further research has shown that FTH1P3 is involved in other malignancies such as uveal melanoma, glioma, esophageal squamous cell carcinoma, non-small cell lung cancer, breast cancer, laryngeal squamous cell carcinoma, and cervical cancer. Accordingly, FTH1P3 significantly enhances cancer symptoms, including cell proliferation, invasion, metastasis, chemoresistance, and inhibition of apoptosis through many specific mechanisms. Notably, the clinical data significantly demonstrated the association of FTH1P3 overexpression with poor prognosis and poor overall survival within the examined samples. Here, we summarize all the research published to date (13 articles) on FTH1P3, focusing on the biological function underlying the regulatory mechanism and its possible clinical relevance.

[1]
Torre LA, Siegel RL, Ward EM, Jemal A. Global cancer incidence and mortality rates and trends—an update. Cancer Epidemiol Biomarkers Prev 2016; 25(1): 16-27.
[http://dx.doi.org/10.1158/1055-9965.EPI-15-0578] [PMID: 26667886]
[2]
Sung H, Ferlay J, Siegel RL, et al. Global Cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021; 71(3): 209-49.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[3]
Wang W, Kandimalla R, Huang H, et al. Molecular subtyping of colorectal cancer: Recent progress, new challenges and emerging opportunities. Semin Cancer Biol 2019; 55: 37-52.
[http://dx.doi.org/10.1016/j.semcancer.2018.05.002] [PMID: 29775690]
[4]
Zugazagoitia J, Guedes C, Ponce S, Ferrer I, Molina-Pinelo S, Paz-Ares L. Current challenges in cancer treatment. Clin Ther 2016; 38(7): 1551-66.
[http://dx.doi.org/10.1016/j.clinthera.2016.03.026] [PMID: 27158009]
[5]
Hojman P, Gehl J, Christensen JF, Pedersen BK. Molecular mechanisms linking exercise to cancer prevention and treatment. Cell Metab 2018; 27(1): 10-21.
[http://dx.doi.org/10.1016/j.cmet.2017.09.015] [PMID: 29056514]
[6]
Porta C, Paglino C, Mosca A. Targeting PI3K/Akt/mTOR signaling in Cancer. Front Oncol 2014; 4(64): 64.
[http://dx.doi.org/10.3389/fonc.2014.00064] [PMID: 24782981]
[7]
Kalniņa Z, Meistere I, Kikuste I, Tolmanis I, Zayakin P, Linē A. Emerging blood-based biomarkers for detection of gastric cancer. World J Gastroenterol 2015; 21(41): 11636-53.
[http://dx.doi.org/10.3748/wjg.v21.i41.11636] [PMID: 26556992]
[8]
Liu W, Yang Q, Liu B, Zhu Z. Serum proteomics for gastric cancer. Clin Chim Acta 2014; 431: 179-84.
[http://dx.doi.org/10.1016/j.cca.2014.02.001] [PMID: 24525212]
[9]
Lee M, Kim J, Jang M, Park C, Lee JH, Lee T. Introduction of nanomaterials to biosensors for exosome detection: Case study for cancer analysis. Biosensors 2022; 12(8): 648.
[http://dx.doi.org/10.3390/bios12080648] [PMID: 36005042]
[10]
Shahverdi M, Darvish M. Exosomal microRNAs: A diagnostic and therapeutic small bio-molecule in esophageal Cancer. Curr Mol Med 2022; 23(4): 312-23.
[http://dx.doi.org/10.2174/1566524022666220321125134] [PMID: 35319366]
[11]
Iyer MK, Niknafs YS, Malik R, et al. The landscape of long noncoding RNAs in the human transcriptome. Nat Genet 2015; 47(3): 199-208.
[http://dx.doi.org/10.1038/ng.3192] [PMID: 25599403]
[12]
Xing C, Sun S, Yue ZQ, Bai F. Role of lncRNA LUCAT1 in cancer. Biomed Pharmacother 2021; 134: 111158.
[http://dx.doi.org/10.1016/j.biopha.2020.111158] [PMID: 33360049]
[13]
Kung JTY, Colognori D, Lee JT. Long noncoding RNAs: Past, present, and future. Genetics 2013; 193(3): 651-69.
[http://dx.doi.org/10.1534/genetics.112.146704] [PMID: 23463798]
[14]
Nair L, Chung H, Basu U. Regulation of long non-coding RNAs and genome dynamics by the RNA surveillance machinery. Nat Rev Mol Cell Biol 2020; 21(3): 123-36.
[http://dx.doi.org/10.1038/s41580-019-0209-0] [PMID: 32020081]
[15]
Li M, Gou H, Tripathi BK, et al. An apela RNA-containing negative feedback loop regulates p53-mediated apoptosis in embryonic stem cells. Cell Stem Cell 2015; 16(6): 669-83.
[http://dx.doi.org/10.1016/j.stem.2015.04.002] [PMID: 25936916]
[16]
Karami Fath M, Pourbagher Benam S, Salmani K, et al. Circular RNAs in neuroblastoma: Pathogenesis, potential biomarker, and therapeutic target. Pathol Res Pract 2022; 238(238): 154094.
[http://dx.doi.org/10.1016/j.prp.2022.154094] [PMID: 36087416]
[17]
Klec C, Prinz F, Pichler M. Involvement of the long noncoding RNA NEAT 1 in carcinogenesis. Mol Oncol 2019; 13(1): 46-60.
[http://dx.doi.org/10.1002/1878-0261.12404] [PMID: 30430751]
[18]
Do H, Kim W. Roles of oncogenic long non-coding RNAs in cancer development. Genomics Inform 2018; 16(4): e18.
[http://dx.doi.org/10.5808/GI.2018.16.4.e18]
[19]
Smolle M, Pichler M. The role of long non-coding RNAs in osteosarcoma. Noncoding RNA 2018; 4(1): 7.
[http://dx.doi.org/10.3390/ncrna4010007] [PMID: 29657304]
[20]
Huo X, Han S, Wu G, et al. Dysregulated long noncoding RNAs (lncRNAs) in hepatocellular carcinoma: Implications for tumorigenesis, disease progression, and liver cancer stem cells. Mol Cancer 2017; 16(1): 165.
[http://dx.doi.org/10.1186/s12943-017-0734-4]
[21]
Chen Y, Li C, Pan Y, et al. The emerging role and promise of long noncoding RNAs in lung cancer treatment. Cell Physiol Biochem 2016; 38(6): 2194-206.
[http://dx.doi.org/10.1159/000445575] [PMID: 27183839]
[22]
Chen X, Fan S, Song E. Noncoding RNAs: New players in cancers. Adv Exp Med Biol 2016; 927: 1-47.
[http://dx.doi.org/10.1007/978-981-10-1498-7_1] [PMID: 27376730]
[23]
Huarte M. The emerging role of lncRNAs in cancer. Nat Med 2015; 21(11): 1253-61.
[http://dx.doi.org/10.1038/nm.3981] [PMID: 26540387]
[24]
Martens-Uzunova ES, Böttcher R, Croce CM, Jenster G, Visakorpi T, Calin GA. Long noncoding RNA in prostate, bladder, and kidney cancer. Eur Urol 2014; 65(6): 1140-51.
[http://dx.doi.org/10.1016/j.eururo.2013.12.003] [PMID: 24373479]
[25]
Arosio P, Ingrassia R, Cavadini P. Ferritins: A family of molecules for iron storage, antioxidation and more. Biochim Biophys Acta, Gen Subj 2009; 1790(7): 589-99.
[http://dx.doi.org/10.1016/j.bbagen.2008.09.004] [PMID: 18929623]
[26]
Wen YZ, Zheng LL, Qu LH, Ayala FJ, Lun ZR. Pseudogenes are not pseudo any more. RNA Biol 2012; 9(1): 27-32.
[http://dx.doi.org/10.4161/rna.9.1.18277] [PMID: 22258143]
[27]
Zhang S, Tian L, Ma P, et al. Potential role of differentially expressed lncRNAs in the pathogenesis of oral squamous cell carcinoma. Arch Oral Biol 2015; 60(10): 1581-7.
[http://dx.doi.org/10.1016/j.archoralbio.2015.08.003] [PMID: 26276270]
[28]
Murray MT, White K, Munro HN. Conservation of ferritin heavy subunit gene structure: implications for the regulation of ferritin gene expression. Proc Natl Acad Sci 1987; 84(21): 7438-42.
[http://dx.doi.org/10.1073/pnas.84.21.7438] [PMID: 3478702]
[29]
Poliseno L. Pseudogenes: newly discovered players in human cancer. Sci Signal 2012; 5(242): re5.
[http://dx.doi.org/10.1126/scisignal.2002858] [PMID: 22990117]
[30]
Di Sanzo M, Aversa I, Santamaria G, et al. FTH1P3, a novel H-ferritin pseudogene transcriptionally active, is ubiquitously expressed and regulated during cell differentiation. PLoS One 2016; 11(3): e0151359.
[http://dx.doi.org/10.1371/journal.pone.0151359] [PMID: 26982978]
[31]
Yuan H, Jiang H, Wang Y, Dong Y. Increased expression of lncRNA FTH1P3 predicts a poor prognosis and promotes aggressive phenotypes of laryngeal squamous cell carcinoma. Biosci Rep 2019; 39(6): BSR20181644.
[http://dx.doi.org/10.1042/BSR20181644] [PMID: 31142627]
[32]
Yang L, Sun K, Chu J, et al. Long non-coding RNA FTH1P3 regulated metastasis and invasion of esophageal squamous cell carcinoma through SP1/NF-kB pathway. Biomed Pharmacother 2018; 106: 1570-7.
[http://dx.doi.org/10.1016/j.biopha.2018.07.129] [PMID: 30119232]
[33]
Zheng X, Tang H, Zhao X, Sun Y, Jiang Y, Liu Y. Long non coding RNA FTH1P3 facilitates uveal melanoma cell growth and invasion through miR-224-5p. PLoS One 2017; 12(11): e0184746.
[http://dx.doi.org/10.1371/journal.pone.0184746] [PMID: 29095823]
[34]
Zhang CZ. Long non-coding RNA FTH1P3 facilitates oral squamous cell carcinoma progression by acting as a molecular sponge of miR-224-5p to modulate fizzled 5 expression. Gene 2017; 607: 47-55.
[http://dx.doi.org/10.1016/j.gene.2017.01.009] [PMID: 28093311]
[35]
Liu M, Gao X, Liu CL. Increased expression of lncRNA FTH1P3 promotes oral squamous cell carcinoma cells migration and invasion by enhancing PI3K/Akt/GSK3b/ Wnt/β-catenin signaling. Eur Rev Med Pharmacol Sci 2018; 22(23): 8306-14.
[http://dx.doi.org/10.26355/eurrev_201812_16528] [PMID: 30556871]
[36]
Zhao L, Zheng Y, Zhang L, Su L. E2F1-induced FTH1P3 promoted cell viability and glycolysis through miR-377-3p/LDHA axis in laryngeal squamous cell carcinoma. Cancer Biother Radiopharm 2022; 37(4): 276-86.
[http://dx.doi.org/10.1089/cbr.2020.4266] [PMID: 33571038]
[37]
Zhang Y, Li Y, Wang J, Lei P. Long non coding RNA ferritin heavy polypeptide 1 pseudogene 3 controls glioma cell proliferation and apoptosis via regulation of the microRNA 224 5p/tumor protein D52 axis. Mol Med Rep 2018; 18(5): 4239-46.
[http://dx.doi.org/10.3892/mmr.2018.9491] [PMID: 30221720]
[38]
Li Z, Wang Y. Long non-coding RNA FTH1P3 promotes the metastasis and aggressiveness of non-small cell lung carcinoma by inducing epithelial-mesenchymal transition. Int J Clin Exp Pathol 2019; 12(10): 3782-90.
[PMID: 31933766]
[39]
Lv R, Zhang Q. The long noncoding RNA FTH1P3 promotes the proliferation and metastasis of cervical cancer through microRNA 145. Oncol Rep 2019; 43(1): 31-40.
[http://dx.doi.org/10.3892/or.2019.7413] [PMID: 31789421]
[40]
Zheng G, Chen W, Li W, Ding Y, Tu P, Chen W. E2F1-induced ferritin heavy chain 1 pseudogene 3 (FTH1P3) accelerates non-small cell lung cancer gefitinib resistance. Biochem Biophys Res Commun 2020; 530(4): 624-31.
[http://dx.doi.org/10.1016/j.bbrc.2020.07.044] [PMID: 32762943]
[41]
Wang R, Zhang T, Yang Z, Jiang C, Seng J. Long non coding RNA FTH 1P3 activates paclitaxel resistance in breast cancer through miR 206/ ABCB 1. J Cell Mol Med 2018; 22(9): 4068-75.
[http://dx.doi.org/10.1111/jcmm.13679] [PMID: 29971911]
[42]
Tandon P, Dadhich A, Saluja H, Bawane S, Sachdeva S. The prevalence of squamous cell carcinoma in different sites of oral cavity at our Rural Health Care Centre in Loni, Maharashtra – a retrospective 10-year study. Contemp Oncol 2017; 2(2): 178-83.
[http://dx.doi.org/10.5114/wo.2017.68628] [PMID: 28947890]
[43]
Ryerson AB, Eheman CR, Altekruse SF, et al. Annual report to the nation on the status of cancer, 1975-2012, featuring the increasing incidence of liver cancer. Cancer 2016; 122(9): 1312-37.
[http://dx.doi.org/10.1002/cncr.29936] [PMID: 26959385]
[44]
Momen-Heravi F, Bala S. Emerging role of non-coding RNA in oral cancer. Cell Signal 2018; 42: 134-43.
[http://dx.doi.org/10.1016/j.cellsig.2017.10.009] [PMID: 29056500]
[45]
Steuer CE, El-Deiry M, Parks JR, Higgins KA, Saba NF. An update on larynx cancer. CA Cancer J Clin 2017; 67(1): 31-50.
[http://dx.doi.org/10.3322/caac.21386] [PMID: 27898173]
[46]
Megwalu UC, Sikora AG. Survival outcomes in advanced laryngeal cancer. JAMA Otolaryngol Head Neck Surg 2014; 140(9): 855-60.
[http://dx.doi.org/10.1001/jamaoto.2014.1671] [PMID: 25144163]
[47]
Rudolph E, Dyckhoff G, Becher H, Dietz A, Ramroth H. Effects of tumour stage, comorbidity and therapy on survival of laryngeal cancer patients: A systematic review and a meta-analysis. Eur Arch Otorhinolaryngol 2011; 268(2): 165-79.
[http://dx.doi.org/10.1007/s00405-010-1395-8] [PMID: 20957488]
[48]
Denechaud PD, Fajas L, Giralt A. E2F1, a novel regulator of metabolism. Front Endocrinol 2017; 8: 311.
[http://dx.doi.org/10.3389/fendo.2017.00311] [PMID: 29176962]
[49]
Abnet CC, Arnold M, Wei WQ. Epidemiology of esophageal squamous cell carcinoma. Gastroenterology 2018; 154(2): 360-73.
[http://dx.doi.org/10.1053/j.gastro.2017.08.023] [PMID: 28823862]
[50]
Chen J, Kwong DL, Cao T, et al. Esophageal squamous cell carcinoma (ESCC): Advance in genomics and molecular genetics. Dis Esophagus 2015; 28(1): 84-9.
[http://dx.doi.org/10.1111/dote.12088] [PMID: 23796192]
[51]
Shahverdi M, Darvish M. Therapeutic measures for the novel coronavirus: A review of current status and future perspective. Curr Mol Med 2021; 21(7): 562-72.
[http://dx.doi.org/10.2174/1566524020666201203170230] [PMID: 33272178]
[52]
Mei LL, Wang WJ, Qiu YT, Xie XF, Bai J, Shi ZZ. miR-145-5p suppresses tumor cell migration, invasion and epithelial to mesenchymal transition by regulating the Sp1/NF-κB signaling pathway in esophageal squamous cell carcinoma. Int J Mol Sci 2017; 18(9): 1833.
[http://dx.doi.org/10.3390/ijms18091833] [PMID: 28832500]
[53]
McCabe EM, Rasmussen TP. lncRNA involvement in cancer stem cell function and epithelial-mesenchymal transitions. Semin Cancer Biol 2021; 75: 38-48.
[http://dx.doi.org/10.1016/j.semcancer.2020.12.012] [PMID: 33346133]
[54]
Singh AD, Turell ME, Topham AK. Uveal melanoma: Trends in incidence, treatment, and survival. Ophthalmology 2011; 118(9): 1881-5.
[http://dx.doi.org/10.1016/j.ophtha.2011.01.040] [PMID: 21704381]
[55]
Buzzacco DM, Abdel-Rahman MH, Park S, Davidorf F, Olencki T, Cebulla CM. Long-term survivors with metastatic uveal melanoma. Open Ophthalmol J 2012; 6: 49-53.
[http://dx.doi.org/10.2174/1874364101206010049] [PMID: 22798969]
[56]
Cannon AC, Uribe-Alvarez C, Chernoff J. RAC1 as a therapeutic target in malignant melanoma. Trends Cancer 2020; 6(6): 478-88.
[http://dx.doi.org/10.1016/j.trecan.2020.02.021] [PMID: 32460002]
[57]
Liu Y, Zhou Q, Zhou D, Huang C, Meng X, Li J. Secreted frizzled-related protein 2-mediated cancer events: Friend or foe? Pharmacol Rep 2017; 69(3): 403-8.
[http://dx.doi.org/10.1016/j.pharep.2017.01.001] [PMID: 28273499]
[58]
Dijksterhuis JP, Petersen J, Schulte G. WNT/Frizzled signalling: Receptor-ligand selectivity with focus on FZD-G protein signalling and its physiological relevance: IUPHAR Review 3. Br J Pharmacol 2014; 171(5): 1195-209.
[http://dx.doi.org/10.1111/bph.12364] [PMID: 24032637]
[59]
Bush NAO, Chang SM, Berger MS. Current and future strategies for treatment of glioma. Neurosurg Rev 2017; 40(1): 1-14.
[http://dx.doi.org/10.1007/s10143-016-0709-8] [PMID: 27085859]
[60]
Campbell KJ, Tait SWG. Targeting BCL-2 regulated apoptosis in cancer. Open Biol 2018; 8(5): 180002.
[http://dx.doi.org/10.1098/rsob.180002] [PMID: 29769323]
[61]
Byrne JA, Frost S, Chen Y, Bright RK. Tumor protein D52 (TPD52) and cancer—oncogene understudy or understudied oncogene? Tumour Biol 2014; 35(8): 7369-82.
[http://dx.doi.org/10.1007/s13277-014-2006-x] [PMID: 24798974]
[62]
Chen C, Huang X, Peng M, Liu W, Yu F, Wang X. Multiple primary lung cancer: A rising challenge. J Thorac Dis 2019; 11(S4): S523-36.
[http://dx.doi.org/10.21037/jtd.2019.01.56] [PMID: 31032071]
[63]
Halliday PR, Blakely CM, Bivona TG. Emerging targeted therapies for the treatment of non-small cell lung cancer. Curr Oncol Rep 2019; 21(3): 21.
[http://dx.doi.org/10.1007/s11912-019-0770-x] [PMID: 30806814]
[64]
Zhang C, Leighl NB, Wu YL, Zhong WZ. Emerging therapies for non-small cell lung cancer. J Hematol Oncol 2019; 12(1): 45.
[http://dx.doi.org/10.1186/s13045-019-0731-8] [PMID: 31023335]
[65]
Fakhrieh M, Darvish M, Ardeshirylajimi A, Taheri M, Omrani MD. Improved bladder smooth muscle cell differentiation of the mesenchymal stem cells when grown on electrospun polyacrylonitrile/polyethylene oxide nanofibrous scaffold. J Cell Biochem 2019; 120(9): 15814-22.
[http://dx.doi.org/10.1002/jcb.28852] [PMID: 31069835]
[66]
Kurt Yilmaz N, Schiffer CA. Introduction: Drug resistance. Chem Rev 2021; 121(6): 3235-7.
[http://dx.doi.org/10.1021/acs.chemrev.1c00118] [PMID: 33757288]
[67]
Sadri Nahand J, Rabiei N, Fathazam R, et al. Oncogenic viruses and chemoresistance: What do we know? Pharmacol Res 2021; 170: 105730.
[http://dx.doi.org/10.1016/j.phrs.2021.105730] [PMID: 34119621]
[68]
Jin KT, Lu ZB, Lv JQ, Zhang JG. The role of long non-coding RNAs in mediating chemoresistance by modulating autophagy in cancer. RNA Biol 2020; 17(12): 1727-40.
[http://dx.doi.org/10.1080/15476286.2020.1737787] [PMID: 32129701]
[69]
Youn HJ, Han W. A review of the epidemiology of breast cancer in asia: Focus on risk factors. Asian Pac J Cancer Prev 2020; 21(4): 867-80.
[http://dx.doi.org/10.31557/APJCP.2020.21.4.867] [PMID: 32334446]
[70]
Dan VM, Raveendran RS, Baby S. Resistance to intervention: Paclitaxel in breast cancer. Mini Rev Med Chem 2021; 21(10): 1237-68.
[http://dx.doi.org/10.2174/18755607MTEy4NDMf1] [PMID: 33319669]
[71]
Abd El-Aziz YS, Spillane AJ, Jansson PJ, Sahni S. Role of ABCB1 in mediating chemoresistance of triple-negative breast cancers. Biosci Rep 2021; 41(2): BSR20204092.
[http://dx.doi.org/10.1042/BSR20204092] [PMID: 33543229]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy