Generic placeholder image

Current Molecular Medicine

Editor-in-Chief

ISSN (Print): 1566-5240
ISSN (Online): 1875-5666

Review Article

Non-coding RNAs in Precursor Lesions of Colorectal Cancer: Their Role in Cancer Initiation and Formation

Author(s): Somayeh Mohammadpour, Fatemeh Naderi Noukabadi, Amir Torshizi Esfahani, Fatemeh Kazemi, Sahar Esmaeili, Nikta Zafarjafarzadeh, SeyedKasra Sarpash and Ehsan Nazemalhosseini-Mojarad*

Volume 24, Issue 5, 2024

Published on: 26 June, 2023

Page: [565 - 575] Pages: 11

DOI: 10.2174/1566524023666230523155719

Price: $65

Abstract

Colorectal cancer (CRC) is one of the world's most common types of malignancy. The proliferation of precancerous lesions causes this type of cancer. Two distinct pathways for CRC carcinogenesis have been identified: the conventional adenoma-carcinoma pathway and the serrated neoplasia pathway. Recently, evidence has demonstrated the regulatory roles of noncoding RNAs (ncRNAs) in the initiation and progression of precancerous lesions, especially in the adenoma-carcinoma pathway and serrated neoplasia pathway. By expanding the science of molecular genetics and bioinformatics, several studies have identified dysregulated ncRNAs that function as oncogenes or tumor suppressors in cancer initiation and formation by diverse mechanisms via intracellular signaling pathways known to act on tumor cells. However, many of their roles are still unclear. This review summarizes the functions and mechanisms of ncRNAs (such as long non-coding RNAs, microRNAs, long intergenic non-coding RNAs, small interfering RNAs, and circRNAs) in the initiation and formation of precancerous lesions.

[1]
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021; 71(3): 209-49.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[2]
Onyoh EF, Hsu WF, Chang LC, Lee YC, Wu MS, Chiu HM. The rise of colorectal cancer in Asia: epidemiology, screening, and management. Curr Gastroenterol Rep 2019; 21(8): 36.
[http://dx.doi.org/10.1007/s11894-019-0703-8] [PMID: 31289917]
[3]
Ønes M, Helsingen LM, Bretthauer M, Emilsson L. Epidemiology and risk factors of colorectal polyps. Best Pract Res Clin Gastroenterol 2017; 31(4): 419-24.
[http://dx.doi.org/10.1016/j.bpg.2017.06.004] [PMID: 28842051]
[4]
Malki A, ElRuz RA, Gupta I, Allouch A, Vranic S, Al Moustafa AE. Molecular mechanisms of colon cancer progression and metastasis: Recent insights and advancements. Int J Mol Sci 2020; 22(1): 130.
[http://dx.doi.org/10.3390/ijms22010130] [PMID: 33374459]
[5]
Nikolouzakis T, Vassilopoulou L, Fragkiadaki P, et al. Improving diagnosis, prognosis and prediction by using biomarkers in CRC patients. (Review) Oncol Rep 2018; 39(6): 2455-72.
[http://dx.doi.org/10.3892/or.2018.6330] [PMID: 29565457]
[6]
Nazemalhosseini Mojarad E, Kuppen PJ, Aghdaei HA, Zali MR. The CpG island methylator phenotype (CIMP) in colorectal cancer. Gastroenterol Hepatol Bed Bench 2013; 6(3): 120-8.
[PMID: 24834258]
[7]
Nazemalhosseini‐Mojarad E, Mohammadpour S, Torshizi Esafahani A. Intratumoral infiltrating lymphocytes correlate with improved survival in colorectal cancer patients: Independent of oncogenetic features. J Cellular Physiol 2019; 234(4): 4768-77.
[8]
Mojarad EN, Kashfi SMH, Mirtalebi H, et al. Prognostic significance of nuclear β-catenin expression in patients with colorectal cancer from Iran. Iran Red Crescent Med J 2015; 17(7): e22324.
[PMID: 26421170]
[9]
Gharib E, Anaraki F, Baghdar K, et al. Investigating the diagnostic performance of HOTTIP, PVT1, and UCA1 long noncoding RNAs as a predictive panel for the screening of colorectal cancer patients with lymph node metastasis. J Cell Biochem 2019; 120(9): 14780-90.
[http://dx.doi.org/10.1002/jcb.28739] [PMID: 30993787]
[10]
Mohammadpour S, Torshizi Esfahani A, Karimpour R, et al. High expression of Snail1 is associated with EMAST and poor prognosis in CRC patients. Gastroenterol Hepatol Bed Bench 2019; 12 (Suppl. 1): S30-6.
[PMID: 32099599]
[11]
Ranjbar R, Mohammadpour S, Torshizi Esfahani A, et al. Prevalence and prognostic role of PIK3CA E545K mutation in Iranian colorectal cancer patients. Gastroenterol Hepatol Bed Bench 2019; 12 (Suppl. 1): S22-9.
[PMID: 32099598]
[12]
Micallef I, Baron B. The mechanistic roles of ncRNAs in promoting and supporting chemoresistance of colorectal cancer. Noncoding RNA 2021; 7(2): 24.
[http://dx.doi.org/10.3390/ncrna7020024] [PMID: 33807355]
[13]
Esteller M. Non-coding RNAs in human disease. Nat Rev Genet 2011; 12(12): 861-74.
[http://dx.doi.org/10.1038/nrg3074] [PMID: 22094949]
[14]
Slack FJ, Chinnaiyan AMJC. The role of non-coding RNAs in oncology. Cell 2019; 179(5): 1033-55.
[http://dx.doi.org/10.1016/j.cell.2019.10.017]
[15]
Jia Z, An J, Liu Z, Zhang F. Non-coding RNAs in colorectal cancer: Their functions and mechanisms. Front Oncol 2022; 12: 783079.
[http://dx.doi.org/10.3389/fonc.2022.783079] [PMID: 35186731]
[16]
Nagtegaal ID, Odze RD, Klimstra D, et al. The 2019 WHO classification of tumours of the digestive system. Histopathology 2020; 76(2): 182-8.
[http://dx.doi.org/10.1111/his.13975] [PMID: 31433515]
[17]
Shussman N, Wexner SD. Colorectal polyps and polyposis syndromes. Gastroenterol Rep 2014; 2(1): 1-15.
[http://dx.doi.org/10.1093/gastro/got041]
[18]
Meseeha M, Attia MJS. Colon polyps. Treasure Island, Fl: StatPearls 2021.
[19]
Delavari A, Mardan F, Salimzadeh H, et al. Characteristics of colorectal polyps and cancer; a retrospective review of colonoscopy data in Iran. Middle East J Dig Dis 2014; 6(3): 144-50.
[20]
Jass JR. Molecular heterogeneity of colorectal cancer: Implications for cancer control. Surg Oncol 2007; 16 (Suppl. 1): 7-9.
[http://dx.doi.org/10.1016/j.suronc.2007.10.039] [PMID: 18023574]
[21]
Symonds E, Anwar S, Young G, et al. Sciences, Sessile serrated polyps with synchronous conventional adenomas increase risk of future advanced neoplasia. Dig Dis Sci 2019; 64(6): 1680-5.
[http://dx.doi.org/10.1007/s10620-019-5454-8] [PMID: 30627918]
[22]
Davenport JR, Su T, Zhao Z, et al. Modifiable lifestyle factors associated with risk of sessile serrated polyps, conventional adenomas and hyperplastic polyps. Gut 2018; 67(3): 456-65.
[http://dx.doi.org/10.1136/gutjnl-2016-312893] [PMID: 27852795]
[23]
De Palma F, D’Argenio V, Pol J, Kroemer G, Maiuri M, Salvatore F. The molecular hallmarks of the serrated pathway in colorectal cancer. Cancers 2019; 11(7): 1017.
[http://dx.doi.org/10.3390/cancers11071017] [PMID: 31330830]
[24]
Parker TW, Neufeld KL. APC controls Wnt-induced β-catenin destruction complex recruitment in human colonocytes. Sci Rep 2020; 10(1): 2957.
[http://dx.doi.org/10.1038/s41598-020-59899-z] [PMID: 32076059]
[25]
Schatoff EM, Leach BI, Dow LE. WNT signaling and colorectal cancer. Curr Colorectal Cancer Rep 2017; 13(2): 101-10.
[http://dx.doi.org/10.1007/s11888-017-0354-9] [PMID: 28413363]
[26]
Hashimoto T, Tanaka Y, Ogawa R, et al. Superficially serrated adenoma: A proposal for a novel subtype of colorectal serrated lesion. Mod Pathol 2018; 31(10): 1588-98.
[http://dx.doi.org/10.1038/s41379-018-0069-8] [PMID: 29789649]
[27]
Nguyen LH, Goel A, Chung DC. Pathways of colorectal carcinogenesis. Gastroenterology 2020; 158(2): 291-302.
[http://dx.doi.org/10.1053/j.gastro.2019.08.059] [PMID: 31622622]
[28]
Lemieux E, Cagnol S, Beaudry K, Carrier J, Rivard N. Oncogenic KRAS signalling promotes the Wnt/β-catenin pathway through LRP6 in colorectal cancer. Oncogene 2015; 34(38): 4914-27.
[http://dx.doi.org/10.1038/onc.2014.416] [PMID: 25500543]
[29]
Komor MA, Bosch LJW, Bounova G, et al. Consensus molecular subtype classification of colorectal adenomas. J Pathol 2018; 246(3): 266-76.
[http://dx.doi.org/10.1002/path.5129] [PMID: 29968252]
[30]
Chang K, Willis JA, Reumers J, et al. Colorectal premalignancy is associated with consensus molecular subtypes 1 and 2. Ann Oncol 2018; 29(10): 2061-7.
[http://dx.doi.org/10.1093/annonc/mdy337] [PMID: 30412224]
[31]
Sawayama H, Miyamoto Y, Ogawa K, Yoshida N, Baba H. Investigation of colorectal cancer in accordance with consensus molecular subtype classification. Ann Gastroenterol Surg 2020; 4(5): 528-39.
[http://dx.doi.org/10.1002/ags3.12362] [PMID: 33005848]
[32]
Jarroux J, Morillon A, Pinskaya MJLNCRB. History, discovery, and classification of lncRNAs. Adv Exp Med Biol 2017; 1-46.
[33]
Sanchita, Trivedi PK, Asif MH. Updates on plant long non coding RNAs (lncRNAs): The regulatory components. Plant Cell Tissue Organ Cult 2020; 140(2): 259-69.
[http://dx.doi.org/10.1007/s11240-019-01726-z]
[34]
Srijyothi L, Ponne S, Prathama T, Ashok C, Baluchamy S. Roles of non-coding RNAs in transcriptional regulation. UK: IntechOpen London 2018; Vol. 55.
[http://dx.doi.org/10.5772/intechopen.76125]
[35]
Esquela-Kerscher A, Slack FJ. Oncomirs — microRNAs with a role in cancer. Nature Reviews Cancer 2006; 6(4): 259-69.
[36]
Cho WC. OncomiRs: The discovery and progress of microRNAs in cancers. Mol Cancer 2007; 6(1): 60.
[37]
Esmaeili M, Keshani M, Vakilian M, et al. Role of non-coding RNAs as novel biomarkers for detection of colorectal cancer progression through interaction with the cell signaling pathways. Gene 2020; 753: 144796.
[http://dx.doi.org/10.1016/j.gene.2020.144796] [PMID: 32450203]
[38]
Zhang N, Hu X, Du Y, Du J. The role of miRNAs in colorectal cancer progression and chemoradiotherapy. Biomed Pharmacother 2021; 134: 111099.
[http://dx.doi.org/10.1016/j.biopha.2020.111099] [PMID: 33338745]
[39]
Mehrgou A, Ebadollahi S, Seidi K, et al. Roles of miRNAs in colorectal cancer: Therapeutic implications and clinical opportunities. Adv Pharm Bull 2021; 11(2): 233-47.
[PMID: 33880345]
[40]
Schetter AJ, Okayama H, Harris CC. The role of microRNAs in colorectal cancer. Cancer J 2012; 18(3): 244-52.
[http://dx.doi.org/10.1097/PPO.0b013e318258b78f] [PMID: 22647361]
[41]
Niu L, Yang W, Duan L, et al. Biological implications and clinical potential of metastasis-related miRNA in colorectal cancer. Mol Ther Nucleic Acids 2021; 23: 42-54.
[http://dx.doi.org/10.1016/j.omtn.2020.10.030] [PMID: 33335791]
[42]
Slaby O. Non-coding RNAs as biomarkers for colorectal cancer screening and early detection. Adv Exp Med Biol 2016; 937: 153-70.
[43]
Igder S, Mohammadiasl J, Mokarram P. Altered miR-21, miRNA-148a expression in relation to KRAS mutation status as indicator of adenoma-carcinoma transitional pattern in colorectal adenoma and carcinoma lesions. Biochem Genet 2019; 57(6): 767-80.
[http://dx.doi.org/10.1007/s10528-019-09918-0] [PMID: 30997628]
[44]
Chen H, Liu H, Zou H, et al. Evaluation of plasma miR-21 and miR-152 as diagnostic biomarkers for common types of human cancers. J Cancer 2016; 7(5): 490-9.
[http://dx.doi.org/10.7150/jca.12351] [PMID: 26958084]
[45]
Ourô S, Mourato C, Velho S, et al. Potential of miR-21 to predict incomplete response to chemoradiotherapy in rectal adenocarcinoma. Front Oncol 2020; 10: 577653.
[http://dx.doi.org/10.3389/fonc.2020.577653] [PMID: 33194696]
[46]
Li C, Zhao L, Chen Y, et al. MicroRNA-21 promotes proliferation, migration, and invasion of colorectal cancer, and tumor growth associated with down-regulation of sec23a expression. BMC Cancer 2016; 16(1): 605.
[http://dx.doi.org/10.1186/s12885-016-2628-z] [PMID: 27495250]
[47]
Chen H, Xu Z, Liu D. Small non coding RNA and colorectal cancer. J Cell Mol Med 2019; 23(5): 3050-7.
[http://dx.doi.org/10.1111/jcmm.14209] [PMID: 30801950]
[48]
Moloudizargari M, Rahmani J, Asghari MH, Goel A. The prognostic role of miR-31 in colorectal cancer: The results of a meta-analysis of 4720 patients. Epigenomics 2022; 14(2): 101-12.
[http://dx.doi.org/10.2217/epi-2021-0277] [PMID: 34894715]
[49]
Wang J, Yan F, Zhao Q, et al. Circulating exosomal miR-125a-3p as a novel biomarker for early-stage colon cancer. Sci Rep 2017; 7(1): 4150.
[http://dx.doi.org/10.1038/s41598-017-04386-1] [PMID: 28646161]
[50]
Savabkar S, Irani S, Alebouyeh M, Mirfakhraie R, Nazemalhosseini ME, Zali Mr. Asadzadeh aghdaei, H. Methylation status of miR-200b promoter in colorectal polyp and adenocarcinoma tissues. Iran Red Crescent Med J 2021; 23(4): 1-8.
[51]
Herreros-Villanueva M, Duran-Sanchon S, Martín AC, gastroenterology t. Plasma microRNA signature validation for early detection of colorectal cancer. Clin Transl Gastroenterol 2019; 10(1): e00003.
[http://dx.doi.org/10.14309/ctg.0000000000000003] [PMID: 30702491]
[52]
Kashani E, Hadizadeh M, Chaleshi V, et al. The differential DNA hypermethylation patterns of microRNA-137 and microRNA-342 Locus in early colorectal lesions and tumours. Biomolecules 2019; 9(10): 519.
[http://dx.doi.org/10.3390/biom9100519] [PMID: 31546665]
[53]
Liu Y, Dou M, Song X, et al. The emerging role of the piRNA/piwi complex in cancer. Mol Cancer 2019; 18(1): 123.
[http://dx.doi.org/10.1186/s12943-019-1052-9] [PMID: 31399034]
[54]
Weng W, Li H, Goel A. Piwi-interacting RNAs (piRNAs) and cancer: Emerging biological concepts and potential clinical implications. Biochim Biophys Acta Rev Cancer 2019; 1871(1): 160-9.
[http://dx.doi.org/10.1016/j.bbcan.2018.12.005] [PMID: 30599187]
[55]
Cheng Y, Wang Q, Jiang W, et al. Emerging roles of piRNAs in cancer: Challenges and prospects. Aging 2019; 11(21): 9932-46.
[http://dx.doi.org/10.18632/aging.102417] [PMID: 31727866]
[56]
Riquelme I, Pérez-Moreno P, Letelier P, Brebi P, Roa JC. The emerging role of piwi-interacting rnas (Pirnas) in gastrointestinal cancers: An updated perspective. Cancers 2021; 14(1): 202.
[http://dx.doi.org/10.3390/cancers14010202] [PMID: 35008366]
[57]
Assumpçã CB, Calcagno DQ, Araújo TMT. The role of piRNA and its potential clinical implications in cancer. Epigenomics 2015; 7(6): 975-84.
[http://dx.doi.org/10.2217/epi.15.37] [PMID: 25929784]
[58]
Iyer DN, Wan TMH, Man JHW, et al. Small RNA profiling of piRNAs in colorectal cancer identifies consistent overexpression of piR-24000 that correlates clinically with an aggressive disease phenotype. Cancers 2020; 12(1): 188.
[http://dx.doi.org/10.3390/cancers12010188] [PMID: 31940941]
[59]
Yin J, Jiang XY, Qi W, et al. piR 823 contributes to colorectal tumorigenesis by enhancing the transcriptional activity of HSF 1. Cancer Sci 2017; 108(9): 1746-56.
[http://dx.doi.org/10.1111/cas.13300] [PMID: 28618124]
[60]
Sabbah NA, Abdalla WM, Mawla WA, et al. PiRNA-823 is a unique potential diagnostic non-invasive biomarker in colorectal cancer patients. Genes 2021; 12(4): 598.
[http://dx.doi.org/10.3390/genes12040598] [PMID: 33921704]
[61]
Ding X, Li Y, Lü J, et al. piRNA-823 is involved in cancer stem cell regulation through altering DNA methylation in association with luminal breast cancer. Front Cell Dev Biol 2021; 9: 641052.
[http://dx.doi.org/10.3389/fcell.2021.641052] [PMID: 33791297]
[62]
Vychytilova-Faltejskova P, Stitkovcova K, Radova L, et al. Circulating PIWI-interacting RNAs piR-5937 and piR-28876 are promising diagnostic biomarkers of colon cancer. Cancer Epidemiol Biomarkers Prev 2018; 27(9): 1019-28.
[http://dx.doi.org/10.1158/1055-9965.EPI-18-0318] [PMID: 29976566]
[63]
Qu A, Wang W, Yang Y, et al. A serum piRNA signature as promising non-invasive diagnostic and prognostic biomarkers for colorectal cancer. Cancer Manag Res 2019; 11: 3703-20.
[http://dx.doi.org/10.2147/CMAR.S193266] [PMID: 31118791]
[64]
Sellitto A, Geles K, D’Agostino Y, et al. Molecular and functional characterization of the somatic PIWIL1/piRNA pathway in colorectal cancer cells. Cells 2019; 8(11): 1390.
[http://dx.doi.org/10.3390/cells8111390] [PMID: 31694219]
[65]
Valentino JD, Elliott VA, Zaytseva YY, et al. Novel small interfering RNA cotargeting strategy as treatment for colorectal cancer. Surgery 2012; 152(2): 277-85.
[http://dx.doi.org/10.1016/j.surg.2012.05.006] [PMID: 22828149]
[66]
Aghamiri S, Jafarpour A, Malekshahi ZV, Mahmoudi Gomari M, Negahdari B. Targeting siRNA in colorectal cancer therapy: Nanotechnology comes into view. J Cell Physiol 2019; 234(9): 14818-27.
[http://dx.doi.org/10.1002/jcp.28281] [PMID: 30919964]
[67]
Liu J, Guo B. RNA-based therapeutics for colorectal cancer: Updates and future directions. Pharmacol Res 2020; 152: 104550.
[http://dx.doi.org/10.1016/j.phrs.2019.104550] [PMID: 31866285]
[68]
Mulkeen A, Silva T, Schmitz J, Uchio E, Chu E, Cha C. siRNA-mediated gene silencing in colorectal cancer: A novel anti-angiogenic targeted therapy. J Surg Res 2004; 121(2): 279-80.
[http://dx.doi.org/10.1016/j.jss.2004.07.043]
[69]
Peng H-x, Wu W-q, Yang D-m, et al. Role of B7-H4 siRNA in proliferation, migration, and invasion of LOVO colorectal carcinoma cell line. Biomed Res Int 2015; 2015: 326981.
[http://dx.doi.org/10.1155/2015/326981]
[70]
Bämer S, Bäumer N, Appel N. Antibody-mediated delivery of anti-KRAS-siRNA in vivo overcomes therapy resistance in colon cancer. Clin Cancer Res 2015; 21(6): 1383-94.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-2017] [PMID: 25589625]
[71]
Deniz E, Erman B. Long noncoding RNA (lincRNA), a new paradigm in gene expression control. Funct Integr Genomics 2017; 17(2-3): 135-43.
[http://dx.doi.org/10.1007/s10142-016-0524-x] [PMID: 27681237]
[72]
Ling H, Spizzo R, Atlasi Y, et al. CCAT2, a novel noncoding RNA mapping to 8q24, underlies metastatic progression and chromosomal instability in colon cancer. Genome Res 2013; 23(9): 1446-61.
[http://dx.doi.org/10.1101/gr.152942.112] [PMID: 23796952]
[73]
Jing N, Huang T, Guo H, et al. LncRNA CASC15 promotes colon cancer cell proliferation and metastasis by regulating the miR 4310/LGR5/Wnt/β- catenin signaling pathway. Mol Med Rep 2018; 18(2): 2269-76.
[http://dx.doi.org/10.3892/mmr.2018.9191] [PMID: 29956772]
[74]
Yang P, Yang Y, An W, et al. The long noncoding RNA-ROR promotes the resistance of radiotherapy for human colorectal cancer cells by targeting the p53/miR-145 pathway. J Gastroenterol Hepatol 2017; 32(4): 837-45.
[http://dx.doi.org/10.1111/jgh.13606] [PMID: 27696511]
[75]
Wang Y, Lu JH, Wu QN, et al. LncRNA LINRIS stabilizes IGF2BP2 and promotes the aerobic glycolysis in colorectal cancer. Mol Cancer 2019; 18(1): 174.
[http://dx.doi.org/10.1186/s12943-019-1105-0] [PMID: 31791342]
[76]
Sadri S, Rejali L, Hadizadeh M, et al. ANRIL as a prognostic biomarker in colon pre-cancerous lesion detection via non invasive sampling. Genes Genet Syst 2021; 96(6): 285-92.
[http://dx.doi.org/10.1266/ggs.21-00102] [PMID: 35296566]
[77]
Chaleshi V, Irani S, Alebouyeh M, Mirfakhraie R, Asadzadeh Aghdaei H. Association of lncRNA p53 regulatory network (lincRNA p21, lincRNA ROR and MALAT1) and p53 with the clinicopathological features of colorectal primary lesions and tumors. Oncol Lett 2020; 19(6): 3937-49.
[http://dx.doi.org/10.3892/ol.2020.11518] [PMID: 32391102]
[78]
He RZ, Jiang J, Hu X, et al. Stabilization of UCA1 by N6-methyladenosine RNA methylation modification promotes colorectal cancer progression. Cancer Cell Int 2021; 21(1): 616.
[http://dx.doi.org/10.1186/s12935-021-02288-x] [PMID: 34809621]
[79]
Zhang Z, Zhou C, Chang Y, et al. Long non-coding RNA CASC11 interacts with hnRNP-K and activates the WNT/β-catenin pathway to promote growth and metastasis in colorectal cancer. Cancer Lett 2016; 376(1): 62-73.
[http://dx.doi.org/10.1016/j.canlet.2016.03.022] [PMID: 27012187]
[80]
Graham LD, Pedersen SK, Brown GS, et al. Colorectal Neoplasia Differentially Expressed (CRNDE), a novel gene with elevated expression in colorectal adenomas and adenocarcinomas. Genes Cancer 2011; 2(8): 829-40.
[http://dx.doi.org/10.1177/1947601911431081] [PMID: 22393467]
[81]
Han P, Li J, Zhang B, et al. The lncRNA CRNDE promotes colorectal cancer cell proliferation and chemoresistance via miR-181a-5p-mediated regulation of Wnt/β-catenin signaling. Mol Cancer 2017; 16(1): 9-9.
[http://dx.doi.org/10.1186/s12943-017-0583-1] [PMID: 28086904]
[82]
Wang AH, Fan WJ, Fu L, Wang XT. LncRNA PCAT-1 regulated cell proliferation, invasion, migration and apoptosis in colorectal cancer through targeting miR-149-5p. Eur Rev Med Pharmacol Sci 2019; 23(19): 8310-20.
[PMID: 31646561]
[83]
Dai L, Li J, Dong Z, et al. Temporal expression and functional analysis of long non coding RNA s in colorectal cancer initiation. J Cell Mol Med 2019; 23(6): 4127-38.
[http://dx.doi.org/10.1111/jcmm.14300] [PMID: 30920116]
[84]
He Q, Long J, Yin Y, et al. Emerging roles of lncRNAs in the formation and progression of colorectal cancer. Front Oncol 2020; 9: 1542.
[http://dx.doi.org/10.3389/fonc.2019.01542] [PMID: 32010629]
[85]
Wu X, Li J, Ren Y, Zuo Z, Ni S, Cai J. MEG3 can affect the proliferation and migration of colorectal cancer cells through regulating miR-376/PRKD1 axis. Am J Transl Res 2019; 11(9): 5740-51.
[PMID: 31632544]
[86]
Silva-Fisher JM, Dang HX, White NM, et al. Long non-coding RNA RAMS11 promotes metastatic colorectal cancer progression. Nat Commun 2020; 11(1): 2156.
[http://dx.doi.org/10.1038/s41467-020-15547-8] [PMID: 32358485]
[87]
Sun N, Zhang G, Liu Y. Long non-coding RNA XIST sponges miR-34a to promotes colon cancer progression via Wnt/β-catenin signaling pathway. Gene 2018; 665: 141-8.
[http://dx.doi.org/10.1016/j.gene.2018.04.014] [PMID: 29679755]
[88]
Wang L, Bu P, Ai Y, et al. A long non-coding RNA targets microRNA miR-34a to regulate colon cancer stem cell asymmetric division. eLife 2016; 5: e14620.
[http://dx.doi.org/10.7554/eLife.14620] [PMID: 27077950]
[89]
Di Cecilia S, Zhang F, Sancho A, et al. RBM5-AS1 is critical for self-renewal of colon cancer stem-like cells. Cancer Res 2016; 76(19): 5615-27.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-1824] [PMID: 27520449]
[90]
Krappinger JC, Bonstingl L, Pansy K, et al. Non-coding natural antisense transcripts: Analysis and application. J Biotechnol 2021; 340: 75-101.
[http://dx.doi.org/10.1016/j.jbiotec.2021.08.005] [PMID: 34371054]
[91]
Halley P, Khorkova O, Wahlestedt C. Natural antisense transcripts as therapeutic targets. Drug Discov Today Ther Strateg 2013; 10(3): e119-25.
[http://dx.doi.org/10.1016/j.ddstr.2013.03.001] [PMID: 25580147]
[92]
Zhao S, Zhang X, Chen S, Zhang S. Natural antisense transcripts in the biological hallmarks of cancer: Powerful regulators hidden in the dark. J Exp Clin Cancer Res 2020; 39(1): 187.
[http://dx.doi.org/10.1186/s13046-020-01700-0] [PMID: 32928281]
[93]
Kohno K, Chiba M, Murata S, et al. Identification of natural antisense transcripts involved in human colorectal cancer development. Int J Oncol 2010; 37(6): 1425-32.
[PMID: 21042710]
[94]
Shademan M, Naseri Salanghuch A, Zare K, et al. Expression profile analysis of two antisense lncRNAs to improve prognosis prediction of colorectal adenocarcinoma. Cancer Cell Int 2019; 19(1): 278.
[http://dx.doi.org/10.1186/s12935-019-1000-1] [PMID: 31708689]
[95]
Xiao J, Liu Y, Yi J, Liu X. LINC02257, an enhancer RNA of prognostic value in colon adenocarcinoma, correlates with multi-omics immunotherapy-related analysis in 33 cancers. Front Mol Biosci 2021; 8: 646786.
[http://dx.doi.org/10.3389/fmolb.2021.646786] [PMID: 33996902]
[96]
Wang R, Tang Q. Current advances on the important roles of enhancer RNAs in molecular pathways of cancer. Int J Mol Sci 2021; 22(11): 5640.
[http://dx.doi.org/10.3390/ijms22115640] [PMID: 34073237]
[97]
Siddiqui H, Al-Ghafari A, Choudhry H, Al Doghaither H. Roles of long non-coding RNAs in colorectal cancer tumorigenesis: A Review. Mol Clin Oncol 2019; 11(2): 167-72.
[http://dx.doi.org/10.3892/mco.2019.1872] [PMID: 31281651]
[98]
McCleland ML, Mesh K, Lorenzana E, et al. CCAT1 is an enhancer-templated RNA that predicts BET sensitivity in colorectal cancer. J Clin Invest 2016; 126(2): 639-52.
[http://dx.doi.org/10.1172/JCI83265] [PMID: 26752646]
[99]
Liu J, Zhang X, Yan M, Li H. Emerging role of circular RNAs in cancer. Front Oncol 2020; 10: 663.
[http://dx.doi.org/10.3389/fonc.2020.00663] [PMID: 32670861]
[100]
Li A, Wang WC, McAlister V, Zhou Q, Zheng X. Circular RNA in colorectal cancer. J Cell Mol Med 2021; 25(8): 3667-79.
[http://dx.doi.org/10.1111/jcmm.16380] [PMID: 33687140]
[101]
Zeng Y, Xu Y, Shu R, et al. Altered expression profiles of circular RNA in colorectal cancer tissues from patients with lung metastasis. Int J Mol Med 2017; 40(6): 1818-28.
[http://dx.doi.org/10.3892/ijmm.2017.3189] [PMID: 29039473]
[102]
Zhan W, Liao X, Wang Y, et al. circCTIC1 promotes the self renewal of colon TICs through BPTF-dependent c-Myc expression. Carcinogenesis 2019; 40(4): 560-8.
[http://dx.doi.org/10.1093/carcin/bgy144] [PMID: 30403769]
[103]
Zhi X, Zhang J, Cheng Z, Bian L, Qin J. CircLgr4 drives colorectal tumorigenesis and invasion through Lgr4-targeting peptide. Int J Cancer 2019.
[104]
Ameli-Mojarad M, Ameli-Mojarad M, Hadizadeh M, et al. The effective function of circular RNA in colorectal cancer. Cancer Cell Int 2021; 21(1): 496.
[http://dx.doi.org/10.1186/s12935-021-02196-0] [PMID: 34535136]
[105]
Sun Q, Hao Q, Prasanth KV. Nuclear long noncoding RNAs: Key regulators of gene expression. Trends Genet 2018; 34(2): 142-57.
[http://dx.doi.org/10.1016/j.tig.2017.11.005] [PMID: 29249332]
[106]
Palombo R, Frisone P, Fidaleo M, Mercatelli N, Sette C, Paronetto MP. The promoter-associated noncoding RNA pncCCND1_B assembles a protein–RNA complex to regulate cyclin D1 transcription in ewing sarcoma. Cancer Res 2019; 79(14): 3570-82.
[http://dx.doi.org/10.1158/0008-5472.CAN-18-2403] [PMID: 31072811]
[107]
Chellini L, Frezza V, Paronetto MP. Dissecting the transcriptional regulatory networks of promoter-associated noncoding RNAs in development and cancer. J Exp Clin Cancer Res 2020; 39(1): 51.
[http://dx.doi.org/10.1186/s13046-020-01552-8] [PMID: 32183847]
[108]
Yao J, Geng P, Li Y, Chen H, Li J, Zhu Y. Knockdown of a HIF-2α promoter upstream long noncoding RNA impairs colorectal cancer stem cell properties in vitro through HIF-2α downregulation. OncoTargets Ther 2015; 8: 3467-74.
[http://dx.doi.org/10.2147/OTT.S81393] [PMID: 26648739]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy