Generic placeholder image

Current Applied Materials

Editor-in-Chief

ISSN (Print): 2666-7312
ISSN (Online): 2666-7339

Review Article

Recent Advances in the Impact of Antibiotic and Antioxidant Multifunctional Hydrogel on Diabetic Wounds Healing

Author(s): Harish Bhardwaj*, Renjil Joshi*, Sulekha Khute* and Rajendra Kumar Jangde*

Volume 2, 2023

Published on: 04 September, 2023

Article ID: e200723218942 Pages: 14

DOI: 10.2174/2666731202666230720142646

Price: $65

Abstract

Hyperglycemia is a metabolic illness characterized by diabetes mellitus. Chronic hyperglycemia can lead to infection, production of more reactive oxygen species, chronic inflammation, and impaired angiogenesis, thus increasing the wound’s healing time. As the diabetic wound healing process is a more complex pathology, the demand to develop a topical application has emerged. This review focuses on the diabetic wound, wound healing, and the factors that influence diabetic wound healing. It also highlights the impact of combination delivery of antibiotics and antioxidants loaded with multifunctional hydrogel on diabetic wound healing. Due to the immense financial strain caused by this pathology, there is a need for other effective novel methods for wound healing. Therefore, multifunctional hydrogels, which are effective and have been used mainly as a carrier system for diabetic wound treatment, have been studied. Hence, the application of antibiotics and antioxidants loaded with multifunctional hydrogel in treating diabetic wounds is reviewed. Hydrogels present a significant theoretical reference for diabetic wound healing.

[1]
Spampinato, S.F.; Caruso, G.I.; De Pasquale, R.; Sortino, M.A.; Merlo, S. The treatment of impaired wound healing in diabetes: Looking among old drugs. Pharmaceut., 2020, 13(4), 60.
[http://dx.doi.org/10.3390/ph13040060] [PMID: 32244718]
[2]
Glover, K.; Mathew, E.; Pitzanti, G.; Magee, E.; Lamprou, D.A. 3D bioprinted scaffolds for diabetic wound-healing applications. Drug Deliv. Transl. Res., 2022, 1-4.
[http://dx.doi.org/10.1007/s13346-022-01115-8] [PMID: 35018558]
[3]
Ramadan, N.; Taha, M.; La Rosa, A.D.; Elsabbagh, A. Towards selection charts for epoxy resin, unsaturated polyester resin and their fibre-fabric composites with flame retardants. Materials, 2021, 14(5), 1181.
[http://dx.doi.org/10.3390/ma14051181] [PMID: 33802309]
[4]
Han, G.; Ceilley, R. Chronic wound healing: A review of current management and treatments. Adv. Ther., 2017, 34(3), 599-610.
[http://dx.doi.org/10.1007/s12325-017-0478-y] [PMID: 28108895]
[5]
Andrews, K.L.; Houdek, M.T.; Kiemele, L.J. Wound management of chronic diabetic foot ulcers. Prosthet. Orthot. Int., 2015, 39(1), 29-39.
[http://dx.doi.org/10.1177/0309364614534296] [PMID: 25614499]
[6]
Frykberg Robert, G.; Banks, J. Challenges in the treatment of chronic wounds. Adv. Wound Care, 2015, 4(9), 560-582.
[http://dx.doi.org/10.1089/wound.2015.0635]
[7]
Demidova-Rice, T.N.; Hamblin, M.R.; Herman, I.M. Acute and impaired wound healing: Pathophysiology and current methods for drug delivery, part 1: Normal and chronic wounds: Biology, causes, and approaches to care. Adv. Skin Wound Care, 2012, 25(7), 304-314.
[http://dx.doi.org/10.1097/01.ASW.0000416006.55218.d0] [PMID: 22713781]
[8]
Schultz, G.S.; Davidson, J.M.; Kirsner, R.S.; Bornstein, P.; Herman, I.M. Dynamic reciprocity in the wound microenvironment. Wound Repair Regen., 2011, 19(2), 134-148.
[http://dx.doi.org/10.1111/j.1524-475X.2011.00673.x] [PMID: 21362080]
[9]
Mandel, J.; Casari, M.; Stepanyan, M.; Martyanov, A.; Deppermann, C. Beyond hemostasis: Platelet innate immune interactions and thromboinflammation. Int. J. Mol. Sci., 2022, 23(7), 3868.
[http://dx.doi.org/10.3390/ijms23073868] [PMID: 35409226]
[10]
Amadio, E.M.; Marcos, R.L.; Serra, A.J.; dos Santos, S.A.; Caires, J.R.; Fernandes, G.H.C.; Leal-Junior, E.C.; Ferrari, J.C.C.; de Tarso Camillo de Carvalho, P. Effect of photobiomodulation therapy on the proliferation phase and wound healing in rats fed with an experimental hypoproteic diet. Lasers Med. Sci., 2021, 36(7), 1427-1435.
[http://dx.doi.org/10.1007/s10103-020-03181-1] [PMID: 33156476]
[11]
Luo, R.; Dai, J.; Zhang, J.; Li, Z. Accelerated skin wound healing by electrical stimulation. Adv. Healthc. Mater., 2021, 10(16), 2100557.
[http://dx.doi.org/10.1002/adhm.202100557] [PMID: 33945225]
[12]
Potekaev, N.N.; Borzykh, O.B.; Medvedev, G.V.; Pushkin, D.V.; Petrova, M.M.; Petrov, A.V.; Dmitrenko, D.V.; Karpova, E.I.; Demina, O.M.; Shnayder, N.A. The role of extracellular matrix in skin wound healing. J. Clin. Med., 2021, 10(24), 5947.
[http://dx.doi.org/10.3390/jcm10245947] [PMID: 34945243]
[13]
Guler, Z.; Roovers, J.P. Role of fibroblasts and myofibroblasts on the pathogenesis and treatment of pelvic organ prolapse. Biomolecules, 2022, 12(1), 94.
[http://dx.doi.org/10.3390/biom12010094] [PMID: 35053242]
[14]
Shah, S.A.; Sohail, M.; Khan, S.; Minhas, M.U.; de Matas, M.; Sikstone, V.; Hussain, Z.; Abbasi, M.; Kousar, M. Biopolymer-based biomaterials for accelerated diabetic wound healing: A critical review. Int. J. Biol. Macromol., 2019, 139, 975-993.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.08.007] [PMID: 31386871]
[15]
Sirelkhatim, A.; Mahmud, S.; Seeni, A.; Kaus, N.H.M.; Ann, L.C.; Bakhori, S.K.M.; Hasan, H.; Mohamad, D. Review on zinc oxide nanoparticles: Antibacterial activity and toxicity mechanism. Nano-Micro Lett., 2015, 7(3), 219-242.
[http://dx.doi.org/10.1007/s40820-015-0040-x] [PMID: 30464967]
[16]
Xu, F.W.; Lv, Y.L.; Zhong, Y.F.; Xue, Y.N.; Wang, Y.; Zhang, L.Y.; Hu, X.; Tan, W.Q. Beneficial effects of green tea EGCG on skin wound healing: A comprehensive review. Molecules, 2021, 26(20), 6123.
[http://dx.doi.org/10.3390/molecules26206123] [PMID: 34684703]
[17]
Burn, G.L.; Foti, A.; Marsman, G.; Patel, D.F.; Zychlinsky, A. The Neutrophil. Immunity, 2021, 54(7), 1377-1391.
[http://dx.doi.org/10.1016/j.immuni.2021.06.006] [PMID: 34260886]
[18]
BIO Habana. MEDICC Review., 2022, 24(144), 1-82.
[19]
Kee, L.T.; Ng, C.Y.; Al-Masawa, M.E.; Foo, J.B.; How, C.W.; Ng, M.H.; Law, J.X. Extracellular vesicles in facial aesthetics: A review. Int. J. Mol. Sci., 2022, 23(12), 6742.
[http://dx.doi.org/10.3390/ijms23126742]
[20]
Leung, S.; Sum, W.; Shi, Y. The glycolytic process in endothelial cells and its implications. Acta Pharmacologica. Sinica, 2022, 43(2), 251-259.
[http://dx.doi.org/10.3390/ijms23126742]
[21]
Bacci, S. Cellular mechanisms and therapies in wound healing: Looking toward the Future. Biomedicines, 2021, 9(11), 1611.
[http://dx.doi.org/10.3390/biomedicines9111611] [PMID: 34829840]
[22]
An, Y.; Lin, S.; Tan, X.; Zhu, S.; Nie, F.; Zhen, Y.; Gu, L.; Zhang, C.; Wang, B.; Wei, W.; Li, D.; Wu, J. Exosomes from adipose‐derived stem cells and application to skin wound healing. Cell Prolif., 2021, 54(3), e12993.
[http://dx.doi.org/10.1111/cpr.12993] [PMID: 33458899]
[23]
Cheng, Y.S.; Yen, H.H.; Chang, C.Y.; Lien, W.C.; Huang, S.H.; Lee, S.S.; Wang, L.; Wang, H.M.D. Adipose-derived stem cell-incubated HA-rich sponge matrix implant modulates oxidative stress to enhance VEGF and TGF-β secretions for extracellular matrix reconstruction in vivo. Oxid. Med. Cell. Longev., 2022, 2022, 9355692.
[http://dx.doi.org/10.1155/2022/9355692] [PMID: 35082971]
[24]
Feng, J.; Wang, J.; Wang, Y.; Huang, X.; Shao, T.; Deng, X.; Cao, Y.; Zhou, M.; Zhao, C. Oxidative stress and lipid peroxidation: Prospective associations between ferroptosis and delayed wound healing in diabetic ulcers. Front. Cell Dev. Biol., 2022, 10, 898657.
[http://dx.doi.org/10.3389/fcell.2022.898657] [PMID: 35874833]
[25]
Xu, Z.; Han, S.; Gu, Z.; Wu, J. Advances and impact of antioxidant hydrogel in chronic wound healing. Adv. Healthc. Mater., 2020, 9(5), 1901502.
[http://dx.doi.org/10.1002/adhm.201901502] [PMID: 31977162]
[26]
Mir, M.; Ali, M.N.; Barakullah, A.; Gulzar, A.; Arshad, M.; Fatima, S.; Asad, M. Synthetic polymeric biomaterials for wound healing: A review. Prog. Biomater., 2018, 7(1), 1-21.
[http://dx.doi.org/10.1007/s40204-018-0083-4] [PMID: 29446015]
[27]
Boateng, J.; Catanzano, O. Advanced therapeutic dressings for effective wound healing-A review. J. Pharm. Sci., 2015, 104(11), 3653-3680.
[http://dx.doi.org/10.1002/jps.24610] [PMID: 26308473]
[28]
Regea, G. Review on antibiotics resistance and its economic impacts. J. Pharmacol. Clinic. Res., 2018, 5, 555675.
[http://dx.doi.org/10.19080/JPCR.2018.05.555675]
[29]
El-Ela, F.I.A.; Farghali, A.A.; Mahmoud, R.K.; Mohamed, N.A.; Moaty, S.A.A. New approach in ulcer prevention and wound healing treatment using doxycycline and amoxicillin/LDH Nanocomposites. Sci. Rep., 2019, 9(1), 6418.
[http://dx.doi.org/10.1038/s41598-019-42842-2] [PMID: 31015527]
[30]
Sonamuthu, J.; Cai, Y.; Liu, H.; Kasim, M.S.M.; Vasanthakumar, V.R.; Pandi, B.; Wang, H.; Yao, J. MMP-9 responsive dipeptide-tempted natural protein hydrogel-based wound dressings for accelerated healing action of infected diabetic wound. Int. J. Biol. Macromol., 2020, 153, 1058-1069.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.10.236] [PMID: 31756486]
[31]
Altoé, L.S.; Alves, R.S.; Miranda, L.L.; Sarandy, M.M.; Bastos, D.S.S.; Gonçalves-Santos, E.; Novaes, R.D.; Gonçalves, R.V. Doxycycline hyclate modulates antioxidant defenses, matrix metalloproteinases, and cox-2 activity accelerating skin wound healing by secondary intention in rats. Oxid. Med. Cell. Longev., 2021, 2021, 4681041.
[http://dx.doi.org/10.1155/2021/4681041] [PMID: 33959214]
[32]
Stechmiller, J.; Cowan, L.; Schultz, G. The role of doxycycline as a matrix metalloproteinase inhibitor for the treatment of chronic wounds. Biol. Res. Nurs., 2010, 11(4), 336-344.
[http://dx.doi.org/10.1177/1099800409346333] [PMID: 20031955]
[33]
Moore, A.L.; desJardins-Park, H.E.; Duoto, B.A.; Mascharak, S.; Murphy, M.P.; Irizarry, D.M.; Foster, D.S.; Jones, R.E.; Barnes, L.A.; Marshall, C.D.; Ransom, R.C.; Wernig, G.; Longaker, M.T. Doxycycline reduces scar thickness and improves collagen architecture. Ann. Surg., 2020, 272(1), 183-193.
[http://dx.doi.org/10.1097/SLA.0000000000003172] [PMID: 30585822]
[34]
Farhad, S.Z.; Dehdashtizadeh, A.; Esnaashari, N.; Ejeian, F.; Amini, S. The effect of laser irradiation and doxycycline application on the production of matrix metalloproteinase-8 and collagen I from cultured human periodontal ligament cells. Dent. Res. J., 2020, 17(3), 213-218.
[http://dx.doi.org/10.4103/1735-3327.284732] [PMID: 32774799]
[35]
Alamoudi, A.A.; Alharbi, A.S.; Abdel-Naim, A.B.; Badr-Eldin, S.M.; Awan, Z.A.; Okbazghi, S.Z.; Ahmed, O.A.A.; Alhakamy, N.A.; Fahmy, U.A.; Esmat, A. Novel nanoconjugate of apamin and ceftriaxone for management of diabetic wounds. Life, 2022, 12(7), 1096.
[http://dx.doi.org/10.3390/life12071096] [PMID: 35888184]
[36]
Haider, F.; Khan, B.A.; Khan, M.K. Formulation and evaluation of topical linezolid nanoemulsion for open incision wound in diabetic animal model. AAPS Pharm. Sci. Tech., 2022, 23(5), 129.
[http://dx.doi.org/10.1208/s12249-022-02288-8] [PMID: 35484340]
[37]
Villa, C.C.; Sánchez, L.T.; Valencia, G.A.; Ahmed, S.; Gutiérrez, T.J. Molecularly imprinted polymers for food applications: A review. Trends Food Sci. Technol., 2021, 111, 642-669.
[http://dx.doi.org/10.1016/j.tifs.2021.03.003]
[38]
Kalita, S.; Kandimalla, R.; Bhowal, A.C.; Kotoky, J.; Kundu, S. Functionalization of β-lactam antibiotic on lysozyme capped gold nanoclusters retrogress MRSA and its persisters following awakening. Sci. Rep., 2018, 8(1), 5778.
[http://dx.doi.org/10.1038/s41598-018-22736-5] [PMID: 29636496]
[39]
Thattaruparam bil Raveendran, N.; Mohandas, A.; Ramachandran, M.R.; Somasekharan, M.A.; Biswas, R.; Jayakumar, R. Ciprofloxacin-and fluconazole-containing fibrin-nanoparticle-incorporated chitosan bandages for the treatment of polymicrobial wound infections. ACS Appl. Bio Mater., 2018, 2(1), 243-254.
[http://dx.doi.org/10.1021/acsabm.8b00585]
[40]
Razzaq, A.; Khan, Z.U.; Saeed, A.; Shah, K.A.; Khan, N.U.; Menaa, B.; Iqbal, H.; Menaa, F. Development of cephradine-loaded gelatin/polyvinyl alcohol electrospun nanofibers for effective diabetic wound healing: In vitro and in vivo assessments. Pharmaceutics, 2021, 13(3), 349.
[http://dx.doi.org/10.3390/pharmaceutics13030349] [PMID: 33799983]
[41]
Davani, F.; Alishahi, M.; Sabzi, M.; Khorram, M.; Arastehfar, A.; Zomorodian, K. Dual drug delivery of vancomycin and imipenem/cilastatin by coaxial nanofibers for treatment of diabetic foot ulcer infections. Mater. Sci. Eng. C, 2021, 123, 111975.
[http://dx.doi.org/10.1016/j.msec.2021.111975] [PMID: 33812603]
[42]
Varrica, C.; Carvalheiro, M.; Faria-Silva, C.; Eleutério, C.; Sandri, G.; Simões, S. Topical allopurinol-loaded nanostructured lipid carriers: A novel approach for wound healing management. Bioengineering, 2021, 8(12), 192.
[http://dx.doi.org/10.3390/bioengineering8120192] [PMID: 34940345]
[43]
Sutthammikorn, N.; Supajatura, V.; Yue, H.; Takahashi, M.; Chansakaow, S.; Nakano, N.; Song, P.; Ogawa, T.; Ikeda, S.; Okumura, K.; Ogawa, H.; Niyonsaba, F. Topical Gynura procumbens as a novel therapeutic improves wound healing in diabetic mice. Plants, 2021, 10(6), 1122.
[http://dx.doi.org/10.3390/plants10061122] [PMID: 34205899]
[44]
Liou, Y.C.; Lin, Y.A.; Wang, K.; Yang, J.C.; Jang, Y.J.; Lin, W.; Wu, Y.C. Synthesis of novel spiro-tetrahydroquinoline derivatives and evaluation of their pharmacological effects on wound healing. Int. J. Mol. Sci., 2021, 22(12), 6251.
[http://dx.doi.org/10.3390/ijms22126251] [PMID: 34200731]
[45]
Patel, K.K.; Surekha, D.B.; Tripathi, M.; Anjum, M.M.; Muthu, M.S.; Tilak, R.; Agrawal, A.K.; Singh, S. Antibiofilm potential of silver sulfadiazine-loaded nanoparticle formulations: A study on the effect of D Nase-I on microbial biofilm and wound healing activity. Mol. Pharm., 2019, 16(9), 3916-3925.
[http://dx.doi.org/10.1021/acs.molpharmaceut.9b00527] [PMID: 31318574]
[46]
Zadeh, B.S.; Zamin, B.K. The effect of chitosan coating on mafenide acetate-loaded liposome characterization and delivery through burned rat skiN. Asian J. Pharm. Clin. Res., 2019, 12(7), 212-217.
[http://dx.doi.org/10.22159/ajpcr.2019.v12i7.32338]
[47]
Shah, A.; Ali Buabeid, M.; Arafa, E.S.A.; Hussain, I.; Li, L.; Murtaza, G. The wound healing and antibacterial potential of triple-component nanocomposite (chitosan-silver-sericin) films loaded with moxifloxacin. Int. J. Pharm., 2019, 564, 22-38.
[http://dx.doi.org/10.1016/j.ijpharm.2019.04.046] [PMID: 31002933]
[48]
Zhang, X.; Parekh, G.; Guo, B.; Huang, X.; Dong, Y.; Han, W.; Chen, X.; Xiao, G. Polyphenol and self-assembly: Metal polyphenol nanonetwork for drug delivery and pharmaceutical applications. Future Drug Discov., 2019, 1(1), FDD7.
[http://dx.doi.org/10.4155/fdd-2019-0001]
[49]
Al-Arouj, M.; Assaad-Khalil, S.; Buse, J.; Fahdil, I.; Fahmy, M.; Hafez, S.; Hassanein, M.; Ibrahim, M.A.; Kendall, D.; Kishawi, S.; Al-Madani, A.; Nakhi, A.B.; Tayeb, K.; Thomas, A. Recommendations for management of diabetes during Ramadan: Update 2010. Diabetes Care, 2010, 33(8), 1895-1902.
[http://dx.doi.org/10.2337/dc10-0896] [PMID: 20668157]
[50]
Gulcin, İ. Antioxidants and antioxidant methods: An updated overview. Arch. Toxicol., 2020, 94(3), 651-715.
[http://dx.doi.org/10.1007/s00204-020-02689-3] [PMID: 32180036]
[51]
Chandra, P.; Arora, D.S.; Pal, M.; Sharma, R.K. Antioxidant potential and extracellular auxin production by white rot fungi. Appl. Biochem. Biotechnol., 2019, 187(2), 531-539.
[http://dx.doi.org/10.1007/s12010-018-2842-z] [PMID: 29992489]
[52]
Lobo, V.; Patil, A.; Phatak, A.; Chandra, N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn. Rev., 2010, 4(8), 118-126.
[http://dx.doi.org/10.4103/0973-7847.70902] [PMID: 22228951]
[53]
Saravanan, R.; Ramamurthy, J. Evaluation of antioxidant activity of ocimum sanctum-an in vitro study. Int. J. Dent. Oral Sci., 2021, 8(11), 5001-5005.
[54]
Sreelatha, S.; Dinesh, E.; Uma, C. Antioxidant properties of Rajgira (Amaranthus paniculatus) leaves and potential synergy in chemoprevention. Asian Pac. J. Cancer Prev., 2012, 13(6), 2775-2780.
[http://dx.doi.org/10.7314/APJCP.2012.13.6.2775] [PMID: 22938458]
[55]
Das, A.K.; Nanda, P.K.; Madane, P.; Biswas, S.; Das, A.; Zhang, W.; Lorenzo, J.M. A comprehensive review on antioxidant dietary fibre enriched meat-based functional foods. Trends Food Sci. Technol., 2020, 99, 323-336.
[http://dx.doi.org/10.1016/j.tifs.2020.03.010]
[56]
Vijaya, L.; Anita, P.; Jossy, V.; Naresh, C. In vitro antioxidant activity of moringapterigosperma (Gaertn) leaves. Pharmacogn. J., 2009, 1(3), 190-197.
[57]
Al-Ghanayem, A.A.; Alhussaini, M.S.; Asad, M.; Joseph, B. Effect of Moringa oleifera leaf extract on excision wound infections in rats: Antioxidant, antimicrobial, and gene expression analysis. Molecules, 2022, 27(14), 4481.
[http://dx.doi.org/10.3390/molecules27144481] [PMID: 35889362]
[58]
Gul, M.; Liu, Z.W.; Iahtisham-Ul-Haq; Rabail, R.; Faheem, F.; Walayat, N.; Nawaz, A.; Shabbir, M.A.; Munekata, P.E.S.; Lorenzo, J.M..; Aadil, R.M.. Functional and nutraceutical significance of amla (Phyllanthus emblica L.): A review. Antioxidants, 2022, 11(5), 816.
[http://dx.doi.org/10.3390/antiox11050816] [PMID: 35624683]
[59]
Adnan, M.; Oh, K.K.; Azad, M.O.K.; Shin, M.H.; Wang, M.H.; Cho, D.H. Kenaf (Hibiscus cannabinus L.) leaves and seed as a potential source of the bioactive compounds: Effects of various extraction solvents on biological properties. Life, 2020, 10(10), 223.
[http://dx.doi.org/10.3390/life10100223] [PMID: 32998223]
[60]
Patel, M.; Verma, R.; Srivastav, P. Antioxidant activity of eclipta alba extract. J. Med. Plants Stud., 2016, 4, 92-98.
[61]
Xu, D.; Hu, M.J.; Wang, Y.Q.; Cui, Y.L. Antioxidant activities of quercetin and its complexes for medicinal application. Molecules, 2019, 24(6), 1123.
[http://dx.doi.org/10.3390/molecules24061123] [PMID: 30901869]
[62]
Prabhakar, P.K.; Prasad, R.; Ali, S.; Doble, M. Synergistic interaction of ferulic acid with commercial hypoglycemic drugs in streptozotocin induced diabetic rats. Phytomedicine, 2013, 20(6), 488-494.
[http://dx.doi.org/10.1016/j.phymed.2012.12.004] [PMID: 23490007]
[63]
Sunitha, D. A review on antioxidant methods. Asian J. Pharm. Clin. Res., 2016, 9(2), 14-32.
[http://dx.doi.org/10.22159/ajpcr.2016.v9s2.13092]
[64]
Chand, K. Rajeshwari; Hiremathad, A.; Singh, M.; Santos, M.A.; Keri, R.S. A review on antioxidant potential of bioactive heterocycle benzofuran: Natural and synthetic derivatives. Pharmacol. Rep., 2017, 69(2), 281-295.
[http://dx.doi.org/10.1016/j.pharep.2016.11.007] [PMID: 28171830]
[65]
Zduńska, K.; Dana, A.; Kolodziejczak, A.; Rotsztejn, H. Antioxidant properties of ferulic acid and its possible application. Skin Pharmacol. Physiol., 2018, 31(6), 332-336.
[http://dx.doi.org/10.1159/000491755] [PMID: 30235459]
[66]
Thyagaraju, B.M.; Muralidhara, B. Ferulic acid supplements abrogate oxidative impairments in liver and testis in the streptozotocin-diabetic rat. Zool. Sci., 2008, 25(8), 854-860.
[http://dx.doi.org/10.2108/zsj.25.854] [PMID: 18795822]
[67]
Maitz, M.F. Applications of synthetic polymers in clinical medicine. Biosurf. Biotribol., 2015, 1(3), 161-176.
[http://dx.doi.org/10.1016/j.bsbt.2015.08.002]
[68]
Roy, S.; Metya, S.K.; Sannigrahi, S.; Rahaman, N.; Ahmed, F. Treatment with ferulic acid to rats with streptozotocin-induced diabetes: Effects on oxidative stress, pro-inflammatory cytokines, and apoptosis in the pancreatic β cell. Endocrine, 2013, 44(2), 369-379.
[http://dx.doi.org/10.1007/s12020-012-9868-8] [PMID: 23299178]
[69]
Lin, C.M.; Chiu, J.H.; Wu, I.H.; Wang, B.W.; Pan, C.M.; Chen, Y.H. Ferulic acid augments angiogenesis via VEGF, PDGF and HIF-1α. J. Nutr. Biochem., 2010, 21(7), 627-633.
[http://dx.doi.org/10.1016/j.jnutbio.2009.04.001] [PMID: 19443196]
[70]
Umre, R.; Ganeshpurkar, A.; Ganeshpurkar, A.; Pandey, S.; Pandey, V.; Shrivastava, A.; Dubey, N. In vitro, in vivo and in silico antiulcer activity of ferulic acid. Future J. Pharmaceut. Sci., 2018, 4(2), 248-253.
[http://dx.doi.org/10.1016/j.fjps.2018.08.001]
[71]
Sivakumar, S.; Murali, R.; Arathanaikotti, D.; Gopinath, A.; Senthilkumar, C.; Kesavan, S.; Madhan, B. Ferulic acid loaded microspheres reinforced in 3D hybrid scaffold for antimicrobial wound dressing. Int. J. Biol. Macromol., 2021, 177, 463-473.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.02.124] [PMID: 33609580]
[72]
Wang, S.; Zheng, H.; Zhou, L.; Cheng, F.; Liu, Z.; Zhang, H.; Wang, L.; Zhang, Q. Nanoenzyme-reinforced injectable hydrogel for healing diabetic wounds infected with multidrug resistant bacteria. Nano Lett., 2020, 20(7), 5149-5158.
[http://dx.doi.org/10.1021/acs.nanolett.0c01371] [PMID: 32574064]
[73]
Gulrez, S.K.; Al-assaf, S.; Phillips, G.O. Hydrogels: Methods of preparation, characterisation and applications. Adv. Res., 2003, 6(2), 105-121.
[http://dx.doi.org/10.1016/j.jare.2013.07.006]
[74]
Gavan, A.; Colobatiu, L.; Hanganu, D.; Bogdan, C.; Olah, N.; Achim, M.; Mirel, S. Development and evaluation of hydrogel wound dressings loaded with herbal extracts. Processes, 2022, 10(2), 242.
[http://dx.doi.org/10.3390/pr10020242]
[75]
Casado-Diaz, A.; Moreno-Rojas, J.M.; Verdú-Soriano, J.; Lázaro-Martínez, J.L.; Rodríguez-Mañas, L.; Tunez, I.; La Torre, M.; Berenguer Pérez, M.; Priego-Capote, F.; Pereira-Caro, G. Evaluation of antioxidant and wound-healing properties of eho-85, a novel multifunctional amorphous hydrogel containing Olea europaea leaf extract. Pharmaceutics, 2022, 14(2), 349.
[http://dx.doi.org/10.3390/pharmaceutics14020349] [PMID: 35214081]
[76]
Zhou, L.; Pi, W.; Cheng, S.; Gu, Z.; Zhang, K.; Min, T.; Zhang, W.; Du, H.; Zhang, P.; Wen, Y. Multifunctional DNA hydrogels with hydrocolloid‐cotton structure for regeneration of diabetic infectious wounds. Adv. Funct. Mater., 2021, 31(48), 2106167.
[http://dx.doi.org/10.1002/adfm.202106167]
[77]
Xuan, Q.; Jiang, F.; Dong, H.; Zhang, W.; Zhang, F.; Ma, T.; Zhuang, J.; Yu, J.; Wang, Y.; Shen, H.; Chen, C.; Wang, P. Bioinspired intrinsic versatile hydrogel fabricated by amyloidal toxin simulant‐based nanofibrous assemblies for accelerated diabetic wound healing. Adv. Funct. Mater., 2021, 31(49), 2106705.
[http://dx.doi.org/10.1002/adfm.202106705]
[78]
Chen, Y.H.; Rao, Z.F.; Liu, Y.J.; Liu, X.S.; Liu, Y.F.; Xu, L.J.; Wang, Z.Q.; Guo, J.Y.; Zhang, L.; Dong, Y.S.; Qi, C.X.; Yang, C.; Wang, S.F. Multifunctional injectable hydrogel loaded with cerium-containing bioactive glass nanoparticles for diabetic wound healing. Biomolecules, 2021, 11(5), 702.
[http://dx.doi.org/10.3390/biom11050702] [PMID: 34066859]
[79]
Chen, C.; Zhou, P.; Huang, C.; Zeng, R.; Yang, L.; Han, Z.; Qu, Y.; Zhang, C. Photothermal-promoted multi-functional dual network polysaccharide hydrogel adhesive for infected and susceptible wound healing. Carbohydr. Polym., 2021, 273, 118557.
[http://dx.doi.org/10.1016/j.carbpol.2021.118557] [PMID: 34560968]
[80]
Liu, H.; Li, Z.; Zhao, Y.; Feng, Y.; Zvyagin, A.V.; Wang, J.; Yang, X.; Yang, B.; Lin, Q. Novel diabetic foot wound dressing based on multifunctional hydrogels with extensive temperature-tolerant, durable, adhesive, and intrinsic antibacterial properties. ACS Appl. Mater. Interfaces, 2021, 13(23), 26770-26781.
[http://dx.doi.org/10.1021/acsami.1c05514] [PMID: 34096258]
[81]
Kim, J.; Song, Y.; Kim, H.; Bae, N.H.; Lee, T.J.; Park, Y.M.; Lee, S.J. Im, S.G.; Choi, B.G.; Lee, K.G. 3D Hierarchical polyaniline-metal hybrid nanopillars: Morphological control and its antibacterial application. Nanomaterials, 2021, 11(10), 2716.
[http://dx.doi.org/10.3390/nano11102716] [PMID: 34685158]
[82]
Zhao, L.; Niu, L.; Liang, H.; Tan, H.; Liu, C.; Zhu, F. pH and glucose dual-responsive injectable hydrogels with insulin and fibroblasts as bioactive dressings for diabetic wound healing. ACS Appl. Mater. Interfaces, 2017, 9(43), 37563-37574.
[http://dx.doi.org/10.1021/acsami.7b09395] [PMID: 28994281]
[83]
Kong, L.; Wu, Z.; Zhao, H.; Cui, H.; Shen, J.; Chang, J.; Li, H.; He, Y. Bioactive injectable hydrogels containing desferrioxamine and bioglass for diabetic wound healing. ACS Appl. Mater. Interfaces, 2018, 10(36), 30103-30114.
[http://dx.doi.org/10.1021/acsami.8b09191] [PMID: 30113159]
[84]
Ma, H.; Zhou, Q.; Chang, J.; Wu, C. Grape seed-inspired smart hydrogel scaffolds for melanoma therapy and wound healing. ACS Nano, 2019, 13(4), 4302-4311.
[http://dx.doi.org/10.1021/acsnano.8b09496] [PMID: 30925040]
[85]
Zhu, Y.; Zhang, J.; Song, J.; Yang, J.; Du, Z.; Zhao, W.; Guo, H.; Wen, C.; Li, Q.; Sui, X.; Zhang, L. A multifunctional pro‐healing zwitterionic hydrogel for simultaneous optical monitoring of pH and glucose in diabetic wound treatment. Adv. Funct. Mater., 2020, 30(6), 1905493.
[http://dx.doi.org/10.1002/adfm.201905493]
[86]
Chen, H.; Cheng, R.; Zhao, X.; Zhang, Y.; Tam, A.; Yan, Y.; Shen, H.; Zhang, Y.S.; Qi, J.; Feng, Y.; Liu, L.; Pan, G.; Cui, W.; Deng, L. An injectable self-healing coordinative hydrogel with antibacterial and angiogenic properties for diabetic skin wound repair. NPG Asia Mater., 2019, 11(1), 3.
[http://dx.doi.org/10.1038/s41427-018-0103-9]
[87]
Zhang, J.; Wu, C.; Xu, Y.; Chen, J.; Ning, N.; Yang, Z.; Guo, Y.; Hu, X.; Wang, Y. Highly stretchable and conductive self-healing hydrogels for temperature and strain sensing and chronic wound treatment. ACS Appl. Mater. Interfaces, 2020, 12(37), 40990-40999.
[http://dx.doi.org/10.1021/acsami.0c08291] [PMID: 32808753]
[88]
Gao, D.; Zhang, Y.; Bowers, D.T.; Liu, W.; Ma, M. Functional hydrogels for diabetic wound management. APL Bioeng., 2021, 5(3), 031503.
[http://dx.doi.org/10.1063/5.0046682] [PMID: 34286170]
[89]
Munteanu, I.G.; Apetrei, C. Analytical methods used in determining antioxidant activity: A review. Int. J. Mol. Sci., 2021, 22(7), 3380.
[http://dx.doi.org/10.3390/ijms22073380] [PMID: 33806141]
[90]
Güiza-Argüello, V.R.; Solarte-David, V.A.; Pinzón-Mora, A.V.; Ávila-Quiroga, J.E.; Becerra-Bayona, S.M. Current advances in the development of hydrogel-based wound dressings for diabetic foot ulcer treatment. Polymers, 2022, 14(14), 2764.
[http://dx.doi.org/10.3390/polym14142764] [PMID: 35890541]
[91]
Pouget, C.; Dunyach-Remy, C.; Pantel, A.; Boutet-Dubois, A.; Schuldiner, S.; Sotto, A.; Lavigne, J.P.; Loubet, P. Alternative approaches for the management of diabetic foot ulcers. Front. Microbiol., 2021, 12, 747618.
[http://dx.doi.org/10.3389/fmicb.2021.747618] [PMID: 34675910]
[92]
Chin, G.A.; Thigpin, T.G.; Perrin, K.J.; Moldawer, L.L.; Schultz, G.S. Treatment of chronic ulcers in diabetic patients with a topical metalloproteinase inhibitor, doxycycline. Wounds, 2003, 15(10), 315-323.
[93]
Hedayatyanfard, K.; Bagheri Khoulenjani, S.; Abdollahifar, M.A.; Amani, D.; Habibi, B.; Zare, F.; Asadirad, A.; Pouriran, R.; Ziai, S.A. Chitosan/PVA/Doxycycline film and nanofiber accelerate diabetic wound healing in a rat model. Iran. J. Pharm. Res., 2020, 19(4), 225-239.
[http://dx.doi.org/10.22037/ijpr.2020.112620.13859] [PMID: 33841538]
[94]
Alven, S.; Peter, S.; Mbese, Z.; Aderibigbe, B.A. Polymer-based wound dressing materials loaded with bioactive agents: Potential materials for the treatment of diabetic wounds. Polymers, 2022, 14(4), 724.
[http://dx.doi.org/10.3390/polym14040724] [PMID: 35215637]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy