Generic placeholder image

Letters in Functional Foods

Editor-in-Chief

ISSN (Print): 2666-9390
ISSN (Online): 2666-9404

Review Article

An Outlook on Pathological Pathways of Diabetes and Molecular Mechanisms of Anti-diabetic Phytobioactives

Author(s): Km Rukhsar Anwar, Badruddeen*, Juber Akhtar, Mohammad Irfan Khan and Mohammad Ahmad

Volume 1, 2024

Published on: 25 September, 2023

Article ID: e180723218858 Pages: 20

DOI: 10.2174/2666939001666230718142652

Price: $65

conference banner
Abstract

Background & Purpose: Diabetes is a disease that has affected many people worldwide. According to the World Health Organization, approximately 80% of humans still rely on conventional or folk medicament in developed countries. The effectiveness of herbal medicines was credited to the phytochemical components.

Objective: This review aims to highlight the pathological pathways of diabetes and the antidiabetic mechanism of phytochemicals.

Materials and Methods: This organized search was compiled from the databases such as PubMed, Scopus, Embase, Science Direct, Web of Science, and Google Scholar till February 2023.

Results: Inflammatory and oxidative stress are mainly two examples of pathological pathways of diabetes that are explored. The reported antidiabetic phytochemicals work by increasing insulin secretion, lowering hepatic glucose output, controlling specific enzymes, and utilizing other mechanisms. For instance, studies on α-glucosidase inhibitors, modulation peroxisome proliferator- activated receptor-α, hypolipidaemic activity, antioxidants, inhibition of glycolytic enzymes like phosphoenolpyruvate carboxykinase, improvement of glycosylated haemoglobin and increased expression of glucose transporters have been conducted.

Conclusion: Many natural secondary metabolites (phytochemicals) have significant potential for the manufacture of marketable, new, and efficient anti-diabetic medicines which can be used for clinical purposes.

[1]
Bouyahya A, Omari El. Moroccan anti-diabetic medicinal plants: Ethnobotanical studies, phytochemical bioactive compounds, preclinical investigations, toxicological validations and clinical evidences; challenges, guidance and perspectives for future management of diabetes worldwide. Trends Food Sci Technol 2021; 115: 147-254.
[http://dx.doi.org/10.1016/j.tifs.2021.03.032]
[2]
Craig ME, Hattersley A, Donaghue KC. Definition, epidemiology and classification of diabetes in children and adolescents. Pediatr Diabetes 2009; 10(12) (Suppl. 12): 3-12.
[http://dx.doi.org/10.1111/j.1399-5448.2009.00568.x] [PMID: 19754613]
[3]
Rajlic S, Treede H, Münzel T, Daiber A, Duerr GD. Early detection is the best prevention—characterization of oxidative stress in diabetes mellitus and its consequences on the cardiovascular system. Cells 2023; 12(4): 583.
[http://dx.doi.org/10.3390/cells12040583] [PMID: 36831253]
[4]
McIntyre HD, Catalano P, Zhang C, Desoye G, Mathiesen ER, Damm P. Gestational diabetes mellitus. Nat Rev Dis Primers 2019; 5(1): 47.
[http://dx.doi.org/10.1038/s41572-019-0098-8] [PMID: 31296866]
[5]
Faselis C, Katsimardou A, Imprialos K, Deligkaris P, Kallistratos M, Dimitriadis K. Microvascular complications of Type 2 diabetes mellitus. Curr Vasc Pharmacol 2020; 18(2): 117-24.
[http://dx.doi.org/10.2174/1570161117666190502103733] [PMID: 31057114]
[6]
International Diabetes Federation. IDF Diabetes Atlas. Belgium: International Diabetes Federation 2019; p. 176.
[7]
Medagama AB, Bandara R. The use of Complementary and Alternative Medicines (CAMs) in the treatment of diabetes mellitus: Is continued use safe and effective? Nutr J 2014; 13(1): 102.
[http://dx.doi.org/10.1186/1475-2891-13-102] [PMID: 25331834]
[8]
Alqathama A, Alluhiabi G, Baghdadi H, et al. Herbal medicine from the perspective of type II diabetic patients and physicians: What is the relationship? BMC Complementary Medicine and Therapies 2020; 20(1): 65.
[http://dx.doi.org/10.1186/s12906-020-2854-4] [PMID: 32111222]
[9]
Kesavadev J, Saboo B, Sadikot S, et al. Unproven therapies for diabetes and their implications. Adv Ther 2017; 34(1): 60-77.
[http://dx.doi.org/10.1007/s12325-016-0439-x] [PMID: 27864668]
[10]
Shridhar PBS, Rao SM, Byregowda ML. Antidiabetic effect of Gymnema sylvestre in streptozotocin induced diabetes in rats. Braz J Vet Pathol 2015; 8(2): 36-45.
[11]
Shanmugasundaram ERB, Rajeswari G, Baskaran K, Kumar BRR, Shanmugasundaram KR, Ahmath BK. Use of Gymnema sylvestre leaf extract in the control of blood glucose in insulin-dependent diabetes mellitus. J Ethnopharmacol 1990; 30(3): 281-94.
[http://dx.doi.org/10.1016/0378-8741(90)90107-5] [PMID: 2259216]
[12]
Al-Romaiyan A, King AJ, Persaud SJ, Jones PM. A novel extract of Gymnema sylvestre improves glucose tolerance in vivo and stimulates insulin secretion and synthesis in vitro. Phytother Res 2013; 27(7): 1006-11.
[http://dx.doi.org/10.1002/ptr.4815] [PMID: 22911568]
[13]
Ameeduzzafar Z, Nabil K. Potential of natural bioactive compounds in management of diabetes: Review of preclinical and clinical evidence. Curr Pharmacol Rep 2021.
[14]
Vijaya K, Sunitha SP, Husssain JA, Sandhya P, Sujatha D, Gopireddy G. Synergistic antihyperglycemic, antihyperlipidemic and antioxidant effects of Momordica charantia and metformin in streptozotocin induced diabetic rats. World J Pharm Res 2014; 3: 1901-80.
[15]
Dans AML, Villarruz MVC, Jimeno CA, et al. The effect of Momordica charantia capsule preparation on glycemic control in Type 2 Diabetes Mellitus needs further studies. J Clin Epidemiol 2007; 60(6): 554-9.
[http://dx.doi.org/10.1016/j.jclinepi.2006.07.009] [PMID: 17493509]
[16]
Xue WL, Li XS, Zhang J, Liu YH, Wang ZL, Zhang RJ. Effect of Trigonella foenum-graecum (fenugreek) extract on blood glucose, blood lipid and hemorheological properties in streptozotocin-induced diabetic rats. Asia Pac J Clin Nutr 2007; 16(S1) (Suppl. 1): 422-6.
[PMID: 17392143]
[17]
Mishkinsky JS, Goldschmied A, Joseph B, Ahronson Z, Sulman FG. Hypoglycaemic effect of Trigonella foenum graecum and Lupinus termis (leguminosae) seeds and their major alkaloids in alloxan-diabetic and normal rats. Arch Int Pharmacodyn Ther 1974; 210(1): 27-37.
[PMID: 4280278]
[18]
Jin Y, Shi Y, Zou Y, Miao C, Sun B, Li C. Fenugreek prevents the development of STZ-induced diabetic nephropathy in a rat model of diabetes. Evid Based Compl Alternat Med 2014; 259368: 259368.
[19]
Mohammad Y, Mohammad I. Clinical evaluation of antidiabetic activity of Trigonella seeds and Aegle marmelos leaves. World Appl Sci J 2009; 7(10): 1231-4.
[20]
Hlebowicz J, Hlebowicz A, Lindstedt S, et al. Effects of 1 and 3 g cinnamon on gastric emptying, satiety, and postprandial blood glucose, insulin, glucose-dependent insulinotropic polypeptide, glucagon-like peptide 1, and ghrelin concentrations in healthy subjects. Am J Clin Nutr 2009; 89(3): 815-21.
[http://dx.doi.org/10.3945/ajcn.2008.26807] [PMID: 19158209]
[21]
Zhu R, Liu H, Liu C, et al. Cinnamaldehyde in diabetes: A review of pharmacology, pharmacokinetics and safety. Pharmacol Res 2017; 122: 78-89.
[http://dx.doi.org/10.1016/j.phrs.2017.05.019] [PMID: 28559210]
[22]
Forcados GE, James DB, Sallau AB, Muhammad A, Mabeta P. Oxidative stress and carcinogenesis: Potential of phytochemicals in breast cancer therapy. Nutr Cancer 2017; 69(3): 365-74.
[http://dx.doi.org/10.1080/01635581.2017.1267777] [PMID: 28103111]
[23]
Jensen SJK. Oxidative stress and free radicals. J Mol Struct THEOCHEM 2003; 666-667: 387-92.
[http://dx.doi.org/10.1016/j.theochem.2003.08.037]
[24]
Pisoschi AM, Pop A. The role of antioxidants in the chemistry of oxidative stress: A review. Eur J Med Chem 2015; 97: 55-74.
[http://dx.doi.org/10.1016/j.ejmech.2015.04.040] [PMID: 25942353]
[25]
Drummond GR, Selemidis S, Griendling KK, Sobey CG. Combating oxidative stress in vascular disease: NADPH oxidases as therapeutic targets. Nat Rev Drug Discov 2011; 10(6): 453-71.
[http://dx.doi.org/10.1038/nrd3403] [PMID: 21629295]
[26]
Pitocco D, Tesauro M, Alessandro R, Ghirlanda G, Cardillo C. Oxidative stress in diabetes: Implications for vascular and other complications. Int J Mol Sci 2013; 14(11): 21525-50.
[http://dx.doi.org/10.3390/ijms141121525] [PMID: 24177571]
[27]
Lazo-de-la-Vega-Monroy M-L, Fernández-Mejía C. Oxidative stress in diabetes mellitus and the role of vitamins with antioxidant actions Oxidative Stress and Chronic Degenerative Diseases. London: IntechOpen Limited 2013.
[28]
Weber D, Davies MJ, Grune T. Determination of protein carbonyls in plasma, cell extracts, tissue homogenates, isolated proteins: Focus on sample preparation and derivatization conditions. Redox Biol 2015; 5: 367-80.
[http://dx.doi.org/10.1016/j.redox.2015.06.005] [PMID: 26141921]
[29]
Yadav N, Kumar S, Marlowe T, et al. Oxidative phosphorylation-dependent regulation of cancer cell apoptosis in response to anticancer agents. Cell Death Dis 2015; 6(11): e1969.
[http://dx.doi.org/10.1038/cddis.2015.305] [PMID: 26539916]
[30]
Bhattacharya S, Sil PC. Role of plant-derived polyphenols in reducing oxidative stress-mediated diabetic complications. React Oxygen Spec 2018; 5(13)
[http://dx.doi.org/10.20455/ros.2018.811]
[31]
Srivastava KK, Kumar K. Oxidative injury and disease. Indian J Clin Biochem 2014; 30(1): 3-10.
[32]
Rains JL, Jain SK. Oxidative stress, insulin signaling, and diabetes. Free Radic Biol Med 2011; 50(5): 567-75.
[http://dx.doi.org/10.1016/j.freeradbiomed.2010.12.006] [PMID: 21163346]
[33]
Grimsrud PA, Xie H, Griffin TJ, Bernlohr DA. Oxidative stress and covalent modification of protein with bioactive aldehydes. J Biol Chem 2008; 283(32): 21837-41.
[http://dx.doi.org/10.1074/jbc.R700019200] [PMID: 18445586]
[34]
Muellenbach EA, Diehl CJ, Teachey MK, et al. Interactions of the advanced glycation end product inhibitor pyridoxamine and the antioxidant α-lipoic acid on insulin resistance in the obese Zucker rat. Metabolism 2008; 57(10): 1465-72.
[http://dx.doi.org/10.1016/j.metabol.2008.05.018] [PMID: 18803954]
[35]
Pérez-Matute P, Angeles Zulet M, Alfredo Martínez J. Reactive Species and Diabetes: Counteracting oxidative stress to improve health. Curr Opin in Pharmaco 2009; 9(6): 771-9.
[36]
Moreira PI, Sayre LM, Zhu X, Nunomura A, Smith MA, Perry G. Detection and localization of markers of oxidative stress by in situ methods: Application in the study of Alzheimer disease. Methods Mol Biol 2010; 610: 419-34.
[http://dx.doi.org/10.1007/978-1-60327-029-8_25] [PMID: 20013193]
[37]
Brownlee M. The pathobiology of diabetic complications: A unifying mechanism. Diabetes 2005; 54(6): 1615-25.
[http://dx.doi.org/10.2337/diabetes.54.6.1615] [PMID: 15919781]
[38]
Demirtas I, Erenler R, Elmastas M, Goktasoglu A. Studies on the antioxidant potential of flavones of Allium vineale isolated from its water-soluble fraction. Food Chem 2013; 136(1): 34-40.
[http://dx.doi.org/10.1016/j.foodchem.2012.07.086] [PMID: 23017389]
[39]
Erenler R, Sen O, Aksit H, et al. Isolation and identification of chemical constituents from Origanum majorana and investigation of anti-proliferative and antioxidant activities. J Sci Food Agric 2016; 96(3): 822-36.
[http://dx.doi.org/10.1002/jsfa.7155] [PMID: 25721137]
[40]
Bali E, Ergin V, Rackova L, Bayraktar O, Küçükboyacı N, Karasu Ç. Olive leaf extracts protect cardiomyocytes against 4-hydroxynonenal-induced toxicity in vitro: Comparison with oleuropein, hydroxytyrosol, and quercetin. Planta Med 2014; 80(12): 984-92.
[http://dx.doi.org/10.1055/s-0034-1382881] [PMID: 25098929]
[41]
Stefek M. Eye lens in aging and diabetes: Effect of quercetin. Rejuven resear 2011; 14(5): 525-34.
[42]
Ergin V, Hariry RE, Karasu C. Carbonyl stress in aging process: Role of vitamins and phytochemicals as redox regulators. Aging Dis 2013; 4(5): 276-94.
[http://dx.doi.org/10.14336/AD.2013.0400276] [PMID: 24124633]
[43]
Das A, Mukhopadhyay S. The evil axis of obesity, inflammation and type-2 diabetes. Endocr Metab Immune Disord Drug Targets 2011; 11(1): 23-31.
[http://dx.doi.org/10.2174/187153011794982086] [PMID: 21348821]
[44]
Wang X, Zhang DM, Gu TT, et al. Morin reduces hepatic inflammation-associated lipid accumulation in high fructose-fed rats via inhibiting sphingosine kinase 1/sphingosine 1-phosphate signaling pathway. Biochem Pharmacol 2013; 86(12): 1791-804.
[http://dx.doi.org/10.1016/j.bcp.2013.10.005] [PMID: 24134913]
[45]
Forbes JM, Cooper ME. Mechanisms of diabetic complications. Physiol Rev 2013; 93(1): 137-88.
[http://dx.doi.org/10.1152/physrev.00045.2011] [PMID: 23303908]
[46]
Karamifar H, Habibian N, Amirhakimi G, Karamizadeh Z, Alipour A. adiponectin is a good marker for metabolic state among Type 1 diabetes mellitus patients. Iran J Pediatr 2013; 23(3): 295-301.
[PMID: 23795252]
[47]
Mogensen TH. Pathogen recognition and inflammatory signaling in innate immune defenses. Clin Microbiol Rev 2009; 22(2): 240-73.
[http://dx.doi.org/10.1128/CMR.00046-08] [PMID: 19366914]
[48]
Kim J, Sohn E, Kim CS, Jo K, Kim JS. The role of high-mobility group box-1 protein in the development of diabetic nephropathy. Am J Nephrol 2011; 33(6): 524-9.
[http://dx.doi.org/10.1159/000327992] [PMID: 21606643]
[49]
Chen Y, Qiao F, Zhao Y, Wang Y, Liu G. HMGB1 is activated in type 2 diabetes mellitus patients and in mesangial cells in response to high glucose. Int J Clin Exp Pathol 2015; 8(6): 6683-91.
[PMID: 26261550]
[50]
Jung U, Choi MS. Obesity and its metabolic complications: The role of adipokines and the relationship between obesity, inflammation, insulin resistance, dyslipidemia and nonalcoholic fatty liver disease. Int J Mol Sci 2014; 15(4): 6184-223.
[http://dx.doi.org/10.3390/ijms15046184] [PMID: 24733068]
[51]
Chawla A, Nguyen KD, Goh YPS. Macrophage-mediated inflammation in metabolic disease. Nat Rev Immunol 2011; 11(11): 738-49.
[http://dx.doi.org/10.1038/nri3071] [PMID: 21984069]
[52]
Chinetti-Gbaguidi G, Staels B. Macrophage polarization in metabolic disorders. Curr Opin Lipidol 2011; 22(5): 365-72.
[http://dx.doi.org/10.1097/MOL.0b013e32834a77b4] [PMID: 21825981]
[53]
McArdle MA, Finucane OM, Connaughton RM, McMorrow AM, Roche HM. Mechanisms of obesity-induced inflammation and insulin resistance: Insights into the emerging role of nutritional strategies. Front Endocrinol 2013; 4: 52.
[http://dx.doi.org/10.3389/fendo.2013.00052] [PMID: 23675368]
[54]
Atanasov AG, Waltenberger B, Pferschy-Wenzig EM, et al. Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnol Adv 2015; 33(8): 1582-614.
[http://dx.doi.org/10.1016/j.biotechadv.2015.08.001] [PMID: 26281720]
[55]
Coman C, Rugina OD, Socaciu C. Plants and natural compounds with anti-diabetic action. Not Bot Horti Agrobot Cluj-Napoca 2012; 40(1): 314-25.
[http://dx.doi.org/10.15835/nbha4017205]
[56]
Zhang Z, Luo A, Zhong K, et al. α-Glucosidase inhibitory activity by the flower buds of Lonicera japonica Thunb. J Funct Foods 2013; 5(3): 1253-9.
[http://dx.doi.org/10.1016/j.jff.2013.04.008]
[57]
Takahashi T, Miyazawa M. Potent α-glucosidase inhibitors from safflower (Carthamus tinctorius L.) seed. Phytother Res 2012; 26(5): 722-6.
[http://dx.doi.org/10.1002/ptr.3622] [PMID: 22021176]
[58]
Kim S, Jwa H, Yanagawa Y, Park T. Extract from Dioscorea batatas ameliorates insulin resistance in mice fed a high-fat diet. J Med Food 2012; 15(6): 527-34.
[http://dx.doi.org/10.1089/jmf.2011.2008] [PMID: 22424459]
[59]
Park S, Kim DS, Kang S. Gastrodia elata Blume water extracts improve insulin resistance by decreasing body fat in diet-induced obese rats: Vanillin and 4-hydroxybenzaldehyde are the bioactive candidates. Eur J Nutr 2011; 50(2): 107-18.
[http://dx.doi.org/10.1007/s00394-010-0120-0] [PMID: 20577883]
[60]
Kho MC, Lee YJ, Cha JD, Choi KM, Kang DG, Lee HS. Gastrodia Elata ameliorates high-fructose diet-induced lipid metabolism and endothelial dysfunction. Evid Based Complement Alternat Med 2014; 2014: 1-10.
[http://dx.doi.org/10.1155/2014/101624] [PMID: 24719637]
[61]
Sen S, Chen S, Feng B, Wu Y, Lui E, Chakrabarti S. Preventive effects of North American ginseng (Panax quinquefolium) on diabetic nephropathy. Phytomedicine 2012; 19(6): 494-505.
[http://dx.doi.org/10.1016/j.phymed.2012.01.001] [PMID: 22326549]
[62]
Madkor HR, Mansour SW, Ramadan G. Modulatory effects of garlic, ginger, turmeric and their mixture on hyperglycaemia, dyslipidaemia and oxidative stress in streptozotocin–nicotinamide diabetic rats. Br J Nutr 2011; 105(8): 1210-7.
[http://dx.doi.org/10.1017/S0007114510004927] [PMID: 21144104]
[63]
Haidari F, Omidian K, Rafiei H, Zarei M, Mohamad Shahi M. Green tea (Camellia Sinensis) supplementation to diabetic rats improves serum and hepatic oxidative stress markers. Iran J Pharm Res 2013; 12(1): 109-14.
[PMID: 24250578]
[64]
Abd-Alla IH, Hassan ZA, Soltan MM, Abdelwahab BA, Hanna GH. Potential protein antiglycation, antiproliferation, and in silico study on the anti-diabetic enzymes of bioactive metabolites from Adonis microcarpa DC and their ADMET properties. J Appl Pharm Sci 2022; 12(01): 106-19.
[65]
Patel OPS, Mishra A, Maurya R, et al. Naturally occurring carbazole alkaloids from Murraya Koenigii as potential anti-diabetic agents. J Nat Prod 2016; 79(5): 1276-84.
[http://dx.doi.org/10.1021/acs.jnatprod.5b00883] [PMID: 27136692]
[66]
Dewanjee S, Das AK, Sahu R, Gangopadhyay M. Antidiabetic activity of Diospyros peregrina fruit: Effect on hyperglycemia, hyperlipidemia and augmented oxidative stress in experimental type 2 diabetes. Food Chem Toxicol 2009; 47(10): 2679-85.
[http://dx.doi.org/10.1016/j.fct.2009.07.038] [PMID: 19660513]
[67]
Vinayagam R, Xu B. Antidiabetic properties of dietary flavonoids: A cellular mechanism review. Nutr Metab 2015; 12(1): 60.
[http://dx.doi.org/10.1186/s12986-015-0057-7]
[68]
Xiao J, Kai G, Yamamoto K, Chen X. Advance in dietary polyphenols as α-glucosidases inhibitors: A review on structure-activity relationship aspect. Crit Rev Food Sci Nutr 2013; 53(8): 818-36.
[http://dx.doi.org/10.1080/10408398.2011.561379] [PMID: 23768145]
[69]
Panche AN, Diwan AD, Chandra SR. Flavonoids: An overview. J Nutr Sci 2016; 5(e47): e47.
[http://dx.doi.org/10.1017/jns.2016.41] [PMID: 28620474]
[70]
Campanero MA, Escolar M, Perez G, Garcia-Quetglas E, Sadaba B, Azanza JR. Simultaneous determination of diosmin and diosmetin in human plasma by ion trap liquid chromatography–atmospheric pressure chemical ionization tandem mass spectrometry: Application to a clinical pharmacokinetic study. J Pharm Biomed Anal 2010; 51(4): 875-81.
[http://dx.doi.org/10.1016/j.jpba.2009.09.012] [PMID: 19800189]
[71]
Pari L, Srinivasan S. Antihyperglycemic effect of diosmin on hepatic key enzymes of carbohydrate metabolism in streptozotocin-nicotinamide-induced diabetic rats. Biomed Pharmacother 2010; 64(7): 477-81.
[http://dx.doi.org/10.1016/j.biopha.2010.02.001] [PMID: 20362409]
[72]
Constantin RP, Constantin J, Pagadigorria CLS, et al. The actions of fisetin on glucose metabolism in the rat liver. Cell Biochem Funct 2010; 28(2): 149-58.
[http://dx.doi.org/10.1002/cbf.1635] [PMID: 20084677]
[73]
Prasath GS, Pillai SI, Subramanian SP. Fisetin improves glucose homeostasis through the inhibition of gluconeogenic enzymes in hepatic tissues of streptozotocin induced diabetic rats. Eur J Pharmacol 2014; 740: 248-54.
[http://dx.doi.org/10.1016/j.ejphar.2014.06.065] [PMID: 25064342]
[74]
Kim MS, Hur HJ, Kwon DY, Hwang JT. Tangeretin stimulates glucose uptake via regulation of AMPK signaling pathways in C2C12 myo-tubes and improves glucose tolerance in high-fat diet-induced obese mice. Mol Cell Endocrinol 2012; 358(1): 127-34.
[http://dx.doi.org/10.1016/j.mce.2012.03.013] [PMID: 22476082]
[75]
Sendrayaperumal V, Iyyam Pillai S, Subramanian S. Design, synthesis and characterization of zinc–morin, a metal flavonol complex and evaluation of its antidiabetic potential in HFD–STZ induced type 2 diabetes in rats. Chem Biol Interact 2014; 219: 9-17.
[http://dx.doi.org/10.1016/j.cbi.2014.05.003] [PMID: 24854284]
[76]
Abuohashish HM, Al-Rejaie SS, Al-Hosaini KA, Parmar MY, Ahmed MM. Alleviating effects of morin against experimentally-induced diabetic osteopenia. Diabetol Metab Syndr 2013; 5(1): 5.
[http://dx.doi.org/10.1186/1758-5996-5-5] [PMID: 23384060]
[77]
Vanitha P, Uma C, Suganya N, et al. Modulatory effects of morin on hyperglycemia by attenuating the hepatic key enzymes of carbohydrate metabolism and β-cell function in streptozotocin-induced diabetic rats. Environ Toxicol Pharmacol 2014; 37(1): 326-35.
[http://dx.doi.org/10.1016/j.etap.2013.11.017] [PMID: 24384280]
[78]
Bucolo C, Leggio GM, Drago F, Salomone S. Eriodictyol prevents early retinal and plasma abnormalities in streptozotocin-induced diabetic rats. Biochem Pharmacol 2012; 84(1): 88-92.
[http://dx.doi.org/10.1016/j.bcp.2012.03.019] [PMID: 22484312]
[79]
Emim JADS, Oliveira AB, Lapa AJ. Pharmacological evaluation of the anti-inflammatory activity of a citrus bioflavonoid, hesperidin, and the isoflavonoids, duartin and claussequinone, in rats and mice. J Pharm Pharmacol 2011; 46(2): 118-22.
[http://dx.doi.org/10.1111/j.2042-7158.1994.tb03753.x] [PMID: 8021799]
[80]
Visnagri A, Kandhare AD, Chakravarty S, Ghosh P, Bodhankar SL. Hesperidin, a flavanoglycone attenuates experimental diabetic neuropathy via modulation of cellular and biochemical marker to improve nerve functions. Pharm Biol 2014; 52(7): 814-28.
[http://dx.doi.org/10.3109/13880209.2013.870584] [PMID: 24559476]
[81]
Yo A, Sharma PK. Hesperidin produces cardioprotective activity via PPARγ pathway in the ischemic heart disease model in diabetic rats. PLoS One 2014; 9(11): 111-212.
[82]
Priscilla DH, Roy D, Suresh A, Kumar V, Thirumurugan K. Naringenin inhibits α-glucosidase activity: A promising strategy for the regulation of postprandial hyperglycemia in high fat diet fed streptozotocin induced diabetic rats. Chem Biol Interact 2014; 210: 77-85.
[http://dx.doi.org/10.1016/j.cbi.2013.12.014] [PMID: 24412302]
[83]
Priscilla DH, Jayakumar M, Thirumurugan K. Flavanone naringenin: An effective antihyperglycemic and antihyperlipidemic nutraceutical agent on high fat diet fed streptozotocin induced type 2 diabetic rats. J Funct Foods 2015; 14: 363-73.
[http://dx.doi.org/10.1016/j.jff.2015.02.005]
[84]
Hossain CM, Ghosh MK, Satapathy BS, Dey NS, Mukherjee B. Apigenin causes biochemical modulation, GLUT4 and CD38 alterations to improve diabetes and to protect damages of some vital organs in experimental diabetes. Am J Pharmacol Toxicol 2014; 9(1): 39-52.
[http://dx.doi.org/10.3844/ajptsp.2014.39.52]
[85]
Stavniichuk R, Drel VR, Shevalye H, et al. Baicalein alleviates diabetic peripheral neuropathy through inhibition of oxidative–nitrosative stress and p38 MAPK activation. Exp Neurol 2011; 230(1): 106-13.
[http://dx.doi.org/10.1016/j.expneurol.2011.04.002] [PMID: 21515260]
[86]
Ahad A, Mujeeb M, Ahsan H, Siddiqui WA. Prophylactic effect of baicalein against renal dysfunction in type 2 diabetic rats. Biochimie 2014; 106: 101-10.
[http://dx.doi.org/10.1016/j.biochi.2014.08.006] [PMID: 25151412]
[87]
Lapchak PA, Maher P, Schubert D, Zivin JA. Baicalein, an antioxidant 12/15-lipoxygenase inhibitor improves clinical rating scores following multiple infarct embolic strokes. Neuroscience 2007; 150(3): 585-91.
[http://dx.doi.org/10.1016/j.neuroscience.2007.09.033] [PMID: 17942241]
[88]
Dhawan K, Kumar S, Sharma A. Beneficial effects of chrysin and benzoflavone on virility in 2-year-old male rats. J Med Food 2002; 5(1): 43-8.
[http://dx.doi.org/10.1089/109662002753723214] [PMID: 12511112]
[89]
Sirovina D, Oršolić N, Končić MZ, Kovačević G, Benković V, Gregorović G. Quercetin vs chrysin. Hum Exp Toxicol 2013; 32(10): 1058-66.
[http://dx.doi.org/10.1177/0960327112472993] [PMID: 23357962]
[90]
Ding L, Jin D, Chen X. Luteolin enhances insulin sensitivity via activation of PPARγ transcriptional activity in adipocytes. J Nutr Biochem 2010; 21(10): 941-7.
[http://dx.doi.org/10.1016/j.jnutbio.2009.07.009] [PMID: 19954946]
[91]
Liu Y, Fu X, Lan N, et al. Luteolin protects against high fat diet-induced cognitive deficits in obesity mice. Behav Brain Res 2014; 267: 178-88.
[http://dx.doi.org/10.1016/j.bbr.2014.02.040] [PMID: 24667364]
[92]
Ying D, Xuhui S, Xuanyu S, et al. Luteolin prevents uric acid-induced pancreatic b-cell dysfunction. J Biomed Res 2014; 28(4): 292-8.
[http://dx.doi.org/10.7555/JBR.28.20130170] [PMID: 25050113]
[93]
Neuhouser ML. Dietary flavonoids and cancer risk: Evidence from human population studies. Nutr Cancer 2004; 50(1): 1-7.
[http://dx.doi.org/10.1207/s15327914nc5001_1] [PMID: 15572291]
[94]
Ku SK, Bae JS. Baicalin, baicalein and wogonin inhibits high glucose-induced vascular inflammation in vitro and in vivo. BMB Rep 2015; 48(9): 519-24.
[http://dx.doi.org/10.5483/BMBRep.2015.48.9.017] [PMID: 25739393]
[95]
Bak EJ, Kim J, Choi YH, et al. Wogonin ameliorates hyperglycemia and dyslipidemia via PPARα activation in db/db mice. Clin Nutr 2014; 33(1): 156-63.
[http://dx.doi.org/10.1016/j.clnu.2013.03.013] [PMID: 23623334]
[96]
Rodríguez-Rodríguez C, Torres N, Gutiérrez-Uribe JA, et al. The effect of isorhamnetin glycosides extracted from Opuntia ficus-indica in a mouse model of diet induced obesity. Food Funct 2015; 6(3): 805-15.
[http://dx.doi.org/10.1039/C4FO01092B] [PMID: 25588195]
[97]
Nirmala P, Ramanathan M. Effect of kaempferol on lipid peroxidation and antioxidant status in 1,2-dimethyl hydrazine induced colorectal carcinoma in rats. Eur J Pharmacol 2011; 654(1): 75-9.
[http://dx.doi.org/10.1016/j.ejphar.2010.11.034] [PMID: 21172346]
[98]
Zhang Y, Liu D. Flavonol kaempferol improves chronic hyperglycemia-impaired pancreatic β-cell viability and insulin secretory function. Eur J Pharmacol 2011; 670(1): 325-32.
[http://dx.doi.org/10.1016/j.ejphar.2011.08.011] [PMID: 21914439]
[99]
Al-Numair KS, Chandramohan G, Veeramani C, Alsaif MA. Ameliorative effect of kaempferol, a flavonoid, on oxidative stress in streptozotocin-induced diabetic rats. Redox Rep 2015; 20(5): 198-209.
[http://dx.doi.org/10.1179/1351000214Y.0000000117] [PMID: 25494817]
[100]
Huang W, Zhang H, Liu W, Li C. Survey of antioxidant capacity and phenolic composition of blueberry, blackberry, and strawberry in Nanjing. J Zhejiang Univ Sci B 2012; 13(2): 94-102.
[http://dx.doi.org/10.1631/jzus.B1100137] [PMID: 22302422]
[101]
Niture NT, Ansari AA, Naik SR. Anti-hyperglycemic activity of rutin in streptozotocin-induced diabetic rats: An effect mediated through cytokines, antioxidants and lipid biomarkers. Indian J Exp Biol 2014; 52(7): 720-7.
[PMID: 25059040]
[102]
Alinezhad H, Azimi R, Zare M, et al. Antioxidant and antihemolytic activities of ethanolic extract of flowers, leaves, and stems of Hys-sopus Officinalis L. Var. Angustifolius. Int J Food Prop 2013; 16(5): 1169-78.
[http://dx.doi.org/10.1080/10942912.2011.578319]
[103]
Stewart LK, Wang Z, Ribnicky D, Soileau JL, Cefalu WT, Gettys TW. Failure of dietary quercetin to alter the temporal progression of insulin resistance among tissues of C57BL/6J mice during the development of diet-induced obesity. Diabetologia 2009; 52(3): 514-23.
[http://dx.doi.org/10.1007/s00125-008-1252-0] [PMID: 19142628]
[104]
Kobori M, Masumoto S, Akimoto Y, Takahashi Y. Dietary quercetin alleviates diabetic symptoms and reduces streptozotocin-induced disturbance of hepatic gene expression in mice. Mol Nutr Food Res 2009; 53(7): 859-68.
[http://dx.doi.org/10.1002/mnfr.200800310] [PMID: 19496084]
[105]
Patisaul HB, Jefferson W. The pros and cons of phytoestrogens. Front Neuroendocrinol 2010; 31(4): 400-19.
[http://dx.doi.org/10.1016/j.yfrne.2010.03.003] [PMID: 20347861]
[106]
Elmarakby AA, Ibrahim AS, Faulkner J, Mozaffari MS, Liou GI, Abdelsayed R. Tyrosine kinase inhibitor, genistein, reduces renal inflammation and injury in streptozotocin-induced diabetic mice. Vascul Pharmacol 2011; 55(5-6): 149-56.
[http://dx.doi.org/10.1016/j.vph.2011.07.007] [PMID: 21807121]
[107]
Cheong SH, Furuhashi K, Ito K, et al. Daidzein promotes glucose uptake through glucose transporter 4 translocation to plasma membrane in L6 myocytes and improves glucose homeostasis in Type 2 diabetic model mice. J Nutr Biochem 2014; 25(2): 136-43.
[http://dx.doi.org/10.1016/j.jnutbio.2013.09.012] [PMID: 24445037]
[108]
Akkarachiyasit S, Charoenlertkul P, Yibchok-anun S, Adisakwattana S. Inhibitory activities of cyanidin and its glycosides and synergistic effect with acarbose against intestinal α-glucosidase and pancreatic α-amylase. Int J Mol Sci 2010; 11(9): 3387-96.
[http://dx.doi.org/10.3390/ijms11093387] [PMID: 20957102]
[109]
Zhu W, Jia Q, Wang Y, Zhang Y, Xia M. The anthocyanin cyanidin-3-O-β-glucoside, a flavonoid, increases hepatic glutathione synthesis and protects hepatocytes against reactive oxygen species during hyperglycemia: Involvement of a cAMP–PKA-dependent signaling pathway. Free Radic Biol Med 2012; 52(2): 314-27.
[http://dx.doi.org/10.1016/j.freeradbiomed.2011.10.483] [PMID: 22085656]
[110]
Gharib A, Faezizadeh Z, Godarzee M. Treatment of diabetes in the mouse model by delphinidin and cyanidin hydrochloride in free and liposomal forms. Planta Med 2013; 79(17): 1599-604.
[http://dx.doi.org/10.1055/s-0033-1350908] [PMID: 24108435]
[111]
Hafizur RM, Hameed A, Shukrana M, et al. Cinnamic acid exerts anti-diabetic activity by improving glucose tolerance in vivo and by stimulating insulin secretion in vitro. Phytomedicine 2015; 22(2): 297-300.
[http://dx.doi.org/10.1016/j.phymed.2015.01.003] [PMID: 25765836]
[112]
Adisakwattana S, Sookkongwaree K, Roengsumran S, et al. Structure–activity relationships of trans-cinnamic acid derivatives on α-glucosidase inhibition. Bioorg Med Chem Lett 2004; 14(11): 2893-6.
[http://dx.doi.org/10.1016/j.bmcl.2004.03.037] [PMID: 15125954]
[113]
Shibano M, Kakutani K, Taniguchi M, Yasuda M, Baba K. Antioxidant constituents in the dayflower (Commelina communis L.) and their α-glucosidase-inhibitory activity. J Nat Med 2008; 62(3): 349-53.
[http://dx.doi.org/10.1007/s11418-008-0244-1] [PMID: 18409066]
[114]
Revilla-Monsalve MC, Andrade-Cetto A, Palomino-Garibay MA, Wiedenfeld H, Islas-Andrade S. Hypoglycemic effect of Cecropia obtusi-folia bertol aqueous extracts on type 2 diabetic patients. J Ethnopharmacol 2007; 111(3): 636-40.
[http://dx.doi.org/10.1016/j.jep.2007.01.014] [PMID: 17291702]
[115]
Roy M, Sen S, Chakraborti AS. Action of pelargonidin on hyperglycemia and oxidative damage in diabetic rats: Implication for glycation-induced hemoglobin modification. Life Sci 2008; 82(21-22): 1102-10.
[http://dx.doi.org/10.1016/j.lfs.2008.03.011] [PMID: 18440560]
[116]
Mirshekar M, Roghani M, Khalili M, Baluchnejadmojarad T, Arab Moazzen S. Chronic oral pelargonidin alleviates streptozotocin-induced diabetic neuropathic hyperalgesia in rat: Involvement of oxidative stress. Iran Biomed J 2010; 14(1-2): 33-9.
[PMID: 20683496]
[117]
Shen X, Zhou N, Mi L, Hu W, Wang L, Liu X. Phloretin exerts hypoglycemic effect in Streptozotocin insulin resistance in vitro. Drug Des Devel Ther 2017; 11: 313-24.
[118]
Francis G, Kerem Z, Makkar HPS, Becker K. The biological action of saponins in animal systems: A review. Br J Nutr 2002; 88(6): 587-605.
[http://dx.doi.org/10.1079/BJN2002725] [PMID: 12493081]
[119]
Metwally NS. Chemical constituents of the egyptian plant Anabasis articulata (Forssk) Moq and its anti-diabetic effects on rats with streptozotocin-induced diabetic hepatopathy. J Basic Appl Pharm Sci 2012; 2(4): 54-65.
[120]
Zheng T, Shu G, Yang Z, Mo S, Zhao Y, Mei Z. Antidiabetic effect of total saponins from Entada phaseoloides (L.) Merr. in type 2 diabetic rats. J Ethnopharmacol 2012; 139(3): 814-21.
[http://dx.doi.org/10.1016/j.jep.2011.12.025] [PMID: 22212505]
[121]
Fuller S, Stephens JM. Diosgenin, 4-hydroxyisoleucine, and fiber from fenugreek: Mechanisms of actions and potential effects on metabolic syndrome. Adv Nutr 2015; 6(2): 189-97.
[http://dx.doi.org/10.3945/an.114.007807] [PMID: 25770257]
[122]
Smith YRA, Adanlawo IG, Oni OS. Hypoglycaemic effect of saponin from the root of Garcinia Kola (Bitter Kola) on alloxan-induced diabetic rats. J Drug Deliv Ther 2012; 2(6)
[http://dx.doi.org/10.22270/jddt.v2i6.338]
[123]
Lee KT, Jung TW, Lee HJ, Kim SG, Shin YS, Whang WK. The antidiabetic effect of ginsenoside Rb2 via activation of AMPK. Arch Pharm Res 2011; 34(7): 1201-8.
[http://dx.doi.org/10.1007/s12272-011-0719-6] [PMID: 21811928]
[124]
Sievenpiper JL, Arnason JT, Vidgen E, Leiter LA, Vuksan V. A systematic quantitative analysis of the literature of the high variability in ginseng (Panax spp.): Should ginseng be trusted in diabetes? Diabetes Care 2004; 27(3): 839-40.
[http://dx.doi.org/10.2337/diacare.27.3.839-a] [PMID: 14988315]
[125]
Kwon DY, Kim YS, Ryu SY, et al. Platyconic acid, a saponin from Platycodi radix, improves glucose homeostasis by enhancing insulin sensitivity in vitro and in vivo. Eur J Nutr 2012; 51(5): 529-40.
[http://dx.doi.org/10.1007/s00394-011-0236-x] [PMID: 21847688]
[126]
Deng Y, He K, Ye X, et al. Saponin rich fractions from Polygonatum odoratum (Mill.) Druce with more potential hypoglycemic effects. J Ethnopharmacol 2012; 141(1): 228-33.
[http://dx.doi.org/10.1016/j.jep.2012.02.023]
[127]
Elekofehinti OO, Kamdem JP, Kade IJ, Rocha JBT, Adanlawo IG. Hypoglycemic, antiperoxidative and antihyperlipidemic effects of saponins from Solanum anguivi Lam. fruits in alloxan-induced diabetic rats. S Afr J Bot 2013; 88: 56-61.
[http://dx.doi.org/10.1016/j.sajb.2013.04.010]
[128]
Hemalatha T, Pulavendran S, Balachandran C, Manohar BM, Puvanakrishnan R. Arjunolic acid: A novel phytomedicine with multifunctional therapeutic applications. Indian J Exp Biol 2010; 48(3): 238-47.
[PMID: 21046976]
[129]
Uemura T, Goto T, Kang MS, et al. Diosgenin, the main aglycon of fenugreek, inhibits LXRα activity in HepG2 cells and decreases plasma and hepatic triglycerides in obese diabetic mice. J Nutr 2011; 141(1): 17-23.
[http://dx.doi.org/10.3945/jn.110.125591] [PMID: 21106928]
[130]
Mayakrishnan T, Nakkala JR, Jeepipalli SPK, et al. Fenugreek seed extract and its phytocompounds- trigonelline and diosgenin arbitrate their hepatoprotective effects through attenuation of endoplasmic reticulum stress and oxidative stress in type 2 diabetic rats. Eur Food Res Technol 2015; 240(1): 223-32.
[http://dx.doi.org/10.1007/s00217-014-2322-9]
[131]
Zhou J, Chan L, Zhou S. Trigonelline: A plant alkaloid with therapeutic potential for diabetes and central nervous system disease. Curr Med Chem 2012; 19(21): 3523-31.
[http://dx.doi.org/10.2174/092986712801323171] [PMID: 22680628]
[132]
William J. Invitation to Organic Chemistry. Massachusetts: Jones & Bartlett Learning 1999.
[133]
Pareek H, Sharma S, Khajja BS, Jain K, Jain GC. Evaluation of hypoglycemic and anti-hyperglycemic potential of Tridax procumbens (Linn.). BMC Complement Altern Med 2009; 9(1): 48.
[http://dx.doi.org/10.1186/1472-6882-9-48] [PMID: 19943967]
[134]
Punitha ISR, Shirwaikar A, Shirwaikar A. Antidiabetic activity of benzyl tetra isoquinoline alkaloid berberine in streptozotocin-nicotinamide induced type 2 diabetic rats. Diabetol Croat 2005; 34(4): 117-28.
[135]
Tiong S, Looi C, Hazni H, et al. Antidiabetic and antioxidant properties of alkaloids from Catharanthus roseus (L.) G. Don. Molecules 2013; 18(8): 9770-84.
[http://dx.doi.org/10.3390/molecules18089770] [PMID: 23955322]
[136]
Agrawal R, Sethiya NK, Mishra SH. Antidiabetic activity of alkaloids of Aerva lanata roots on streptozotocin-nicotinamide induced type-II diabetes in rats. Pharm Biol 2013; 51(5): 635-42.
[http://dx.doi.org/10.3109/13880209.2012.761244] [PMID: 23527955]
[137]
Abou El-Soud NH, Khalil MY, Hussein J. Anti-diabetic effects of Fenugreek alkaloid extract in streptozotocin-induced hyperglycemic rats. J Appl Sci Res 2007; 3(10): 1073-83.
[138]
Yin J, Xing H, Ye J. Efficacy of berberine in patients with type 2 diabetes mellitus. Metabolism 2008; 57(5): 712-7.
[http://dx.doi.org/10.1016/j.metabol.2008.01.013] [PMID: 18442638]
[139]
Zhang Y, Li X, Zou D, et al. Treatment of type 2 diabetes and dyslipidemia with the natural plant alkaloid berberine. J Clin Endocrinol Metab 2008; 93(7): 2559-65.
[http://dx.doi.org/10.1210/jc.2007-2404] [PMID: 18397984]
[140]
Liu CS, Zheng YR, Zhang YF, Long XY. Research progress on berberine with a special focus on its oral bioavailability. Fitoterapia 2016; 109: 274-82.
[http://dx.doi.org/10.1016/j.fitote.2016.02.001] [PMID: 26851175]
[141]
Nehlig A, Daval JL, Debry G. Caffeine and the central nervous system: Mechanisms of action, biochemical, metabolic and psychostimulant effects. Brain Res Brain Res Rev 1992; 17(2): 139-70.
[http://dx.doi.org/10.1016/0165-0173(92)90012-B] [PMID: 1356551]
[142]
Monteiro M, Farah A, Perrone D, Trugo LC, Donangelo C. Chlorogenic acid compounds from coffee are differentially absorbed and metabolized in humans. J Nutr 2007; 137(10): 2196-201.
[http://dx.doi.org/10.1093/jn/137.10.2196] [PMID: 17884997]
[143]
Dineshkumar B, Analava M, Manjunatha M. Antidiabetic and hypolipidemic effects of mahanimbine (carbazole alkaloid) from Murraya-koenigii (rutaceae) leaves. Inter Jour Phyto 2010; 2: 22-30.
[144]
Vattem DA, Ghaedian R, Shetty K. Enhancing health benefits of berries through phenolic antioxidant enrichment: Focus on cranberry. Asia Pac J Clin Nutr 2005; 14(2): 120-30.
[PMID: 15927928]
[145]
Kasali FM, Wendo FM, Muyisa SK, Kadima JN. Comparative hypoglycemic activity of flavonoids and tannins fractions of Stachytarpheta Indica (L.) Vahl leaves extracts in guinea-pigs and rabbits. Int Jou Phar Pharm Res 2016; 5(2): 48-57.
[146]
Kunyanga CN, Imungi JK, Okoth M, Momanyi C, Biesalski HK, Vadivel V. Antioxidant and antidiabetic properties of condensed tannins in acetonic extract of selected raw and processed indigenous food ingredients from Kenya. J Food Sci 2011; 76(4): C560-7.
[http://dx.doi.org/10.1111/j.1750-3841.2011.02116.x] [PMID: 22417336]
[147]
Zhang Z, Jiang J, Yu P, Zeng X, Larrick JW, Wang Y. Hypoglycemic and beta cell protective effects of andrographolide analogue for diabetes treatment. J Transl Med 2009; 7(1): 62.
[http://dx.doi.org/10.1186/1479-5876-7-62] [PMID: 19607676]
[148]
Huang XY, Fu JF, Di D-L. Preparative isolation and purification of steviol glycosides from Stevia rebaudiana bertoni using high-speed counter-current chromatography. Separ Purif Tech 2010; 71(2): 220-4.
[http://dx.doi.org/10.1016/j.seppur.2009.11.025]
[149]
Roth BL, Baner K, Westkaemper R, et al. A potent naturally occurring nonnitrogenous κ opioid selective agonist. Proc Natl Acad Sci USA 2002; 99(18): 11934-9.
[http://dx.doi.org/10.1073/pnas.182234399] [PMID: 12192085]
[150]
Onakpa MM, Asuzu IU. Histological changes and anti-diabetic activities of Icacina trichanta tuber extract in beta cells of alloxan-induced diabetic rats. Asian Pac J Trop Biomed 2015; 3(8): 628-33.
[151]
Tan MJ, Ye JM, Turner N, et al. Antidiabetic activities of triterpenoids isolated from bitter melon associated with activation of the AMPK pathway. Chem Biol 2008; 15(3): 263-73.
[http://dx.doi.org/10.1016/j.chembiol.2008.01.013] [PMID: 18355726]
[152]
Aba PE, Asuzu IU. 1H-Proton NMR spectra of antihyperglycemic triterpenoid isolated from Cussonia arborea. J Nat Prod 2016; 9: 1-7.
[153]
Farias R, Rao V, Viana G, Silveira E, Maciel M, Pino A. Hypoglycemic effect of trans-dehydrocrotonin, a nor-clerodane diterpene from Croton cajucara. Planta Med 1997; 63(6): 558-60.
[http://dx.doi.org/10.1055/s-2006-957766] [PMID: 9434613]
[154]
Lailerd N, Saengsirisuwan V, Sloniger JA, Toskulkao C, Henriksen EJ. Effects of stevioside on glucose transport activity in insulin-sensitive and insulin-resistant rat skeletal muscle. Metabolism 2004; 53(1): 101-7.
[http://dx.doi.org/10.1016/j.metabol.2003.07.014] [PMID: 14681850]
[155]
Chen TH, Chen SC, Chan P, Chu YL, Yang HY, Cheng JT. Mechanism of the hypoglycemic effect of stevioside, a glycoside of Stevia rebaudiana. Planta Med 2005; 71(2): 108-13.
[http://dx.doi.org/10.1055/s-2005-837775] [PMID: 15729617]
[156]
Hou W, Li Y, Zhang Q, et al. Triterpene acids isolated from Lagerstroemia speciosa leaves as α -glucosidase inhibitors. Phytother Res 2009; 23(5): 614-8.
[http://dx.doi.org/10.1002/ptr.2661] [PMID: 19107840]
[157]
El-Baz FK, Aly HF, Abd-Alla HI, Saad SA. Bioactive flavonoid glycosides and anti-diabetic activity of Jatropha Curcas on streptozotocin-induced diabetic rats. Int J Pharm Sci Rev Res 2014; 29(2): 143-56.
[158]
Nakamura Y, Tsumura Y, Tonogai Y, Shibata T. Fecal steroid excretion is increased in rats by oral administration of gymnemic acids contained in Gymnema sylvestre leaves. J Nutr 1999; 129(6): 1214-22.
[http://dx.doi.org/10.1093/jn/129.6.1214] [PMID: 10356090]
[159]
Tofighi Z, Moradi-Afrapoli F, Ebrahimi SN, et al. Securigenin glycosides as hypoglycemic principles of Securigera securidaca seeds. J Nat Med 2017; 71(1): 272-80.
[http://dx.doi.org/10.1007/s11418-016-1060-7] [PMID: 27848204]
[160]
Zang Y, Sato H, Igarashi K. Anti-diabetic effects of a kaempferol glycoside-rich fraction from unripe soybean (Edamame, Glycine max L. Merrill. ‘Jindai’) leaves on KK-A(y) mice. Biosci Biotechnol Biochem 2011; 75(9): 1677-84.
[http://dx.doi.org/10.1271/bbb.110168] [PMID: 21897048]
[161]
Eid HM, Martineau LC, Saleem A, et al. Stimulation of AMP-activated protein kinase and enhancement of basal glucose uptake in muscle cells by quercetin and quercetin glycosides, active principles of the antidiabetic medicinal plant Vaccinium vitis-idaea. Mol Nutr Food Res 2010; 54(7): 991-1003.
[http://dx.doi.org/10.1002/mnfr.200900218] [PMID: 20087853]
[162]
Jayasooriya AP, Sakono M, Yukizaki C, Kawano M, Yamamoto K, Fukuda N. Effects of Momordica charantia powder on serum glucose levels and various lipid parameters in rats fed with cholesterol-free and cholesterol-enriched diets. J Ethnopharmacol 2000; 72(1-2): 331-6.
[http://dx.doi.org/10.1016/S0378-8741(00)00259-2] [PMID: 10967491]
[163]
Sarkar S, Pranava M, Marita R. Demonstration of the hypoglycemic action of Momordica charantia in a validated animal model of diabetes. Pharmacol Res 1996; 33(1): 1-4.
[http://dx.doi.org/10.1006/phrs.1996.0001] [PMID: 8817639]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy