Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Review Article

Therapeutic Potential of Myricetin in the Treatment of Neurological, Neuropsychiatric, and Neurodegenerative Disorders

Author(s): Neeraj Kumar Sethiya, Neha Ghiloria, Akanksha Srivastav, Dheeraj Bisht, Sushil Kumar Chaudhary, Vaibhav Walia* and Md. Sabir Alam

Volume 23, Issue 7, 2024

Published on: 21 September, 2023

Page: [865 - 882] Pages: 18

DOI: 10.2174/1871527322666230718105358

Price: $65

Abstract

Myricetin (MC), 3,5,7,3′,4′,5′-hexahydroxyflavone, chemically belongs to a flavonoid category known to confer antioxidant, antimicrobial, antidiabetic, and neuroprotective effects. MC is known to suppress the generation of Reactive Oxygen Species (ROS), lipid peroxidation (MDA), and inflammatory markers. It has been reported to improve insulin function in the human brain and periphery. Besides this, it modulates several neurochemicals including glutamate, GABA, serotonin, etc. MC has been shown to reduce the expression of the enzyme Mono Amine Oxidase (MAO), which is responsible for the metabolism of monoamines. MC treatment reduces levels of plasma corticosterone and restores hippocampal BDNF (full form) protein in stressed animals. Further, MC has shown its protective effect against amyloid-beta, MPTP, rotenone, 6-OHDA, etc. suggesting its potential role against neurodegenerative disorders. The aim of the present review is to highlight the therapeutic potential of MC in the treatment of several neurological, neuropsychiatric, and neurodegenerative disorders.

Graphical Abstract

[1]
Panche AN, Diwan AD, Chandra SR. Flavonoids: an overview. J Nutr Sci 2016; 5: e47.
[http://dx.doi.org/10.1017/jns.2016.41] [PMID: 28620474]
[2]
Kahle K, Kraus M, Richling E. Polyphenol profiles of apple juices. Mol Nutr Food Res 2005; 49(8): 797-806.
[http://dx.doi.org/10.1002/mnfr.200500064] [PMID: 15991215]
[3]
Nemeth K, Piskula MK. Food content, processing, absorption and metabolism of onion flavonoids. Crit Rev Food Sci Nutr 2007; 47(4): 397-409.
[http://dx.doi.org/10.1080/10408390600846291] [PMID: 17457724]
[4]
Mattivi F, Guzzon R, Vrhovsek U, Stefanini M, Velasco R. Metabolite profiling of grape: Flavonols and anthocyanins. J Agric Food Chem 2006; 54(20): 7692-702.
[http://dx.doi.org/10.1021/jf061538c] [PMID: 17002441]
[5]
Häkkinen SH, Kärenlampi SO, Heinonen IM, Mykkänen HM, Törrönen AR. Content of the flavonols quercetin, myricetin, and kaempferol in 25 edible berries. J Agric Food Chem 1999; 47(6): 2274-9.
[http://dx.doi.org/10.1021/jf9811065] [PMID: 10794622]
[6]
Jeganathan B, Punyasiri PA, Kottawa-Arachchi JD, et al. Genetic variation of flavonols quercetin, myricetin, and kaempferol in the Sri Lankan tea (Camellia sinensis L.) and their health-promoting aspects. Int J Food Sci 2016; 2016: 6057434.
[7]
Umadevi I, Daniel M, Sabnis SD. Chemotaxonomic studies on some members of Anacardiaceae. Proceedings: Plant Sciences 1988; 98(3): 205-8.
[8]
Hergert HL. The flavonoids of lodgepole pine bark. J Org Chem 1956; 21(5): 534-7.
[http://dx.doi.org/10.1021/jo01111a013]
[9]
Chua LS, Latiff NA, Lee SY, Lee CT, Sarmidi MR, Aziz RA. Flavonoids and phenolic acids from Labisia pumila (Kacip Fatimah). Food Chem 2011; 127(3): 1186-92.
[http://dx.doi.org/10.1016/j.foodchem.2011.01.122] [PMID: 25214112]
[10]
Perkin AG, Hummel JJ. LXXVI.—The colouring principle contained in the bark of Myrica nagi. Part I. J Chem Soc Trans 1896; 69(0): 1287-94.
[http://dx.doi.org/10.1039/CT8966901287]
[11]
Perkin AG. XXI.—Myricetin. Part II. J Chem Soc Trans 1902; 81(0): 203-10.
[http://dx.doi.org/10.1039/CT9028100203]
[12]
Perkin AG. CXCIII.—Myricetin. Part III. J Chem Soc Trans 1911; 99(0): 1721-5.
[http://dx.doi.org/10.1039/CT9119901721]
[13]
De Leo M, Braca A, Sanogo R, Cardile V, DeTommasi N, Russo A. Antiproliferative activity of Pteleopsis suberosa leaf extract and its flavonoid components in human prostate carcinoma cells. Planta Med 2006; 72(7): 604-10.
[http://dx.doi.org/10.1055/s-2006-931556] [PMID: 16636967]
[14]
Yao Y, Lin G, Xie Y, et al. Preformulation studies of myricetin: A natural antioxidant flavonoid. Pharmazie 2014; 69(1): 19-26.
[PMID: 24601218]
[15]
Kong NN, Fang ST, Wang JH, Wang ZH, Xia CH. Two new flavonoid glycosides from the halophyte Limonium franchetii. J Asian Nat Prod Res 2014; 16(4): 370-5.
[http://dx.doi.org/10.1080/10286020.2014.884081] [PMID: 24597719]
[16]
Schwarz D, Kisselev P, Schunck WH, Roots I. Inhibition of 17β-estradiol activation by CYP1A1: Genotype-and regioselective inhibition by St. John’s Wort and several natural polyphenols. Proteins and Proteomics 2011; 1814(1): 168-74.
[http://dx.doi.org/10.1016/j.bbapap.2010.09.014] [PMID: 20883830]
[17]
Meotti FC, Luiz AP, Pizzolatti MG, Kassuya CAL, Calixto JB, Santos ARS. Analysis of the antinociceptive effect of the flavonoid myricitrin: evidence for a role of the L-arginine-nitric oxide and protein kinase C pathways. J Pharmacol Exp Ther 2006; 316(2): 789-96.
[http://dx.doi.org/10.1124/jpet.105.092825] [PMID: 16260583]
[18]
Meotti FC, Fachinetto R, Maffi LC, et al. Antinociceptive action of myricitrin: Involvement of the K+ and Ca2+ channels. Eur J Pharmacol 2007; 567(3): 198-205.
[http://dx.doi.org/10.1016/j.ejphar.2007.03.039] [PMID: 17467689]
[19]
Hagenacker T, Hillebrand I, Wissmann A, Büsselberg D, Schäfers M. Anti-allodynic effect of the flavonoid myricetin in a rat model of neuropathic pain: Involvement of p38 and protein kinase C mediated modulation of Ca2+ channels. Eur J Pain 2010; 14(10): 992-8.
[http://dx.doi.org/10.1016/j.ejpain.2010.04.005] [PMID: 20471878]
[20]
Ma Z, Wang G, Cui L, Wang Q. Myricetin attenuates depressant-like behavior in mice subjected to repeated restraint stress. Int J Mol Sci 2015; 16(12): 28377-85.
[http://dx.doi.org/10.3390/ijms161226102] [PMID: 26633366]
[21]
Li Y, Ding Y. Minireview: Therapeutic potential of myricetin in diabetes mellitus. Food Sci Hum Wellness 2012; 1(1): 19-25.
[http://dx.doi.org/10.1016/j.fshw.2012.08.002]
[22]
Ong KC, Khoo HE. Biological effects of myricetin. General pharmacology: The vascular system 1997; 29(2): 121-6.
[http://dx.doi.org/10.1016/S0306-3623(96)00421-1]
[23]
Imran M, Saeed F, Hussain G, et al. Myricetin: A comprehensive review on its biological potentials. Food Sci Nutr 2021; 9(10): 5854-68.
[http://dx.doi.org/10.1002/fsn3.2513] [PMID: 34646551]
[24]
Dang Y, Lin G, Xie Y, et al. Quantitative determination of myricetin in rat plasma by ultra performance liquid chromatography tandem mass spectrometry and its absolute bioavailability. Drug Res 2014; 64(10): 516-22.
[PMID: 24357136]
[25]
Xiang D, Wang C, Wang W, et al. Gastrointestinal stability of dihydromyricetin, myricetin, and myricitrin: An in vitro investigation. Int J Food Sci Nutr 2017; 68(6): 704-11.
[http://dx.doi.org/10.1080/09637486.2016.1276518] [PMID: 28114854]
[26]
Guo YJ, Zheng SL. Effect of myricetin on cytochrome P450 isoforms CYP1A2, CYP2C9 and CYP3A4 in rats. Pharmazie 2014; 69(4): 306-10.
[PMID: 24791597]
[27]
Lou D, Bao S, Li Y, Lin Q, Yang S, He J. Inhibitory mechanisms of myricetin on human and rat liver cytochrome P450 enzymes. Eur J Drug Metab Pharmacokinet 2019; 44(5): 611-8.
[http://dx.doi.org/10.1007/s13318-019-00546-y] [PMID: 30825074]
[28]
Murphy MP. How mitochondria produce reactive oxygen species. Biochem J 2009; 417(1): 1-13.
[http://dx.doi.org/10.1042/BJ20081386] [PMID: 19061483]
[29]
Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of ageing. Nature 2000; 408(6809): 239-47.
[30]
Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 2007; 39(1): 44-84.
[http://dx.doi.org/10.1016/j.biocel.2006.07.001] [PMID: 16978905]
[31]
Ghezzi D, Zeviani M. Assembly factors of human mitochondrial respiratory chain complexes: physiology and pathophysiology. Mitochondrial Oxidative Phosphorylation 2012; pp. 65-106.
[32]
Garcia-Perez C, Roy SS, Naghdi S, Lin X, Davies E, Hajnóczky G. Bid-induced mitochondrial membrane permeabilization waves propagated by local reactive oxygen species (ROS) signaling. Proc Natl Acad Sci USA 2012; 109(12): 4497-502.
[http://dx.doi.org/10.1073/pnas.1118244109] [PMID: 22393005]
[33]
Newmeyer DD, Ferguson-Miller S. Mitochondria. Cell 2003; 112(4): 481-90.
[http://dx.doi.org/10.1016/S0092-8674(03)00116-8] [PMID: 12600312]
[34]
Adrain C, Martin SJ. The mitochondrial apoptosome: A killer unleashed by the cytochrome seas. Trends Biochem Sci 2001; 26(6): 390-7.
[http://dx.doi.org/10.1016/S0968-0004(01)01844-8] [PMID: 11406413]
[35]
Liu B, Chen Y, St Clair DK. ROS and p53: A versatile partnership. Free Radic Biol Med 2008; 44(8): 1529-35.
[http://dx.doi.org/10.1016/j.freeradbiomed.2008.01.011] [PMID: 18275858]
[36]
Sohal RS, Ku HH, Agarwal S, Forster MJ, Lal H. Oxidative damage, mitochondrial oxidant generation and antioxidant defenses during aging and in response to food restriction in the mouse. Mech Ageing Dev 1994; 74(1-2): 121-33.
[http://dx.doi.org/10.1016/0047-6374(94)90104-X] [PMID: 7934203]
[37]
Sohal RS, Sohal BH. Hydrogen peroxide release by mitochondria increases during aging. Mech Ageing Dev 1991; 57(2): 187-202.
[http://dx.doi.org/10.1016/0047-6374(91)90034-W] [PMID: 1904965]
[38]
Ungvari Z, Orosz Z, Labinskyy N, et al. Increased mitochondrial H 2 O 2 production promotes endothelial NF-κB activation in aged rat arteries. Am J Physiol Heart Circ Physiol 2007; 293(1): H37-47.
[http://dx.doi.org/10.1152/ajpheart.01346.2006] [PMID: 17416599]
[39]
Csiszar A, Ungvari Z, Koller A, Edwards JG, Kaley G. Proinflammatory phenotype of coronary arteries promotes endothelial apoptosis in aging. Physiol Genomics 2004; 17(1): 21-30.
[http://dx.doi.org/10.1152/physiolgenomics.00136.2003] [PMID: 15020720]
[40]
Pearson KJ, Baur JA, Lewis KN, et al. Resveratrol delays age-related deterioration and mimics transcriptional aspects of dietary restriction without extending life span. Cell Metab 2008; 8(2): 157-68.
[http://dx.doi.org/10.1016/j.cmet.2008.06.011] [PMID: 18599363]
[41]
Harman D. The biologic clock: The mitochondria? J Am Geriatr Soc 1972; 20(4): 145-7.
[http://dx.doi.org/10.1111/j.1532-5415.1972.tb00787.x] [PMID: 5016631]
[42]
Griesbach RJ. Biochemistry and genetics of flower color. Plant Breed Rev 2010; 25: 89-114.
[43]
Takahashi A, Ohnishi T. The significance of the study about the biological effects of solar ultraviolet radiation using the Exposed Facility on the International Space Station. Biol Sci Space 2004; 18(4): 255-60.
[http://dx.doi.org/10.2187/bss.18.255] [PMID: 15858393]
[44]
Samanta A, Das G, Das SK. Roles of flavonoids in plants. Carbon 2011; 100(6): 12-35.
[45]
Pandey KB, Mishra N, Rizvi SI. Myricetin may provide protection against oxidative stress in type 2 diabetic erythrocytes. Z Naturforsch C J Biosci 2009; 64(9-10): 626-30.
[http://dx.doi.org/10.1515/znc-2009-9-1004] [PMID: 19957428]
[46]
Barzegar A. Antioxidant activity of polyphenolic myricetin in vitro cell- free and cell-based systems. Mol Biol Res Commun 2016; 5(2): 87-95.
[PMID: 28097162]
[47]
Gordon MH, Roedig-Penman A. Antioxidant activity of quercetin and myricetin in liposomes. Chem Phys Lipids 1998; 97(1): 79-85.
[http://dx.doi.org/10.1016/S0009-3084(98)00098-X] [PMID: 10081150]
[48]
Lee KW, Kang NJ, Rogozin EA, et al. Myricetin is a novel natural inhibitor of neoplastic cell transformation and MEK1. Carcinogenesis 2007; 28(9): 1918-27.
[http://dx.doi.org/10.1093/carcin/bgm110] [PMID: 17693661]
[49]
Lin KH, Yang YY, Yang CM, et al. Antioxidant activity of herbaceous plant extracts protect against hydrogenperoxide-induced DNA damage in human lymphocytes. BMC Res Notes 2013; 6(1): 490.
[http://dx.doi.org/10.1186/1756-0500-6-490]
[50]
Wang ZH, Ah Kang K, Zhang R, et al. Myricetin suppresses oxidative stress-induced cell damage via both direct and indirect antioxidant action. Environ Toxicol Pharmacol 2010; 29(1): 12-8.
[http://dx.doi.org/10.1016/j.etap.2009.08.007] [PMID: 21787576]
[51]
Iwashina T. Flavonoid properties of five families newly incorporated into the order Caryophyllales. Bull Natl Mus Nat Sci 2013; 39: 25-51.
[52]
Jomova K, Lawson M, Drostinova L, et al. Protective role of quercetin against copper(II)-induced oxidative stress: A spectroscopic, theoretical and DNA damage study. Food Chem Toxicol 2017; 110: 340-50.
[http://dx.doi.org/10.1016/j.fct.2017.10.042] [PMID: 29107026]
[53]
Heřmánková E, Zatloukalová M, Biler M, et al. Redox properties of individual quercetin moieties. Free Radic Biol Med 2019; 143: 240-51.
[http://dx.doi.org/10.1016/j.freeradbiomed.2019.08.001] [PMID: 31381971]
[54]
Leopoldini M, Russo N, Chiodo S, Toscano M. Iron chelation by the powerful antioxidant flavonoid quercetin. J Agric Food Chem 2006; 54(17): 6343-51.
[http://dx.doi.org/10.1021/jf060986h] [PMID: 16910729]
[55]
Birjees Bukhari S, Memon S, Mahroof Tahir M, Bhanger MI. Synthesis, characterization and investigation of antioxidant activity of cobalt–quercetin complex. J Mol Struct 2008; 892(1-3): 39-46.
[http://dx.doi.org/10.1016/j.molstruc.2008.04.050]
[56]
Arita-Morioka K, Yamanaka K, Mizunoe Y, Tanaka Y, Ogura T, Sugimoto S. Inhibitory effects of Myricetin derivatives on curli-dependent biofilm formation in Escherichia coli. Sci Rep 2018; 8(1): 8452.
[http://dx.doi.org/10.1038/s41598-018-26748-z] [PMID: 29855532]
[57]
Sadasivam K, Kumaresan R. Antioxidant behavior of mearnsetin and myricetin flavonoid compounds-a DFT study. Spectrochim Acta A Mol Biomol Spectrosc 2011; 79(1): 282-93.
[http://dx.doi.org/10.1016/j.saa.2011.02.042] [PMID: 21420896]
[58]
Wang L, Tu YC, Lian TW, Hung JT, Yen JH, Wu MJ. Distinctive antioxidant and antiinflammatory effects of flavonols. J Agric Food Chem 2006; 54(26): 9798-804.
[http://dx.doi.org/10.1021/jf0620719] [PMID: 17177504]
[59]
Cao G, Sofic E, Prior RL. Peroxyl radical absorbing antioxidant activities of flavonoids. InFASEB JOURNAL 1996; 10(3): 4745-5.
[60]
Rusak G, Gutzeit HO, Müller JL. Structurally related flavonoids with antioxidative properties differentially affect cell cycle progression and apoptosis of human acute leukemia cells. Nutr Res 2005; 25(2): 143-55.
[http://dx.doi.org/10.1016/j.nutres.2004.12.003]
[61]
Mira L, Tereza Fernandez M, Santos M, Rocha R, Helena Florêncio M, Jennings KR. Interactions of flavonoids with iron and copper ions: A mechanism for their antioxidant activity. Free Radic Res 2002; 36(11): 1199-208.
[http://dx.doi.org/10.1080/1071576021000016463] [PMID: 12592672]
[62]
Justino GC, Vieira AJSC. Antioxidant mechanisms of Quercetin and Myricetin in the gas phase and in solution-a comparison and validation of semi-empirical methods. J Mol Model 2010; 16(5): 863-76.
[http://dx.doi.org/10.1007/s00894-009-0583-1] [PMID: 19779937]
[63]
Arumugam B, Palanisamy UD, Chua KH, Kuppusamy UR. Protective effect of myricetin derivatives from Syzygium malaccense against hydrogen peroxide-induced stress in ARPE-19 cells. Mol Vis 2019; 25: 47-59.
[PMID: 30820141]
[64]
Jiménez M, García‐Carmona F. Myricetin, an antioxidant flavonol, is a substrate of polyphenol oxidase. J Sci Food Agric 1999; 79(14): 1993-2000.
[http://dx.doi.org/10.1002/(SICI)1097-0010(199911)79:14<1993:AID-JSFA467>3.0.CO;2-H]
[65]
Bennett CJ, Caldwell ST, McPhail DB, Morrice PC, Duthie GG, Hartley RC. Potential therapeutic antioxidants that combine the radical scavenging ability of myricetin and the lipophilic chain of vitamin E to effectively inhibit microsomal lipid peroxidation. Bioorg Med Chem 2004; 12(9): 2079-98.
[http://dx.doi.org/10.1016/j.bmc.2004.02.031] [PMID: 15080911]
[66]
Laughton MJ, Halliwell B, Evans PJ, Robin J, Hoult S. Antioxidant and pro-oxidant actions of the plant phenolics quercetin, gossypol and myricetin. Biochem Pharmacol 1989; 38(17): 2859-65.
[http://dx.doi.org/10.1016/0006-2952(89)90442-5] [PMID: 2476132]
[67]
Fiander H, Schneider H. Dietary ortho phenols that induce glutathione S-transferase and increase the resistance of cells to hydrogen peroxide are potential cancer chemopreventives that act by two mechanisms: the alleviation of oxidative stress and the detoxification of mutagenic xenobiotics. Cancer Lett 2000; 156(2): 117-24.
[http://dx.doi.org/10.1016/S0304-3835(00)00368-2] [PMID: 10880760]
[68]
Limasset B, Le Doucen C, Dore JC, Ojasoo T, Damon M, De Paulet AC. Effects of flavonoids on the release of reactive oxygen species by stimulated human neutrophils. Biochem Pharmacol 1993; 46(7): 1257-71.
[http://dx.doi.org/10.1016/0006-2952(93)90476-D] [PMID: 8216378]
[69]
Yu JS, Kim AK. Effect of myricetin combined with vitamin C or vitamin E on antioxidant enzyme system in murine melanoma cells. Korean J Pharmacogn 2004; 35(4): 357-63.
[70]
Zhao X, Zhang X. Comparisons of cytoprotective effects of three flavonoids against human hepatocytes oxidative injury induced by hydrogen peroxide or carbon tetrachloride in vitro. J Med Plants Res 2009; 3(10): 776-84.
[71]
Erdogan-Orhan I, Sever-Yılmaz B, Altun ML, Saltan G. Radical quenching activity, ferric-reducing antioxidant power, and ferrous ion-chelating capacity of 16 Ballota species and their total phenol and flavonoid contents. J Med Food 2010; 13(6): 1537-43.
[http://dx.doi.org/10.1089/jmf.2009.0237] [PMID: 21091260]
[72]
Shahidi F, Ambigaipalan P. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects – A review. J Funct Foods 2015; 18: 820-97.
[http://dx.doi.org/10.1016/j.jff.2015.06.018]
[73]
Buettner GR, Doherty TP, Patterson LK. The kinetics of the reaction of superoxide radical with Fe(III) complexes of EDTA, DETAPAC and HEDTA. FEBS Lett 1983; 158(1): 143-6.
[http://dx.doi.org/10.1016/0014-5793(83)80695-4] [PMID: 24754080]
[74]
Cheng Z, Li Y, Chang W. Kinetic deoxyribose degradation assay and its application in assessing the antioxidant activities of phenolic compounds in a Fenton-type reaction system. Anal Chim Acta 2003; 478(1): 129-37.
[http://dx.doi.org/10.1016/S0003-2670(02)01435-6]
[75]
Perron NR, Brumaghim JL. A review of the antioxidant mechanisms of polyphenol compounds related to iron binding. Cell Biochem Biophys 2009; 53(2): 75-100.
[http://dx.doi.org/10.1007/s12013-009-9043-x] [PMID: 19184542]
[76]
Chobot V, Hadacek F. Iron and its complexation by phenolic cellular metabolites. Plant Signal Behav 2010; 5(1): 4-8.
[http://dx.doi.org/10.4161/psb.5.1.10197] [PMID: 20592800]
[77]
de Souza RFV, De Giovani WF. Antioxidant properties of complexes of flavonoids with metal ions. Redox Rep 2004; 9(2): 97-104.
[http://dx.doi.org/10.1179/135100004225003897] [PMID: 15231064]
[78]
Miller D, Buettner GR, Aust SD. Transition metals as catalysts of “autoxidation” reactions. Free Radic Biol Med 1990; 8(1): 95-108.
[http://dx.doi.org/10.1016/0891-5849(90)90148-C] [PMID: 2182396]
[79]
Mladěnka P, Macáková K, Filipský T, et al. In vitro analysis of iron chelating activity of flavonoids. J Inorg Biochem 2011; 105(5): 693-701.
[http://dx.doi.org/10.1016/j.jinorgbio.2011.02.003] [PMID: 21450273]
[80]
Davey MW, Montagu MV, Inze D, et al. Plant L‐ascorbic acid: Chemistry, function, metabolism, bioavailability and effects of processing. J Sci Food Agric 2000; 80(7): 825-60.
[http://dx.doi.org/10.1002/(SICI)1097-0010(20000515)80:7<825:AID-JSFA598>3.0.CO;2-6]
[81]
Kell DB. Iron behaving badly: Inappropriate iron chelation as a major contributor to the aetiology of vascular and other progressive inflammatory and degenerative diseases. BMC Med Genomics 2009; 2(1): 2.
[http://dx.doi.org/10.1186/1755-8794-2-2] [PMID: 19133145]
[82]
Chobot V. Simultaneous detection of pro- and antioxidative effects in the variants of the deoxyribose degradation assay. J Agric Food Chem 2010; 58(4): 2088-94.
[http://dx.doi.org/10.1021/jf902395k] [PMID: 20108920]
[83]
Canada AT, Giannella E, Nguyen TD, Mason RP. The production of reactive oxygen species by dietary flavonols. Free Radic Biol Med 1990; 9(5): 441-9.
[http://dx.doi.org/10.1016/0891-5849(90)90022-B] [PMID: 1963417]
[84]
Steimer T. The biology of fear- and anxiety-related behaviors. Dialogues Clin Neurosci 2002; 4(3): 231-49.
[http://dx.doi.org/10.31887/DCNS.2002.4.3/tsteimer] [PMID: 22033741]
[85]
Nutt D, Allgulander C, Lecrubier Y, Peters T, Wittchen HU. Establishing non-inferiority in treatment trials in psychiatry-guidelines from an Expert Consensus Meeting. J Psychopharmacol 2008; 22(4): 409-16.
[http://dx.doi.org/10.1177/0269881108091068] [PMID: 18635721]
[86]
Brenes GA, Penninx BWJH, Judd PH, Rockwell E, Sewell DD, Wetherell JL. Anxiety, depression and disability across the lifespan. Aging Ment Health 2008; 12(1): 158-63.
[http://dx.doi.org/10.1080/13607860601124115] [PMID: 18297491]
[87]
Palmer K, Berger AK, Monastero R, Winblad B, Bäckman L, Fratiglioni L. Predictors of progression from mild cognitive impairment to Alzheimer disease. Neurology 2007; 68(19): 1596-602.
[http://dx.doi.org/10.1212/01.wnl.0000260968.92345.3f] [PMID: 17485646]
[88]
DeLuca AK, Lenze EJ, Mulsant BH, et al. Comorbid anxiety disorder in late life depression: Association with memory decline over four years. International Journal of Geriatric Psychiatry: A journal of the psychiatry of late life and allied sciences 2005; 20(9): 848-54.
[http://dx.doi.org/10.1002/gps.1366]
[89]
Sinoff G, Werner P. Anxiety disorder and accompanying subjective memory loss in the elderly as a predictor of future cognitive decline. Int J Geriatr Psychiatry 2003; 18(10): 951-9.
[http://dx.doi.org/10.1002/gps.1004] [PMID: 14533128]
[90]
Hettema JM, Kuhn JW, Prescott CA, Kendler KS. The impact of generalized anxiety disorder and stressful life events on risk for major depressive episodes. Psychol Med 2006; 36(6): 789-95.
[http://dx.doi.org/10.1017/S0033291706007367] [PMID: 16515735]
[91]
Dombrovski AY, Mulsant BH, Houck PR, et al. Residual symptoms and recurrence during maintenance treatment of late-life depression. J Affect Disord 2007; 103(1-3): 77-82.
[http://dx.doi.org/10.1016/j.jad.2007.01.020] [PMID: 17321595]
[92]
Andreescu C, Lenze EJ, Dew MA, et al. Effect of comorbid anxiety on treatment response and relapse risk in late-life depression: controlled study. Br J Psychiatry 2007; 190(4): 344-9.
[http://dx.doi.org/10.1192/bjp.bp.106.027169] [PMID: 17401042]
[93]
Steffens DC, McQuoid DR. Impact of symptoms of generalized anxiety disorder on the course of late-life depression. Am J Geriatr Psychiatry 2005; 13(1): 40-7.
[http://dx.doi.org/10.1097/00019442-200501000-00007] [PMID: 15653939]
[94]
Charney DS. Neuroanatomical circuits modulating fear and anxiety behaviors. Acta Psychiatr Scand 2003; 108(417): 38-50.
[http://dx.doi.org/10.1034/j.1600-0447.108.s417.3.x] [PMID: 12950435]
[95]
Goddard AW, Ball SG, Martinez J, et al. Current perspectives of the roles of the central norepinephrine system in anxiety and depression. Depress Anxiety 2010; 27(4): 339-50.
[http://dx.doi.org/10.1002/da.20642] [PMID: 19960531]
[96]
Heninger GR, Charney DS. Monoamine receptor systems and anxiety disorders. Psychiatr Clin North Am 1988; 11(2): 309-26.
[http://dx.doi.org/10.1016/S0193-953X(18)30499-4] [PMID: 2843838]
[97]
Crawley J, Goodwin FK. Preliminary report of a simple animal behavior model for the anxiolytic effects of benzodiazepines. Pharmacol Biochem Behav 1980; 13(2): 167-70.
[http://dx.doi.org/10.1016/0091-3057(80)90067-2] [PMID: 6106204]
[98]
Pellow S, Chopin P, File SE, Briley M. Validation of open: Closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. J Neurosci Methods 1985; 14(3): 149-67.
[http://dx.doi.org/10.1016/0165-0270(85)90031-7] [PMID: 2864480]
[99]
Vishwakarma SL, Pal SC, Kasture VS, Kasture SB. Anxiolytic and antiemetic activity ofZingiber officinale. Phytother Res 2002; 16(7): 621-6.
[http://dx.doi.org/10.1002/ptr.948] [PMID: 12410541]
[100]
Vissiennon C, Nieber K, Kelber O, Butterweck V. Route of administration determines the anxiolytic activity of the flavonols kaempferol, quercetin and myricetin-are they prodrugs? J Nutr Biochem 2012; 23(7): 733-40.
[http://dx.doi.org/10.1016/j.jnutbio.2011.03.017] [PMID: 21840194]
[101]
Carobrez AP, Teixeira KV, Graeff FG. Modulation of defensive behavior by periaqueductal gray NMDA/glycine-B receptor. Neurosci Biobehav Rev 2001; 25(7-8): 697-709.
[http://dx.doi.org/10.1016/S0149-7634(01)00059-8] [PMID: 11801295]
[102]
Myers KM, Carlezon WA Jr, Davis M. Glutamate receptors in extinction and extinction-based therapies for psychiatric illness. Neuropsychopharmacology 2011; 36(1): 274-93.
[http://dx.doi.org/10.1038/npp.2010.88] [PMID: 20631689]
[103]
Otto MW, Basden SL, Leyro TM, McHugh RK, Hofmann SG. Clinical perspectives on the combination of D-cycloserine and cognitive-behavioral therapy for the treatment of anxiety disorders. CNS Spectr 2007; 12(1): 51-61, 59-.
[http://dx.doi.org/10.1017/S1092852900020526] [PMID: 17192764]
[104]
Minkeviciene R, Banerjee P, Tanila H. Cognition-enhancing and anxiolytic effects of memantine. Neuropharmacology 2008; 54(7): 1079-85.
[http://dx.doi.org/10.1016/j.neuropharm.2008.02.014] [PMID: 18378262]
[105]
Feusner JD, Kerwin L, Saxena S, Bystritsky A. Differential efficacy of memantine for obsessive-compulsive disorder vs. generalized anxiety disorder: an open-label trial. Psychopharmacol Bull 2009; 42(1): 81-93.
[PMID: 19204653]
[106]
Chang Y, Chang CY, Wang SJ, Huang SK. Myricetin inhibits the release of glutamate in rat cerebrocortical nerve terminals. J Med Food 2015; 18(5): 516-23.
[http://dx.doi.org/10.1089/jmf.2014.3219] [PMID: 25340625]
[107]
Möhler H. The rise of a new GABA pharmacology. Neuropharmacology 2011; 60(7-8): 1042-9.
[http://dx.doi.org/10.1016/j.neuropharm.2010.10.020] [PMID: 21035473]
[108]
Xiang J, Jiang Y. Antiepileptic potential of matrine via regulation the levels of gamma-aminobutyric acid and glutamic acid in the brain. Int J Mol Sci 2013; 14(12): 23751-61.
[http://dx.doi.org/10.3390/ijms141223751] [PMID: 24317434]
[109]
Hao F, Jia LH, Li XW, Zhang YR, Liu XW. Garcinol upregulates GABAA and GAD65 expression, modulates BDNF-TrkB pathway to reduce seizures in pentylenetetrazole (PTZ)-induced epilepsy. Med Sci Monit 2016; 22: 4415-25.
[http://dx.doi.org/10.12659/MSM.897579] [PMID: 27855137]
[110]
Zhang XH, Ma ZG, Rowlands DK, et al. Flavonoid myricetin modulates receptor activity through activation of channels and CaMK-II pathway. Evidence-Based Complementary and Alternative Medicine 2012; 2012.
[111]
Liu IM, Liou SS, Cheng JT. Mediation of β-endorphin by myricetin to lower plasma glucose in streptozotocin-induced diabetic rats. J Ethnopharmacol 2006; 104(1-2): 199-206.
[http://dx.doi.org/10.1016/j.jep.2005.09.001] [PMID: 16203117]
[112]
Wong ML, Licinio J. Research and treatment approaches to depression. Nat Rev Neurosci 2001; 2(5): 343-51.
[http://dx.doi.org/10.1038/35072566] [PMID: 11331918]
[113]
Krishnan V, Nestler EJ. The molecular neurobiology of depression. Nature 2008; 455(7215): 894-902.
[http://dx.doi.org/10.1038/nature07455] [PMID: 18923511]
[114]
Åsberg M. Neurotransmitters and suicidal behavior. The evidence from cerebrospinal fluid studies. Ann N Y Acad Sci 1997; 836(1 Neurobiology): 158-81.
[http://dx.doi.org/10.1111/j.1749-6632.1997.tb52359.x] [PMID: 9616798]
[115]
Meltzer H. Serotonergic dysfunction in depression. Br J Psychiatry 1989; 155(S8): 25-31.
[http://dx.doi.org/10.1192/S0007125000291733] [PMID: 2692637]
[116]
Placidi GPA, Oquendo MA, Malone KM, Huang YY, Ellis SP, Mann JJ. Aggressivity, suicide attempts, and depression: Relationship to cerebrospinal fluid monoamine metabolite levels. Biol Psychiatry 2001; 50(10): 783-91.
[http://dx.doi.org/10.1016/S0006-3223(01)01170-2] [PMID: 11720697]
[117]
Wester P, Bergström U, Eriksson A, Gezelius C, Hardy J, Winblad B. Ventricular cerebrospinal fluid monoamine transmitter and metabolite concentrations reflect human brain neurochemistry in autopsy cases. J Neurochem 1990; 54(4): 1148-56.
[http://dx.doi.org/10.1111/j.1471-4159.1990.tb01942.x] [PMID: 1968956]
[118]
Southwick SM, Vythilingam M, Charney DS. The psychobiology of depression and resilience to stress: Implications for prevention and treatment. Annu Rev Clin Psychol 2005; 1(1): 255-91.
[http://dx.doi.org/10.1146/annurev.clinpsy.1.102803.143948] [PMID: 17716089]
[119]
Drevets W, Bogers W, Raichle ME. Functional anatomical correlates of antidepressant drug treatment assessed using PET measures of regional glucose metabolism. Eur Neuropsychopharmacol 2002; 12(6): 527-44.
[http://dx.doi.org/10.1016/S0924-977X(02)00102-5] [PMID: 12468016]
[120]
Briley M, Moret C. Improvement of social adaptation in depression with serotonin and norepinephrine reuptake inhibitors. Neuropsychiatr Dis Treat 2010; 6: 647-55.
[http://dx.doi.org/10.2147/NDT.S13171] [PMID: 20957125]
[121]
Ibrahim D, Chahardehi AM, Abolhassani F. evaluation of the antidepressant effects of alcoholic extracts of pilea microphylla in mice. J Teknol 2012; 57(1)
[http://dx.doi.org/10.11113/jt.v57.1537]
[122]
Sur B, Lee B. Myricetin prevents sleep deprivation-induced cognitive impairment and neuroinflammation in rat brain via regulation of brain-derived neurotropic factor. Korean J Physiol Pharmacol 2022; 26(6): 415-25.
[http://dx.doi.org/10.4196/kjpp.2022.26.6.415] [PMID: 36302617]
[123]
Dell’Osso L, Carmassi C, Del Debbio A, et al. Brain-derived neurotrophic factor plasma levels in patients suffering from post-traumatic stress disorder. Prog Neuropsychopharmacol Biol Psychiatry 2009; 33(5): 899-902.
[http://dx.doi.org/10.1016/j.pnpbp.2009.04.018] [PMID: 19409951]
[124]
Shin JC, Jung HY, Harikishore A, et al. The flavonoid myricetin reduces nocturnal melatonin levels in the blood through the inhibition of serotonin N-acetyltransferase. Biochem Biophys Res Commun 2013; 440(2): 312-6.
[http://dx.doi.org/10.1016/j.bbrc.2013.09.076] [PMID: 24076393]
[125]
Larit F, Elokely KM, Chaurasiya ND, et al. Inhibition of human monoamine oxidase A and B by flavonoids isolated from two Algerian medicinal plants. Phytomedicine 2018; 40: 27-36.
[http://dx.doi.org/10.1016/j.phymed.2017.12.032] [PMID: 29496172]
[126]
Fisher RS, Boas WE, Blume W, et al. Epileptic Seizures and Epilepsy: Definitions proposed by the international league against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE). Epilepsia 2005; 46(4): 470-2.
[http://dx.doi.org/10.1111/j.0013-9580.2005.66104.x] [PMID: 15816939]
[127]
Svenningsen AB, Madsen KD, Liljefors T, Stafford GI, Staden J, Jäger AK. Biflavones from Rhus species with affinity for the GABAA/benzodiazepine receptor. J Ethnopharmacol 2006; 103(2): 276-80.
[http://dx.doi.org/10.1016/j.jep.2005.08.012] [PMID: 16168585]
[128]
Macdonald RL. GABAA receptor defects can cause epilepsy. Epilepsy Curr 2001; 1(2): 74-5.
[http://dx.doi.org/10.1046/j.1535-7597.2001.00018.x] [PMID: 15309196]
[129]
Sperk G, Furtinger S, Schwarzer C, Pirker S. GABA and its receptors in epilepsy. Adv Exp Med Biol 2004; 548: 92-103.
[http://dx.doi.org/10.1007/978-1-4757-6376-8_7]
[130]
Scharfman HE. Epilepsy as an example of neural plasticity. Neuroscientist 2002; 8(2): 154-73.
[http://dx.doi.org/10.1177/107385840200800211] [PMID: 11954560]
[131]
Papaleo F, Silverman JL, Aney J, et al. Working memory deficits, increased anxiety-like traits, and seizure susceptibility in BDNF overexpressing mice. Learn Mem 2011; 18(8): 534-44.
[http://dx.doi.org/10.1101/lm.2213711] [PMID: 21791566]
[132]
Binder DK, Croll SD, Gall CM, Scharfman HE. BDNF and epilepsy: Too much of a good thing? Trends Neurosci 2001; 24(1): 47-53.
[http://dx.doi.org/10.1016/S0166-2236(00)01682-9] [PMID: 11163887]
[133]
Tanaka T, Saito H, Matsuki N. Inhibition of GABAA synaptic responses by brain-derived neurotrophic factor (BDNF) in rat hippocampus. J Neurosci 1997; 17(9): 2959-66.
[http://dx.doi.org/10.1523/JNEUROSCI.17-09-02959.1997] [PMID: 9096132]
[134]
Pottoo FH, Javed MN, Barkat MA, et al. Estrogen and serotonin: Complexity of interactions and implications for epileptic seizures and epileptogenesis. Curr Neuropharmacol 2019; 17(3): 214-31.
[http://dx.doi.org/10.2174/1570159X16666180628164432] [PMID: 29956631]
[135]
Sun ZQ, Meng FH, Tu LX, Sun L. Myricetin attenuates the severity of seizures and neuroapoptosis in pentylenetetrazole kindled mice by regulating the of BDNF TrkB signaling pathway and modulating matrix metalloproteinase 9 and GABAA. Exp Ther Med 2019; 17(4): 3083-91.
[http://dx.doi.org/10.3892/etm.2019.7282] [PMID: 30906480]
[136]
Pottoo FH, Tabassum N, Javed MN, et al. The synergistic effect of raloxifene, fluoxetine, and bromocriptine protects against pilocarpine-induced status epilepticus and temporal lobe epilepsy. Mol Neurobiol 2019; 56(2): 1233-47.
[http://dx.doi.org/10.1007/s12035-018-1121-x] [PMID: 29881945]
[137]
Pottoo FH, Sharma S, Javed MN, et al. Lipid-based nanoformulations in the treatment of neurological disorders. Drug Metab Rev 2020; 52(1): 185-204.
[http://dx.doi.org/10.1080/03602532.2020.1726942] [PMID: 32116044]
[138]
Winsky-Sommerer R, Boutrel B, de Lecea L. Stress and arousal: The corticotrophin-releasing factor/hypocretin circuitry. Mol Neurobiol 2005; 32(3): 285-94.
[http://dx.doi.org/10.1385/MN:32:3:285] [PMID: 16385142]
[139]
Vgontzas AN, Chrousos GP. Sleep, the hypothalamic–pituitary–adrenal axis, and cytokines: Multiple interactions and disturbances in sleep disorders. Endocrinol Metab Clin North Am 2002; 31(1): 15-36.
[http://dx.doi.org/10.1016/S0889-8529(01)00005-6] [PMID: 12055986]
[140]
Ibrahim AM, Chauhan L, Bhardwaj A, et al. Brain-derived neurotropic factor in neurodegenerative disorders. Biomedicines 2022; 10(5): 1143.
[http://dx.doi.org/10.3390/biomedicines10051143] [PMID: 35625880]
[141]
Javed MN, Pottoo FH, Alam MS. Metallic nanoparticle alone and/or in combination as novel agent for the treatment of uncontrolled electric conductance related disorders and/or seizure, epilepsy & convulsions. WO2017060916A1, 2016.
[142]
Javed MN, Aslam M, Deeb HH, et al. Lipid nanocarriers for neurotherapeutics: Introduction, challenges, blood-brain barrier, and promises of delivery approaches. CNS Neurol Disord Drug Targets 2022; 21(10): 952-65.
[http://dx.doi.org/10.2174/1871527320666210706104240] [PMID: 34967302]
[143]
Javed MN, Akhter MH, Taleuzzaman M, Faiyazudin M, Alam MS. Cationic nanoparticles for treatment of neurological diseases InFundamentals of Bionanomaterials. Elsevier 2022; pp. 273-92.
[144]
Agraharam G, Girigoswami A, Girigoswami K. Myricetin: A multifunctional flavonol in biomedicine. Curr Pharmacol Rep 2022; 8(1): 48-61.
[http://dx.doi.org/10.1007/s40495-021-00269-2] [PMID: 35036292]
[145]
Galvin JE, Lee VM, Schmidt ML, Tu PH, Iwatsubo T, Trojanowski JQ. Pathobiology of the Lewy body. Adv Neurol 1999; 80: 313-24.
[PMID: 10410736]
[146]
Spillantini MG, Crowther RA, Jakes R, Hasegawa M, Goedert M. α-Synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with Lewy bodies. Proc Natl Acad Sci USA 1998; 95(11): 6469-73.
[http://dx.doi.org/10.1073/pnas.95.11.6469] [PMID: 9600990]
[147]
Burré J, Sharma M, Tsetsenis T, Buchman V, Etherton MR, Südhof TC. α-synuclein promotes SNARE-complex assembly in vivo and in vitro. Science 2010; 329(5999): 1663-7.
[http://dx.doi.org/10.1126/science.1195227] [PMID: 20798282]
[148]
Bendor JT, Logan TP, Edwards RH. The function of α-. Synuclein Neuron 2013; 79(6): 1044-66.
[http://dx.doi.org/10.1016/j.neuron.2013.09.004] [PMID: 24050397]
[149]
Ruipérez V, Darios F, Davletov B. Alpha-synuclein, lipids and Parkinson’s disease. Prog Lipid Res 2010; 49(4): 420-8.
[http://dx.doi.org/10.1016/j.plipres.2010.05.004]
[150]
Bartels T, Choi JG, Selkoe DJ. α-Synuclein occurs physiologically as a helically folded tetramer that resists aggregation. Nature 2011; 477(7362): 107-10.
[http://dx.doi.org/10.1038/nature10324] [PMID: 21841800]
[151]
Broersen K, Ruiperez V, Davletov B. Structural and aggregation properties of alpha-synuclein linked to phospholipase A2 action. Protein Pept Lett 2018; 25(4): 368-78.
[http://dx.doi.org/10.2174/0929866525666180326120052] [PMID: 29577851]
[152]
Bertoncini CW, Jung YS, Fernandez CO, et al. Release of long-range tertiary interactions potentiates aggregation of natively unstructured α-synuclein. Proc Natl Acad Sci USA 2005; 102(5): 1430-5.
[http://dx.doi.org/10.1073/pnas.0407146102] [PMID: 15671169]
[153]
Karpinar DP, Balija MBG, Kügler S, et al. Pre-fibrillar α-synuclein variants with impaired β-structure increase neurotoxicity in Parkinson’s disease models. EMBO J 2009; 28(20): 3256-68.
[http://dx.doi.org/10.1038/emboj.2009.257] [PMID: 19745811]
[154]
Lashuel HA, Overk CR, Oueslati A, Masliah E. The many faces of α-synuclein: From structure and toxicity to therapeutic target. Nat Rev Neurosci 2013; 14(1): 38-48.
[http://dx.doi.org/10.1038/nrn3406] [PMID: 23254192]
[155]
Spillantini MG, Schmidt ML, Lee VMY, Trojanowski JQ, Jakes R, Goedert M. α-Synuclein in Lewy bodies. Nature 1997; 388(6645): 839-40.
[http://dx.doi.org/10.1038/42166] [PMID: 9278044]
[156]
Goedert M, Spillantini MG, Del Tredici K, Braak H. 100 years of Lewy pathology. Nat Rev Neurol 2013; 9(1): 13-24.
[http://dx.doi.org/10.1038/nrneurol.2012.242] [PMID: 23183883]
[157]
Kim WS, Kågedal K, Halliday GM. Alpha-synuclein biology in Lewy body diseases. Alzheimers Res Ther 2014; 6(5-8): 73.
[http://dx.doi.org/10.1186/s13195-014-0073-2] [PMID: 25580161]
[158]
Herrera A, Muñoz P, Steinbusch HWM, Segura-Aguilar J. Are dopamine oxidation metabolites involved in the loss of dopaminergic neurons in the nigrostriatal system in Parkinson’s disease? ACS Chem Neurosci 2017; 8(4): 702-11.
[http://dx.doi.org/10.1021/acschemneuro.7b00034] [PMID: 28233992]
[159]
Longhena F, Faustini G, Missale C, Pizzi M, Spano P, Bellucci A. The contribution of α-synuclein spreading to Parkinson’s disease synaptopathy. Neural Plast 2017; 2017: 5012129.
[http://dx.doi.org/10.1155/2017/5012129]
[160]
Singleton AB, Farrer M, Johnson J, et al. α-Synuclein locus triplication causes Parkinson's disease. Sci 2003; 302(5646): 841-1.
[161]
Simón-Sánchez J, Schulte C, Bras JM, et al. Genome-wide association study reveals genetic risk underlying Parkinson’s disease. Nat Genet 2009; 41(12): 1308-12.
[http://dx.doi.org/10.1038/ng.487] [PMID: 19915575]
[162]
Winner B, Jappelli R, Maji SK, et al. In vivo demonstration that α-synuclein oligomers are toxic. Proc Natl Acad Sci USA 2011; 108(10): 4194-9.
[http://dx.doi.org/10.1073/pnas.1100976108] [PMID: 21325059]
[163]
Brundin P, Dave KD, Kordower JH. Therapeutic approaches to target alpha-synuclein pathology. Exp Neurol 2017; 298(Pt B): 225-35.
[http://dx.doi.org/10.1016/j.expneurol.2017.10.003] [PMID: 28987463]
[164]
Ghiglieri V, Calabrese V, Calabresi P. Alpha-synuclein: from early synaptic dysfunction to neurodegeneration. Front Neurol 2018; 9: 295.
[http://dx.doi.org/10.3389/fneur.2018.00295] [PMID: 29780350]
[165]
Joshi V, Mishra R, Upadhyay A, et al. Polyphenolic flavonoid (Myricetin) upregulated proteasomal degradation mechanisms: Eliminates neurodegenerative proteins aggregation. J Cell Physiol 2019; 234(11): 20900-14.
[http://dx.doi.org/10.1002/jcp.28695] [PMID: 31004355]
[166]
Shimmyo Y, Kihara T, Akaike A, Niidome T, Sugimoto H. Flavonols and flavones as BACE-1 inhibitors: Structure–activity relationship in cell-free, cell-based and in silico studies reveal novel pharmacophore features. Biochim Biophys Acta, Gen Subj 2008; 1780(5): 819-25.
[http://dx.doi.org/10.1016/j.bbagen.2008.01.017] [PMID: 18295609]
[167]
Dhanraj V, Karuppaiah J, Balakrishnan R, Elangovan N. Myricetin attenuates neurodegeneration and cognitive impairment in Parkinsonism. Front Biosci 2018; 10(3): 481-94.
[PMID: 29772521]
[168]
Zamzami N, Marchetti P, Castedo M, et al. Reduction in mitochondrial potential constitutes an early irreversible step of programmed lymphocyte death in vivo. J Exp Med 1995; 181(5): 1661-72.
[http://dx.doi.org/10.1084/jem.181.5.1661] [PMID: 7722446]
[169]
Kroemer G, Zamzami N, Susin SA. Mitochondrial control of apoptosis. Immunol Today 1997; 18(1): 44-51.
[http://dx.doi.org/10.1016/S0167-5699(97)80014-X] [PMID: 9018974]
[170]
Götz M, Double K, Gerlach M, Youdim MBH, Riederere P. The relevance of iron in the pathogenesis of Parkinson’s disease. Ann N Y Acad Sci 2004; 1012(1): 193-208.
[http://dx.doi.org/10.1196/annals.1306.017] [PMID: 15105267]
[171]
Youdim MBH, Stephenson G, Shachar DB. Ironing iron out in Parkinson’s disease and other neurodegenerative diseases with iron chelators: A lesson from 6-hydroxydopamine and iron chelators, desferal and VK-28. Ann N Y Acad Sci 2004; 1012(1): 306-25.
[http://dx.doi.org/10.1196/annals.1306.025] [PMID: 15105275]
[172]
Berg D, Hochstrasser H. Iron metabolism in Parkinsonian syndromes. Mov Disord 2006; 21(9): 1299-310.
[http://dx.doi.org/10.1002/mds.21020] [PMID: 16817199]
[173]
Zhao X, Wang J, Hu S, Wang R, Mao Y, Xie J. Neuroprotective effect of resveratrol on rotenone-treated C57BL/6 mice. Neuroreport 2017; 28(9): 498-505.
[http://dx.doi.org/10.1097/WNR.0000000000000789] [PMID: 28471847]
[174]
Mu M, An P, Wu Q, et al. The dietary flavonoid myricetin regulates iron homeostasis by suppressing hepcidin expression. J Nutr Biochem 2016; 30: 53-61.
[http://dx.doi.org/10.1016/j.jnutbio.2015.10.015] [PMID: 27012621]
[175]
Du F, Qian ZM, Luo Q, Yung WH, Ke Y. Hepcidin suppresses brain iron accumulation by downregulating iron transport proteins in iron-overloaded rats. Mol Neurobiol 2015; 52(1): 101-14.
[http://dx.doi.org/10.1007/s12035-014-8847-x] [PMID: 25115800]
[176]
Nemeth E, Tuttle MS, Powelson J, et al. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science 2004; 306(5704): 2090-3.
[177]
Deng H, Liu S, Pan D, Jia Y, Ma ZG. Myricetin reduces cytotoxicity by suppressing hepcidin expression in MES23.5 cells. Neural Regen Res 2021; 16(6): 1105-10.
[http://dx.doi.org/10.4103/1673-5374.300461] [PMID: 33269757]
[178]
Langston JW, Ballard P, Tetrud JW, Irwin I. Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science 1983; 219(4587): 979-80.
[http://dx.doi.org/10.1126/science.6823561] [PMID: 6823561]
[179]
Tatton NA, Kish SJ. In situ detection of apoptotic nuclei in the substantia nigra compacta of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated mice using terminal deoxynucleotidyl transferase labelling and acridine orange staining. Neuroscience 1997; 77(4): 1037-48.
[http://dx.doi.org/10.1016/S0306-4522(96)00545-3] [PMID: 9130785]
[180]
Chan P, DeLanney LE, Irwin I, Langston JW, Monte D. Rapid ATP loss caused by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in mouse brain. J Neurochem 1991; 57(1): 348-51.
[http://dx.doi.org/10.1111/j.1471-4159.1991.tb02134.x] [PMID: 2051170]
[181]
Scotcher KP, Irwin I, DeLanney LE, Langston JW, Monte D. Effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and 1-methyl-4-phenylpyridinium ion on ATP levels of mouse brain synaptosomes. J Neurochem 1990; 54(4): 1295-301.
[http://dx.doi.org/10.1111/j.1471-4159.1990.tb01962.x] [PMID: 2313288]
[182]
Davey GP, Clark JB. Threshold effects and control of oxidative phosphorylation in nonsynaptic rat brain mitochondria. J Neurochem 1996; 66(4): 1617-24.
[http://dx.doi.org/10.1046/j.1471-4159.1996.66041617.x] [PMID: 8627318]
[183]
Zhang K, Ma Z, Wang J, Xie A, Xie J. Myricetin attenuated MPP+-induced cytotoxicity by anti-oxidation and inhibition of MKK4 and JNK activation in MES23.5 cells. Neuropharmacology 2011; 61(1-2): 329-35.
[http://dx.doi.org/10.1016/j.neuropharm.2011.04.021] [PMID: 21549720]
[184]
Burlacu A. Regulation of apoptosis by Bcl-2 family proteins. J Cell Mol Med 2003; 7(3): 249-57.
[http://dx.doi.org/10.1111/j.1582-4934.2003.tb00225.x] [PMID: 14594549]
[185]
Qin H, Buckley JA, Li X, et al. Inhibition of the JAK/STAT pathway protects against α-synuclein-induced neuroinflammation and dopaminergic neurodegeneration. J Neurosci 2016; 36(18): 5144-59.
[http://dx.doi.org/10.1523/JNEUROSCI.4658-15.2016] [PMID: 27147665]
[186]
Ma ZG, Wang J, Jiang H, Liu TW, Xie JX. Myricetin reduces 6-hydroxydopamine-induced dopamine neuron degeneration in rats. Neuroreport 2007; 18(11): 1181-5.
[http://dx.doi.org/10.1097/WNR.0b013e32821c51fe] [PMID: 17589323]
[187]
Kujawska M, Jodynis-Liebert J. Polyphenols in Parkinson’s disease: A systematic review of in vivo studies. Nutrients 2018; 10(5): 642.
[http://dx.doi.org/10.3390/nu10050642] [PMID: 29783725]
[188]
Selkoe DJ, Podlisny MB. Deciphering the genetic basis of Alzheimer’s disease. Annu Rev Genomics Hum Genet 2002; 3(1): 67-99.
[http://dx.doi.org/10.1146/annurev.genom.3.022502.103022] [PMID: 12142353]
[189]
McKeel DW Jr, Price JL, Miller JP, et al. Neuropathologic criteria for diagnosing Alzheimer disease in persons with pure dementia of Alzheimer type. J Neuropathol Exp Neurol 2004; 63(10): 1028-37.
[http://dx.doi.org/10.1093/jnen/63.10.1028] [PMID: 15535130]
[190]
Fratiglioni L, Launer LJ, Andersen K, et al. Incidence of dementia and major subtypes in Europe: A collaborative study of population-based cohorts. Neurology 2000; 54(11) (Suppl. 5): S10-5.
[PMID: 10854355]
[191]
Thinakaran G, Koo EH. Amyloid precursor protein trafficking, processing, and function. J Biol Chem 2008; 283(44): 29615-9.
[http://dx.doi.org/10.1074/jbc.R800019200] [PMID: 18650430]
[192]
Naushad M, Durairajan SSK, Bera AK, Senapati S, Li M. Natural compounds with anti-BACE1 activity as promising therapeutic drugs for treating Alzheimerʼs disease. Planta Med 2019; 85(17): 1316-25.
[http://dx.doi.org/10.1055/a-1019-9819] [PMID: 31618777]
[193]
Jang H, Zheng J, Nussinov R. Models of β-amyloid ion channels in the membrane suggest that channel formation in the bilayer is a dynamic process. Biophys J 2007; 93(6): 1938-49.
[http://dx.doi.org/10.1529/biophysj.107.110148] [PMID: 17526580]
[194]
Umeda T, Tomiyama T, Sakama N, et al. Intraneuronal amyloid β oligomers cause cell death via endoplasmic reticulum stress, endosomal/lysosomal leakage, and mitochondrial dysfunction in vivo. J Neurosci Res 2011; 89(7): 1031-42.
[http://dx.doi.org/10.1002/jnr.22640] [PMID: 21488093]
[195]
Mattson MP. Pathways towards and away from Alzheimer’s disease. Nature 2004; 430(7000): 631-9.
[http://dx.doi.org/10.1038/nature02621] [PMID: 15295589]
[196]
Small DH, Mok SS, Bornstein JC. Alzheimer’s disease and Aβ toxicity: From top to bottom. Nat Rev Neurosci 2001; 2(8): 595-8.
[http://dx.doi.org/10.1038/35086072] [PMID: 11484003]
[197]
Smith IF, Hitt B, Green KN, Oddo S, LaFerla FM. Enhanced caffeine-induced Ca2+ release in the 3xTg-AD mouse model of Alzheimer’s disease. J Neurochem 2005; 94(6): 1711-8.
[http://dx.doi.org/10.1111/j.1471-4159.2005.03332.x] [PMID: 16156741]
[198]
Takahashi RH, Almeida CG, Kearney PF, et al. Oligomerization of Alzheimer’s β-amyloid within processes and synapses of cultured neurons and brain. J Neurosci 2004; 24(14): 3592-9.
[http://dx.doi.org/10.1523/JNEUROSCI.5167-03.2004] [PMID: 15071107]
[199]
Zerbinatti CV, Wozniak DF, Cirrito J, et al. Increased soluble amyloid-β peptide and memory deficits in amyloid model mice overexpressing the low-density lipoprotein receptor-related protein. Proc Natl Acad Sci USA 2004; 101(4): 1075-80.
[http://dx.doi.org/10.1073/pnas.0305803101] [PMID: 14732699]
[200]
Engelhart MJ, Geerlings MI, Ruitenberg A, et al. Dietary intake of antioxidants and risk of Alzheimer disease. JAMA 2002; 287(24): 3223-9.
[http://dx.doi.org/10.1001/jama.287.24.3223] [PMID: 12076218]
[201]
Commenges D, Scotet V, Renaud S, Jacqmin-Gadda H, Barberger-Gateau P, Dartigues JF. Intake of flavonoids and risk of dementia. Eur J Epidemiol 2000; 16(4): 357-63.
[http://dx.doi.org/10.1023/A:1007614613771] [PMID: 10959944]
[202]
Holland TM, Agarwal P, Wang Y, et al. Dietary flavonols and risk of Alzheimer dementia. Neurology 2020; 94(16): e1749-56.
[http://dx.doi.org/10.1212/WNL.0000000000008981] [PMID: 31996451]
[203]
Das S, Mandal A, Ghosh A, Panda S, Das N, Sarkar S. Nanoparticulated quercetin in combating age related cerebral oxidative injury. Curr Aging Sci 2008; 1(3): 169-74.
[http://dx.doi.org/10.2174/1874609810801030169] [PMID: 20021389]
[204]
Hamaguchi T, Ono K, Murase A, Yamada M. Phenolic compounds prevent Alzheimer’s pathology through different effects on the amyloid-β aggregation pathway. Am J Pathol 2009; 175(6): 2557-65.
[http://dx.doi.org/10.2353/ajpath.2009.090417] [PMID: 19893028]
[205]
Paulke A, Schubert-Zsilavecz M, Wurglics M. Determination of St. John’s wort flavonoid-metabolites in rat brain through high performance liquid chromatography coupled with fluorescence detection. J Chromatogr B Analyt Technol Biomed Life Sci 2006; 832(1): 109-13.
[http://dx.doi.org/10.1016/j.jchromb.2005.12.043] [PMID: 16434241]
[206]
Franco JL, Posser T, Missau F, et al. Structure-activity relationship of flavonoids derived from medicinal plants in preventing methylmercury-induced mitochondrial dysfunction. Environ Toxicol Pharmacol 2010; 30(3): 272-8.
[http://dx.doi.org/10.1016/j.etap.2010.07.003] [PMID: 21127717]
[207]
Hirohata M, Hasegawa K, Tsutsumi-Yasuhara S, et al. The anti-amyloidogenic effect is exerted against Alzheimer’s β-amyloid fibrils in vitro by preferential and reversible binding of flavonoids to the amyloid fibril structure. Biochemistry 2007; 46(7): 1888-99.
[http://dx.doi.org/10.1021/bi061540x] [PMID: 17253770]
[208]
Liang J, Kerstin Lindemeyer A, Shen Y, et al. Dihydromyricetin ameliorates behavioral deficits and reverses neuropathology of transgenic mouse models of Alzheimer’s disease. Neurochem Res 2014; 39(6): 1171-81.
[http://dx.doi.org/10.1007/s11064-014-1304-4] [PMID: 24728903]
[209]
Chakraborty S, Kumar S, Basu S. Conformational transition in the substrate binding domain of β-secretase exploited by NMA and its implication in inhibitor recognition: BACE1–myricetin a case study. Neurochem Int 2011; 58(8): 914-23.
[http://dx.doi.org/10.1016/j.neuint.2011.02.021] [PMID: 21354237]
[210]
Jia L, Zhao W, Sang J, et al. Inhibitory effect of a flavonoid dihydromyricetin against Aβ40 amyloidogenesis and its associated cytotoxicity. ACS Chem Neurosci 2019; 10(11): 4696-703.
[http://dx.doi.org/10.1021/acschemneuro.9b00480] [PMID: 31596069]
[211]
Andarzi Gargari S, Barzegar A, Tarinejad A. The role of phenolic OH groups of flavonoid compounds with H-bond formation ability to suppress amyloid mature fibrils by destabilizing β-sheet conformation of monomeric Aβ17-42. PLoS One 2018; 13(6): e0199541.
[http://dx.doi.org/10.1371/journal.pone.0199541] [PMID: 29953467]
[212]
Ono K, Yoshiike Y, Takashima A, Hasegawa K, Naiki H, Yamada M. Potent anti-amyloidogenic and fibril-destabilizing effects of polyphenols in vitro: implications for the prevention and therapeutics of Alzheimer’s disease. J Neurochem 2003; 87(1): 172-81.
[http://dx.doi.org/10.1046/j.1471-4159.2003.01976.x] [PMID: 12969264]
[213]
Pike CJ, Burdick D, Walencewicz AJ, Glabe CG, Cotman CW. Neurodegeneration induced by beta-amyloid peptides in vitro: the role of peptide assembly state. J Neurosci 1993; 13(4): 1676-87.
[http://dx.doi.org/10.1523/JNEUROSCI.13-04-01676.1993] [PMID: 8463843]
[214]
Jordán J, Galindo MF, Miller RJ. Role of calpain- and interleukin-1 β converting enzyme-like proteases in the β-amyloid-induced death of rat hippocampal neurons in culture. J Neurochem 1997; 68(4): 1612-21.
[http://dx.doi.org/10.1046/j.1471-4159.1997.68041612.x] [PMID: 9084433]
[215]
Bastianetto S, Ramassamy C, Doré S, Christen Y, Poirier J, Quirion R. The ginkgo biloba extract (EGb 761) protects hippocampal neurons against cell death induced by β-amyloid. Eur J Neurosci 2000; 12(6): 1882-90.
[http://dx.doi.org/10.1046/j.1460-9568.2000.00069.x] [PMID: 10886329]
[216]
Prajapati KP, Singh AP, Dubey K, et al. Myricetin inhibits amyloid fibril formation of globular proteins by stabilizing the native structures. Colloids Surf B Biointerfaces 2020; 186: 110640.
[http://dx.doi.org/10.1016/j.colsurfb.2019.110640] [PMID: 31835184]
[217]
Choi SM, Kim BC, Cho YH, et al. Effects of flavonoid compounds on β-amyloid-peptide-induced neuronal death in cultured mouse cortical neurons. Chonnam Med J 2014; 50(2): 45-51.
[http://dx.doi.org/10.4068/cmj.2014.50.2.45] [PMID: 25229015]
[218]
Semwal D, Semwal R, Combrinck S, Viljoen A. Myricetin: A dietary molecule with diverse biological activities. Nutrients 2016; 8(2): 90.
[http://dx.doi.org/10.3390/nu8020090] [PMID: 26891321]
[219]
George RC, Lew J, Graves DJ. Interaction of cinnamaldehyde and epicatechin with tau: Implications of beneficial effects in modulating Alzheimer’s disease pathogenesis. J Alzheimers Dis 2013; 36(1): 21-40.
[http://dx.doi.org/10.3233/JAD-122113] [PMID: 23531502]
[220]
Ksiezak-Reding H, Ho L, Santa-Maria I, Diaz-Ruiz C, Wang J, Pasinetti GM. Ultrastructural alterations of Alzheimer’s disease paired helical filaments by grape seed-derived polyphenols. Neurobiol Aging 2012; 33(7): 1427-39.
[http://dx.doi.org/10.1016/j.neurobiolaging.2010.11.006] [PMID: 21196065]
[221]
Taniguchi S, Suzuki N, Masuda M, et al. Inhibition of heparin-induced tau filament formation by phenothiazines, polyphenols, and porphyrins. J Biol Chem 2005; 280(9): 7614-23.
[http://dx.doi.org/10.1074/jbc.M408714200] [PMID: 15611092]
[222]
Smid SD, Maag JL, Musgrave IF. Dietary polyphenol-derived protection against neurotoxic β-amyloid protein: From molecular to clinical. Food Funct 2012; 3(12): 1242-50.
[http://dx.doi.org/10.1039/c2fo30075c] [PMID: 22929970]
[223]
Butterfield DA, Galvan V, Lange MB, et al. In vivo oxidative stress in brain of Alzheimer disease transgenic mice: Requirement for methionine 35 in amyloid β-peptide of APP. Free Radic Biol Med 2010; 48(1): 136-44.
[http://dx.doi.org/10.1016/j.freeradbiomed.2009.10.035] [PMID: 19854267]
[224]
Pietta PG. Flavonoids as Antioxidants. J Nat Prod 2000; 63(7): 1035-42.
[http://dx.doi.org/10.1021/np9904509] [PMID: 10924197]
[225]
Lei Y, Chen J, Zhang W, et al. In vivo investigation on the potential of galangin, kaempferol and myricetin for protection of d-galactose-induced cognitive impairment. Food Chem 2012; 135(4): 2702-7.
[http://dx.doi.org/10.1016/j.foodchem.2012.07.043] [PMID: 22980861]
[226]
Praticò D, Uryu K, Leight S, Trojanoswki JQ, Lee VMY. Increased lipid peroxidation precedes amyloid plaque formation in an animal model of Alzheimer amyloidosis. J Neurosci 2001; 21(12): 4183-7.
[http://dx.doi.org/10.1523/JNEUROSCI.21-12-04183.2001] [PMID: 11404403]
[227]
Su B, Wang X, Lee H, et al. Chronic oxidative stress causes increased tau phosphorylation in M17 neuroblastoma cells. Neurosci Lett 2010; 468(3): 267-71.
[http://dx.doi.org/10.1016/j.neulet.2009.11.010] [PMID: 19914335]
[228]
Lasagna-Reeves CA, Castillo-Carranza DL, Sengupta U, Clos AL, Jackson GR, Kayed R. Tau oligomers impair memory and induce synaptic and mitochondrial dysfunction in wild-type mice. Mol Neurodegener 2011; 6(1): 39.
[http://dx.doi.org/10.1186/1750-1326-6-39] [PMID: 21645391]
[229]
Hensley K, Carney JM, Mattson MP, et al. A model for beta-amyloid aggregation and neurotoxicity based on free radical generation by the peptide: Relevance to Alzheimer disease. Proc Natl Acad Sci USA 1994; 91(8): 3270-4.
[http://dx.doi.org/10.1073/pnas.91.8.3270] [PMID: 8159737]
[230]
Mattson MP, Cheng B, Davis D, Bryant K, Lieberburg I, Rydel RE. beta-Amyloid peptides destabilize calcium homeostasis and render human cortical neurons vulnerable to excitotoxicity. J Neurosci 1992; 12(2): 376-89.
[http://dx.doi.org/10.1523/JNEUROSCI.12-02-00376.1992] [PMID: 1346802]
[231]
Meldrum BS. Glutamate as a neurotransmitter in the brain: Review of physiology and pathology. J Nutr 2000; 130(4) (Suppl.): S1007-15.
[http://dx.doi.org/10.1093/jn/130.4.1007S] [PMID: 10736372]
[232]
Obrenovitch TP, Urenjak J. Altered glutamatergic transmission in neurological disorders: From high extracellular glutamate to excessive synaptic efficacy. Prog Neurobiol 1997; 51(1): 39-87.
[http://dx.doi.org/10.1016/S0301-0082(96)00049-4] [PMID: 9044428]
[233]
Shimmyo Y, Kihara T, Akaike A, Niidome T, Sugimoto H. Three distinct neuroprotective functions of myricetin against glutamate-induced neuronal cell death: Involvement of direct inhibition of caspase-3. J Neurosci Res 2008; 86(8): 1836-45.
[http://dx.doi.org/10.1002/jnr.21629] [PMID: 18265412]
[234]
Chu WZ, Qian CY. Expressions of Abeta1-40, Abeta1-42, tau202, tau396 and tau404 after intracerebroventricular injection of streptozotocin in rats. Academic Journal of the First Medical College of PLA 2005; 25(2): 168-70.
[235]
Lester-Coll N, Rivera EJ, Soscia SJ, Doiron K, Wands JR, de la Monte SM. Intracerebral streptozotocin model of type 3 diabetes: Relevance to sporadic Alzheimer’s disease. J Alzheimers Dis 2006; 9(1): 13-33.
[http://dx.doi.org/10.3233/JAD-2006-9102] [PMID: 16627931]
[236]
Agrawal R, Tyagi E, Shukla R, Nath C. A study of brain insulin receptors, AChE activity and oxidative stress in rat model of ICV STZ induced dementia. Neuropharmacology 2009; 56(4): 779-87.
[http://dx.doi.org/10.1016/j.neuropharm.2009.01.005] [PMID: 19705549]
[237]
Kamat P. Streptozotocin induced Alzheimer′s disease like changes and the underlying neural degeneration and regeneration mechanism. Neural Regen Res 2015; 10(7): 1050-2.
[http://dx.doi.org/10.4103/1673-5374.160076] [PMID: 26330820]
[238]
Khalili M, Hamzeh F. Effects of active constituents of Crocus sativus L., crocin on streptozocin-induced model of sporadic Alzheimer’s disease in male rats. Iran Biomed J 2010; 14(1-2): 59-65.
[PMID: 20683499]
[239]
Ramezani M, Darbandi N, Khodagholi F, Hashemi A. Myricetin protects hippocampal CA3 pyramidal neurons and improves learning and memory impairments in rats with Alzheimer’s disease. Neural Regen Res 2016; 11(12): 1976-80.
[http://dx.doi.org/10.4103/1673-5374.197141] [PMID: 28197195]
[240]
Balouchnejadmojarad T. The effect of genistein on intracerebroventricular streptozotocin-induced cognitive deficits in male rat. Basic Clin Neurosci 2009; 1(1): 17.
[241]
Wang QM, Wang GL, Ma ZG. Protective effects of myricetin on chronic stress-induced cognitive deficits. Neuroreport 2016; 27(9): 652-8.
[http://dx.doi.org/10.1097/WNR.0000000000000591] [PMID: 27171032]
[242]
Kou X, Liu X, Chen X, et al. Ampelopsin attenuates brain aging of D-gal-induced rats through miR-34a-mediated SIRT1/mTOR signal pathway. Oncotarget 2016; 7(46): 74484-95.
[http://dx.doi.org/10.18632/oncotarget.12811] [PMID: 27780933]
[243]
Wang B, Zhong Y, Gao C, Li J. Myricetin ameliorates scopolamine-induced memory impairment in mice via inhibiting acetylcholinesterase and down-regulating brain iron. Biochem Biophys Res Commun 2017; 490(2): 336-42.
[http://dx.doi.org/10.1016/j.bbrc.2017.06.045] [PMID: 28619513]
[244]
Pepeu G, Giovannini MG. Changes in acetylcholine extracellular levels during cognitive processes. Learn Mem 2004; 11(1): 21-7.
[http://dx.doi.org/10.1101/lm.68104] [PMID: 14747513]
[245]
Boopathi S, Kolandaivel P. Fe 2+ binding on amyloid β-peptide promotes aggregation. Proteins 2016; 84(9): 1257-74.
[http://dx.doi.org/10.1002/prot.25075] [PMID: 27214008]
[246]
Lane DJR, Ayton S, Bush AI. Iron and Alzheimer’s disease: An update on emerging mechanisms. J Alzheimers Dis 2018; 64(s1): S379-95.
[http://dx.doi.org/10.3233/JAD-179944] [PMID: 29865061]
[247]
Peters DG, Pollack AN, Cheng KC, et al. Dietary lipophilic iron alters amyloidogenesis and microglial morphology in Alzheimer’s disease knock-in APP mice. Metallomics 2018; 10(3): 426-43.
[http://dx.doi.org/10.1039/C8MT00004B] [PMID: 29424844]
[248]
Simunkova M, Alwasel SH, Alhazza IM, et al. Management of oxidative stress and other pathologies in Alzheimer’s disease. Arch Toxicol 2019; 93(9): 2491-513.
[http://dx.doi.org/10.1007/s00204-019-02538-y] [PMID: 31440798]
[249]
Wang T, Xu SF, Fan YG, Li LB, Guo C. Iron pathophysiology in Alzheimer’s diseases. Brain Iron Metabolism and CNS Diseases 2019; pp. 67-104.
[250]
Griffith CM, Eid T, Rose GM, Patrylo PR. Evidence for altered insulin receptor signaling in Alzheimer’s disease. Neuropharmacology 2018; 136(Pt B): 202-15.
[http://dx.doi.org/10.1016/j.neuropharm.2018.01.008] [PMID: 29353052]
[251]
Stanley M, Macauley SL, Holtzman DM. Changes in insulin and insulin signaling in Alzheimer’s disease: Cause or consequence? J Exp Med 2016; 213(8): 1375-85.
[http://dx.doi.org/10.1084/jem.20160493] [PMID: 27432942]
[252]
Kandasamy N, Ashokkumar N. Protective effect of bioflavonoid myricetin enhances carbohydrate metabolic enzymes and insulin signaling molecules in streptozotocin–cadmium induced diabetic nephrotoxic rats. Toxicol Appl Pharmacol 2014; 279(2): 173-85.
[http://dx.doi.org/10.1016/j.taap.2014.05.014] [PMID: 24923654]
[253]
Senn JJ, Klover PJ, Nowak IA, et al. Suppressor of cytokine signaling-3 (SOCS-3), a potential mediator of interleukin-6-dependent insulin resistance in hepatocytes. J Biol Chem 2003; 278(16): 13740-6.
[http://dx.doi.org/10.1074/jbc.M210689200] [PMID: 12560330]
[254]
Hotamisligil GS, Budavari A, Murray D, Spiegelman BM. Reduced tyrosine kinase activity of the insulin receptor in obesity-diabetes. Central role of tumor necrosis factor-alpha. J Clin Invest 1994; 94(4): 1543-9.
[http://dx.doi.org/10.1172/JCI117495] [PMID: 7523453]
[255]
Reiner A, Albin RL, Anderson KD, D’Amato CJ, Penney JB, Young AB. Differential loss of striatal projection neurons in Huntington disease. Proc Natl Acad Sci USA 1988; 85(15): 5733-7.
[http://dx.doi.org/10.1073/pnas.85.15.5733] [PMID: 2456581]
[256]
Rosas HD, Liu AK, Hersch S, et al. Regional and progressive thinning of the cortical ribbon in Huntington’s disease. Neurology 2002; 58(5): 695-701.
[http://dx.doi.org/10.1212/WNL.58.5.695] [PMID: 11889230]
[257]
Harper PS, Jones L. Huntington’s disease: Genetic and molecular studies. In: Bates GP, Ed. Huntington’s Disease. Oxford: Oxford University Press 2002; pp. 113-58.
[258]
Paulsen JS, Langbehn DR, Stout JC, et al. Detection of Huntington’s disease decades before diagnosis: The Predict-HD study. J Neurol Neurosurg Psychiatry 2008; 79(8): 874-80.
[http://dx.doi.org/10.1136/jnnp.2007.128728] [PMID: 18096682]
[259]
Nopoulos PC. Huntington disease: A single-gene degenerative disorder of the striatum. Dialogues Clin Neurosci 2016; 18(1): 91-8.
[http://dx.doi.org/10.31887/DCNS.2016.18.1/pnopoulos] [PMID: 27069383]
[260]
Novak MJU, Tabrizi SJ. Huntington’s disease. BMJ 2010; 340(jun30 4): c3109.
[http://dx.doi.org/10.1136/bmj.c3109] [PMID: 20591965]
[261]
Duff K, Paulsen JS, Beglinger LJ, et al. “Frontal” behaviors before the diagnosis of Huntington’s disease and their relationship to markers of disease progression: evidence of early lack of awareness. J Neuropsychiatry Clin Neurosci 2010; 22(2): 196-207.
[http://dx.doi.org/10.1176/jnp.2010.22.2.196] [PMID: 20463114]
[262]
van Duijn E, Craufurd D, Hubers AAM, et al. Neuropsychiatric symptoms in a European Huntington’s disease cohort (REGISTRY). J Neurol Neurosurg Psychiatry 2014; 85(12): 1411-8.
[http://dx.doi.org/10.1136/jnnp-2013-307343] [PMID: 24828898]
[263]
Fisher CA, Sewell K, Brown A, Churchyard A. Aggression in Huntington’s disease: A systematic review of rates of aggression and treatment methods. J Huntingtons Dis 2014; 3(4): 319-32.
[http://dx.doi.org/10.3233/JHD-140127] [PMID: 25575953]
[264]
Ghosh R, Tabrizi SJ. Clinical aspects of Huntington’s disease. Curr Top Behav Neurosci 2013; 22: 3-31.
[http://dx.doi.org/10.1007/7854_2013_238] [PMID: 23975844]
[265]
Paulsen JS, Nehl C, Hoth KF, et al. Depression and stages of Huntington’s disease. J Neuropsychiatry Clin Neurosci 2005; 17(4): 496-502. a
[http://dx.doi.org/10.1176/jnp.17.4.496] [PMID: 16387989]
[266]
Paulsen JS, Hoth KF, Nehl C, Stierman L. Critical periods of suicide risk in Huntington’s disease. Am J Psychiatry 2005; 162(4): 725-31. b
[http://dx.doi.org/10.1176/appi.ajp.162.4.725] [PMID: 15800145]
[267]
Hoth KF, Paulsen JS, Moser DJ, Tranel D, Clark LA, Bechara A. Patients with Huntington’s disease have impaired awareness of cognitive, emotional, and functional abilities. J Clin Exp Neuropsychol 2007; 29(4): 365-76.
[http://dx.doi.org/10.1080/13803390600718958] [PMID: 17497560]
[268]
McCusker EA, Gunn DG, Epping EA, et al. Unawareness of motor phenoconversion in Huntington disease. Neurology 2013; 81(13): 1141-7.
[http://dx.doi.org/10.1212/WNL.0b013e3182a55f05] [PMID: 23966256]
[269]
Rasmussen A, Macias R, Yescas P, Ochoa A, Davila G, Alonso E. Huntington disease in children: Genotype-phenotype correlation. Neuropediatrics 2000; 31(4): 190-4.
[http://dx.doi.org/10.1055/s-2000-7461] [PMID: 11071143]
[270]
Gencik M, Hammans C, Strehl H, Wagner N, Epplen JT. Chorea Huntington: A rare case with childhood onset. Neuropediatrics 2002; 33(2): 90-2.
[http://dx.doi.org/10.1055/s-2002-32367] [PMID: 12075490]
[271]
MacDonald M. The Huntington’s Disease Collaborative Research Group. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 1993; 72(6): 971-83.
[http://dx.doi.org/10.1016/0092-8674(93)90585-E] [PMID: 8458085]
[272]
Rubinsztein DC, Leggo J, Coles R, et al. Phenotypic characterization of individuals with 30-40 CAG repeats in the Huntington disease (HD) gene reveals HD cases with 36 repeats and apparently normal elderly individuals with 36-39 repeats. Am J Hum Genet 1996; 59(1): 16-22.
[PMID: 8659522]
[273]
Zühlke C, Rless O, Bockel B, Lange H, Thies U. Mitotic stability and meiotic variability of the (CAG)n repeat in the Huntington disease gene. Hum Mol Genet 1993; 2(12): 2063-7.
[http://dx.doi.org/10.1093/hmg/2.12.2063] [PMID: 8111374]
[274]
Brinkman RR, Mezei MM, Theilmann J, Almqvist E, Hayden MR. The likelihood of being affected with Huntington disease by a particular age, for a specific CAG size. Am J Hum Genet 1997; 60(5): 1202-10.
[PMID: 9150168]
[275]
Andrew SE, Paul Goldberg Y, Kremer B, et al. The relationship between trinucleotide (CAG) repeat length and clinical features of Huntington’s disease. Nat Genet 1993; 4(4): 398-403.
[http://dx.doi.org/10.1038/ng0893-398] [PMID: 8401589]
[276]
Rosenblatt A, Brinkman RR, Liang KY, et al. Familial influence on age of onset among siblings with Huntington disease. Am J Med Genet 2001; 105(5): 399-403.
[http://dx.doi.org/10.1002/ajmg.1400] [PMID: 11449389]
[277]
Georgiou N, Bradshaw JL, Chiu E, Tudor A, O’Gorman L, Phillips JG. Differential clinical and motor control function in a pair of monozygotic twins with Huntington’s disease. Mov Disord 1999; 14(2): 320-5.
[http://dx.doi.org/10.1002/1531-8257(199903)14:2<320:AID-MDS1018>3.0.CO;2-Z] [PMID: 10091627]
[278]
Trottier Y, Biancalana V, Mandel JL. Instability of CAG repeats in Huntington’s disease: Relation to parental transmission and age of onset. J Med Genet 1994; 31(5): 377-82.
[http://dx.doi.org/10.1136/jmg.31.5.377] [PMID: 8064815]
[279]
Khan H, Ullah H, Tundis R, et al. Dietary flavonoids in the management of huntington’s disease: Mechanism and clinical perspective. eFood 2020; 1(1): 38-52.
[http://dx.doi.org/10.2991/efood.k.200203.001]
[280]
Khan E, Tawani A, Mishra SK, et al. Myricetin reduces toxic level of CAG repeats RNA in Huntington’s disease (HD) and Spino cerebellar Ataxia (SCAs). ACS Chem Biol 2018; 13(1): 180-8.
[http://dx.doi.org/10.1021/acschembio.7b00699] [PMID: 29172480]
[281]
Kuriakose D, Xiao Z. Pathophysiology and treatment of stroke: Present status and future perspectives. Int J Mol Sci 2020; 21(20): 7609.
[http://dx.doi.org/10.3390/ijms21207609] [PMID: 33076218]
[282]
Musuka TD, Wilton SB, Traboulsi M, Hill MD. Diagnosis and management of acute ischemic stroke: Speed is critical. CMAJ 2015; 187(12): 887-93.
[http://dx.doi.org/10.1503/cmaj.140355] [PMID: 26243819]
[283]
Flaherty ML, Woo D, Haverbusch M, et al. Racial variations in location and risk of intracerebral hemorrhage. Stroke 2005; 36(5): 934-7.
[http://dx.doi.org/10.1161/01.STR.0000160756.72109.95] [PMID: 15790947]
[284]
Woodruff TM, Thundyil J, Tang SC, Sobey CG, Taylor SM, Arumugam TV. Pathophysiology, treatment, and animal and cellular models of human ischemic stroke. Mol Neurodegener 2011; 6(1): 11.
[http://dx.doi.org/10.1186/1750-1326-6-11] [PMID: 21266064]
[285]
Majno G, Joris I. Apoptosis, oncosis, and necrosis. An overview of cell death. Am J Pathol 1995; 146(1): 3-15.
[PMID: 7856735]
[286]
Broughton BRS, Reutens DC, Sobey CG. Apoptotic mechanisms after cerebral ischemia. Stroke 2009; 40(5): e331-9.
[http://dx.doi.org/10.1161/STROKEAHA.108.531632] [PMID: 19182083]
[287]
Ginsberg MD. The new language of cerebral ischemia. AJNR Am J Neuroradiol 1997; 18(8): 1435-45.
[PMID: 9296184]
[288]
Dirnagl U, Iadecola C, Moskowitz MA. Pathobiology of ischaemic stroke: An integrated view. Trends Neurosci 1999; 22(9): 391-7.
[http://dx.doi.org/10.1016/S0166-2236(99)01401-0] [PMID: 10441299]
[289]
Lipton P. Ischemic cell death in brain neurons. Physiol Rev 1999; 79(4): 1431-568.
[http://dx.doi.org/10.1152/physrev.1999.79.4.1431] [PMID: 10508238]
[290]
Zheng Z, Yenari MA. Post-ischemic inflammation: Molecular mechanisms and therapeutic implications. Neurol Res 2004; 26(8): 884-92.
[http://dx.doi.org/10.1179/016164104X2357] [PMID: 15727272]
[291]
Liu S, Zhen G, Meloni BP, Campbell K, Winn HR. Rodent stroke model guidelines for preclinical stroke trials. J Exp Stroke Transl Med 2009; 2(2): 2-27.
[http://dx.doi.org/10.6030/1939-067X-2.2.2] [PMID: 20369026]
[292]
Connolly ES Jr, Winfree CJ, Stern DM, Solomon RA, Pinsky DJ. Procedural and strain-related variables significantly affect outcome in a murine model of focal cerebral ischemia. Neurosurgery 1996; 38(3): 523-31.
[PMID: 8837805]
[293]
Fluri F, Schuhmann MK, Kleinschnitz C. Animal models of ischemic stroke and their application in clinical research. Drug Des Devel Ther 2015; 9: 3445-54.
[PMID: 26170628]
[294]
Sun L, Xu P, Fu T, et al. Myricetin against ischemic cerebral injury in rat middle cerebral artery occlusion model. Mol Med Rep 2018; 17(2): 3274-80.
[PMID: 29257250]
[295]
Mehta SL, Manhas N, Raghubir R. Molecular targets in cerebral ischemia for developing novel therapeutics. Brain Res Brain Res Rev 2007; 54(1): 34-66.
[http://dx.doi.org/10.1016/j.brainresrev.2006.11.003] [PMID: 17222914]
[296]
Arundine M, Tymianski M. Molecular mechanisms of glutamate-dependent neurodegeneration in ischemia and traumatic brain injury. Cell Mol Life Sci 2004; 61(6): 657-68.
[http://dx.doi.org/10.1007/s00018-003-3319-x] [PMID: 15052409]
[297]
Mattson MP, Culmsee C, Yu ZF. Apoptotic and antiapoptotic mechanisms in stroke. Cell Tissue Res 2000; 301(1): 173-87.
[http://dx.doi.org/10.1007/s004419900154] [PMID: 10928290]
[298]
Wu S, Yue Y, Peng A, et al. Myricetin ameliorates brain injury and neurological deficits via Nrf2 activation after experimental stroke in middle-aged rats. Food Funct 2016; 7(6): 2624-34.
[http://dx.doi.org/10.1039/C6FO00419A] [PMID: 27171848]
[299]
Ishikawa M, Zhang JH, Nanda A, Granger DN. Inflammatory responses to ischemia and reperfusion in the cerebral microcirculation. Front Biosci 2004; 9(1-3): 1339-47.
[http://dx.doi.org/10.2741/1330] [PMID: 14977549]
[300]
Zhang S, Hu X, Guo S, et al. Myricetin ameliorated ischemia/reperfusion-induced brain endothelial permeability by improvement of eNOS uncoupling and activation eNOS/NO. J Pharmacol Sci 2019; 140(1): 62-72.
[http://dx.doi.org/10.1016/j.jphs.2019.04.009] [PMID: 31130510]
[301]
Bhardwaj A, Northington FJ, Ichord RN, Hanley DF, Traystman RJ, Koehler RC. Characterization of ionotropic glutamate receptor-mediated nitric oxide production in vivo in rats. Stroke 1997; 28(4): 850-7.
[http://dx.doi.org/10.1161/01.STR.28.4.850] [PMID: 9099207]
[302]
Love S. Oxidative stress in brain ischemia. Brain Pathol 1999; 9(1): 119-31.
[http://dx.doi.org/10.1111/j.1750-3639.1999.tb00214.x] [PMID: 9989455]
[303]
Neumar R. Molecular mechanisms of ischemic neuronal injury. Ann Emerg Med 2000; 36(5): 483-506.
[http://dx.doi.org/10.1016/S0196-0644(00)82028-4] [PMID: 11054204]
[304]
Allen CL, Bayraktutan U. Oxidative stress and its role in the pathogenesis of ischaemic stroke. Int J Stroke 2009; 4(6): 461-70.
[http://dx.doi.org/10.1111/j.1747-4949.2009.00387.x] [PMID: 19930058]
[305]
Hall ED. Inhibition of lipid peroxidation in central nervous system trauma and ischemia. J Neurol Sci 1995; 134 (Suppl.): 79-83.
[http://dx.doi.org/10.1016/0022-510X(95)00211-J] [PMID: 8847548]
[306]
Im JY, Kim D, Paik SG, Han PL. Cyclooxygenase-2-dependent neuronal death proceeds via superoxide anion generation. Free Radic Biol Med 2006; 41(6): 960-72.
[http://dx.doi.org/10.1016/j.freeradbiomed.2006.06.001] [PMID: 16934679]
[307]
Stoll G, Jander S, Schroeter M. Inflammation and glial responses in ischemic brain lesions. Prog Neurobiol 1998; 56(2): 149-71.
[http://dx.doi.org/10.1016/S0301-0082(98)00034-3] [PMID: 9760699]
[308]
Yamamoto E, Tamamaki N, Nakamura T, et al. Excess salt causes cerebral neuronal apoptosis and inflammation in stroke-prone hypertensive rats through angiotensin II-induced NADPH oxidase activation. Stroke 2008; 39(11): 3049-56.
[http://dx.doi.org/10.1161/STROKEAHA.108.517284] [PMID: 18688015]
[309]
Ridder DA, Schwaninger M. NF-κB signaling in cerebral ischemia. Neuroscience 2009; 158(3): 995-1006.
[http://dx.doi.org/10.1016/j.neuroscience.2008.07.007] [PMID: 18675321]
[310]
Chong ZZ, Li F, Maiese K. Oxidative stress in the brain: Novel cellular targets that govern survival during neurodegenerative disease. Prog Neurobiol 2005; 75(3): 207-46.
[http://dx.doi.org/10.1016/j.pneurobio.2005.02.004] [PMID: 15882775]
[311]
Jing Luo , Sun D. Physiology and pathophysiology of Na(+)/H(+) exchange isoform 1 in the central nervous system. Curr Neurovasc Res 2007; 4(3): 205-15.
[http://dx.doi.org/10.2174/156720207781387178] [PMID: 17691974]
[312]
Weinstein PR, Hong S, Sharp FR. Molecular identification of the ischemic penumbra. Stroke 2004; 35 (suppl_ 1): 2666-70.
[http://dx.doi.org/10.1161/01.STR.0000144052.10644.ed] [PMID: 15486332]
[313]
Kiewert C, Mdzinarishvili A, Hartmann J, Bickel U, Klein J. Metabolic and transmitter changes in core and penumbra after middle cerebral artery occlusion in mice. Brain Res 2010; 1312: 101-7.
[http://dx.doi.org/10.1016/j.brainres.2009.11.068] [PMID: 19961839]
[314]
Sumbria RK, Klein J, Bickel U. Acute depression of energy metabolism after microdialysis probe implantation is distinct from ischemia-induced changes in mouse brain. Neurochem Res 2011; 36(1): 109-16.
[http://dx.doi.org/10.1007/s11064-010-0276-2] [PMID: 20878232]
[315]
Sasaki Y, Hyodo K, Hoshino A, et al. Myricetin and hesperidin inhibit cerebral thrombogenesis and atherogenesis in Apoe and Ldlr mice. Food Nutr Sci 2018; 9(1): 20-31.
[http://dx.doi.org/10.4236/fns.2018.91002]
[316]
Banerjee C, Nandy S, Chakraborty J, Kumar D. Myricitrin-a flavonoid isolated from the Indian olive tree (Elaeocarpus floribundus) - inhibits Monoamine oxidase in the brain and elevates striatal dopamine levels: therapeutic implications against Parkinson’s disease. Food Funct 2022; 13(12): 6545-59.
[http://dx.doi.org/10.1039/D2FO00734G] [PMID: 35647619]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy