Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Review Article

Oxidative Stress and Dopaminergic Metabolism: A Major PD Pathogenic Mechanism and Basis of Potential Antioxidant Therapies

Author(s): Aamir Rasool*, Robina Manzoor, Kaleem Ullah, Ramsha Afzal, Asad Ul-Haq, Hadia Imran, Imdad Kaleem, Tanveer Akhtar, Anum Farrukh, Sahir Hameed and Shahid Bashir

Volume 23, Issue 7, 2024

Published on: 18 July, 2023

Page: [852 - 864] Pages: 13

DOI: 10.2174/1871527322666230609141519

Price: $65

Abstract

Reactive oxygen species (ROS)-induced oxidative stress triggers the vicious cycle leading to the degeneration of dopaminergic neurons in the nigra pars compacta. ROS produced during the metabolism of dopamine is immediately neutralized by the endogenous antioxidant defense system (EADS) under physiological conditions. Aging decreases the vigilance of EADS and makes the dopaminergic neurons more vulnerable to oxidative stress. As a result, ROS left over by EADS oxidize the dopamine-derived catechols and produces a number of reactive dopamine quinones, which are precursors to endogenous neurotoxins. In addition, ROS causes lipid peroxidation, uncoupling of the electron transport chain, and DNA damage, which lead to mitochondrial dysfunction, lysosomal dysfunction, and synaptic dysfunction. The mutations in genes such as DNAJC6, SYNJ1, SH3GL2, LRRK2, PRKN, and VPS35 caused by ROS have been associated with synaptic dysfunction and the pathogenesis of Parkinson’s disease (PD). The available drugs that are used against PD can only delay the progression of the disease, but they produce various side effects. Through their antioxidant activity, flavonoids can substantiate the EADS of dopaminergic neurons and disrupt the vicious cycle incepted by oxidative stress. In this review, we show how the oxidative metabolism of dopamine generates ROS and dopamine-quinones, which then exert unrestrained OS, causing mutations in several genes involved in the proper functioning of mitochondrion, synapse, and lysosome. Besides, we also present some examples of approved drugs used for the treatment of PD, therapies in the clinical trial phase, and an update on the flavonoids that have been tested to boost the EADS of dopaminergic neurons.

[1]
Pan PY, Zhu Y, Shen Y, Yue Z. Crosstalk between presynaptic trafficking and autophagy in Parkinson’s disease. Neurobiol Dis 2019; 122: 64-71.
[http://dx.doi.org/10.1016/j.nbd.2018.04.020] [PMID: 29723605]
[2]
Sarkar S, Raymick J, Imam S. Neuroprotective and therapeutic strategies against Parkinson’s disease: recent perspectives. Int J Mol Sci 2016; 17(6): 904.
[http://dx.doi.org/10.3390/ijms17060904] [PMID: 27338353]
[3]
Baek J, Jeong J, Kim K, et al. Inhibition of microglia-derived oxidative stress by ciliary neurotrophic factor protects dopamine neurons in vivo from MPP+ neurotoxicity. Int J Mol Sci 2018; 19(11): 3543.
[http://dx.doi.org/10.3390/ijms19113543] [PMID: 30423807]
[4]
Hassanzadeh K, Rahimmi A. Oxidative stress and neuroinflammation in the story of Parkinson’s disease: Could targeting these pathways write a good ending? J Cell Physiol 2019; 234(1): 23-32.
[http://dx.doi.org/10.1002/jcp.26865] [PMID: 30078201]
[5]
Segura-Aguilar J, Paris I, Muñoz P, Ferrari E, Zecca L, Zucca FA. Protective and toxic roles of dopamine in Parkinson’s disease. J Neurochem 2014; 129(6): 898-915.
[http://dx.doi.org/10.1111/jnc.12686] [PMID: 24548101]
[6]
Alter SP, Lenzi GM, Bernstein AI, Miller GW. Vesicular integrity in Parkinson’s disease. Curr Neurol Neurosci Rep 2013; 13(7): 362.
[http://dx.doi.org/10.1007/s11910-013-0362-3] [PMID: 23690026]
[7]
Meiser J, Weindl D, Hiller K. Complexity of dopamine metabolism. Cell Commun Signal 2013; 11(1): 34.
[http://dx.doi.org/10.1186/1478-811X-11-34] [PMID: 23683503]
[8]
Lee J, Guan Z, Akbergenova Y, Littleton JT. Genetic analysis of synaptotagmin C2 domain specificity in regulating spontaneous and evoked neurotransmitter release. J Neurosci 2013; 33(1): 187-200.
[http://dx.doi.org/10.1523/JNEUROSCI.3214-12.2013] [PMID: 23283333]
[9]
Peng RW, Abellan E, Fussenegger M. Differential effect of exocytic SNAREs on the production of recombinant proteins in mammalian cells. Biotechnol Bioeng 2011; 108(3): 611-20.
[http://dx.doi.org/10.1002/bit.22986] [PMID: 21246508]
[10]
Südhof TC, Rothman JE. Membrane fusion: Grappling with SNARE and SM proteins. Science 2009; 323(5913): 474-7.
[http://dx.doi.org/10.1126/science.1161748] [PMID: 19164740]
[11]
Plowey ED, Chu CT. Synaptic dysfunction in genetic models of Parkinson’s disease: A role for autophagy? Neurobiol Dis 2011; 43(1): 60-7.
[http://dx.doi.org/10.1016/j.nbd.2010.10.011] [PMID: 20969957]
[12]
Athauda D, Foltynie T. The ongoing pursuit of neuroprotective therapies in Parkinson disease. Nat Rev Neurol 2015; 11(1): 25-40.
[http://dx.doi.org/10.1038/nrneurol.2014.226] [PMID: 25447485]
[13]
Maleki SJ, Crespo JF, Cabanillas B. Anti-inflammatory effects of flavonoids. Food Chem 2019; 299: 125124.
[http://dx.doi.org/10.1016/j.foodchem.2019.125124] [PMID: 31288163]
[14]
Lin MT, Beal MF. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 2006; 443(7113): 787-95.
[http://dx.doi.org/10.1038/nature05292] [PMID: 17051205]
[15]
Walter M, Schenkeveld WDC, Geroldinger G, Gille L, Reissner M, Kraemer SM. Identifying the reactive sites of hydrogen peroxide decomposition and hydroxyl radical formation on chrysotile asbestos surfaces. Part Fibre Toxicol 2020; 17(1): 3.
[http://dx.doi.org/10.1186/s12989-019-0333-1] [PMID: 31959185]
[16]
Halestrap A, Brenner C. The adenine nucleotide translocase: A central component of the mitochondrial permeability transition pore and key player in cell death. Curr Med Chem 2003; 10(16): 1507-25.
[http://dx.doi.org/10.2174/0929867033457278] [PMID: 12871123]
[17]
Adams JM, Cory S. The BCL-2 arbiters of apoptosis and their growing role as cancer targets. Cell Death Differ 2018; 25(1): 27-36.
[http://dx.doi.org/10.1038/cdd.2017.161] [PMID: 29099483]
[18]
Rasheed MZ, Tabassum H, Parvez S. Mitochondrial permeability transition pore: a promising target for the treatment of Parkinson’s disease. Protoplasma 2017; 254(1): 33-42.
[http://dx.doi.org/10.1007/s00709-015-0930-2] [PMID: 26825389]
[19]
Liang H, Xu J, Wang W. Ran1 is essential for parental macronuclear import of apoptosis‐inducing factor and programmed nuclear death in Tetrahymena thermophila. FEBS J 2019; 286(5): 913-29.
[http://dx.doi.org/10.1111/febs.14761] [PMID: 30663224]
[20]
Sanders LH, McCoy J, Hu X, et al. Mitochondrial DNA damage: Molecular marker of vulnerable nigral neurons in Parkinson’s disease. Neurobiol Dis 2014; 70: 214-23.
[http://dx.doi.org/10.1016/j.nbd.2014.06.014] [PMID: 24981012]
[21]
Mailand N, Gibbs-Seymour I, Bekker-Jensen S. Regulation of PCNA–protein interactions for genome stability. Nat Rev Mol Cell Biol 2013; 14(5): 269-82.
[http://dx.doi.org/10.1038/nrm3562] [PMID: 23594953]
[22]
Olgiati S, Quadri M, Fang M, et al. DNAJC 6 Mutations A ssociated With Early‐Onset Parkinson’s Disease. Ann Neurol 2016; 79(2): 244-56.
[http://dx.doi.org/10.1002/ana.24553] [PMID: 26528954]
[23]
Olgiati S, De Rosa A, Quadri M, et al. PARK20 caused by SYNJ1 homozygous Arg258Gln mutation in a new Italian family. Neurogenetics 2014; 15(3): 183-8.
[24]
Arranz AM, Delbroek L, Van Kolen K, et al. LRRK2 functions in synaptic vesicle endocytosis through a kinase-dependent mechanism. J Cell Sci 2015; 128(3): 541-52.
[PMID: 25501810]
[25]
Stafa K, Tsika E, Moser R, et al. Functional interaction of Parkinson’s disease-associated LRRK2 with members of the dynamin GTPase superfamily. Hum Mol Genet 2014; 23(8): 2055-77.
[http://dx.doi.org/10.1093/hmg/ddt600] [PMID: 24282027]
[26]
Kyung JW, Bae JR, Kim DH, Song WK, Kim SH. Epsin1 modulates synaptic vesicle retrieval capacity at CNS synapses. Sci Rep 2016; 6(1): 31997.
[http://dx.doi.org/10.1038/srep31997] [PMID: 27557559]
[27]
Cao M, Wu Y, Ashrafi G, et al. Parkinson Sac domain mutation in synaptojanin 1 impairs clathrin uncoating at synapses and triggers dystrophic changes in dopaminergic axons. Neuron 2017; 93(4): 882-96.
[http://dx.doi.org/10.1016/j.neuron.2017.01.019]
[28]
Eguchi K, Taoufiq Z, Thorn-Seshold O, Trauner D, Hasegawa M, Takahashi T. Wild-type monomeric α-synuclein can impair vesicle endocytosis and synaptic fidelity via tubulin polymerization at the calyx of held. J Neurosci 2017; 37(25): 6043-52.
[http://dx.doi.org/10.1523/JNEUROSCI.0179-17.2017] [PMID: 28576942]
[29]
Pathak D, Shields LY, Mendelsohn BA, et al. The role of mitochondrially derived ATP in synaptic vesicle recycling. J Biol Chem 2015; 290(37): 22325-36.
[http://dx.doi.org/10.1074/jbc.M115.656405] [PMID: 26126824]
[30]
Vanhauwaert R, Kuenen S, Masius R, et al. The SAC 1 domain in synaptojanin is required for autophagosome maturation at presynaptic terminals. EMBO J 2017; 36(10): 1392-411.
[http://dx.doi.org/10.15252/embj.201695773] [PMID: 28331029]
[31]
Sheehan P, Yue Z. Deregulation of autophagy and vesicle trafficking in Parkinson’s disease. Neurosci Lett 2019; 697: 59-65.
[http://dx.doi.org/10.1016/j.neulet.2018.04.013] [PMID: 29627340]
[32]
Olanow CW, Schapira AHV, LeWitt PA, et al. TCH346 as a neuroprotective drug in Parkinson’s disease: A double-blind, randomised, controlled trial. Lancet Neurol 2006; 5(12): 1013-20.
[http://dx.doi.org/10.1016/S1474-4422(06)70602-0] [PMID: 17110281]
[33]
Poulter MO, Payne KB, Steiner JP. Neuroimmunophilins: A novel drug therapy for the reversal of neurodegenerative disease? Neuroscience 2004; 128(1): 1-6.
[http://dx.doi.org/10.1016/j.neuroscience.2004.06.016] [PMID: 15450348]
[34]
Kalia LV, Brotchie JM, Fox SH. Novel nondopaminergic targets for motor features of Parkinson’s disease: Review of recent trials. Mov Disord 2013; 28(2): 131-44.
[http://dx.doi.org/10.1002/mds.25273] [PMID: 23225267]
[35]
Carroll CB, Webb D, Stevens KN, et al. Simvastatin as a neuroprotective treatment for Parkinson’s disease (PD STAT): Protocol for a double-blind, randomised, placebo-controlled futility study. BMJ Open 2019; 9(10): e029740.
[http://dx.doi.org/10.1136/bmjopen-2019-029740] [PMID: 31594876]
[36]
Bäck S, Peränen J, Galli E, et al. Gene therapy with AAV2-CDNF provides functional benefits in a rat model of Parkinson’s disease. Brain Behav 2013; 3(2): 75-88.
[http://dx.doi.org/10.1002/brb3.117] [PMID: 23532969]
[37]
Janus C, Pearson J, McLaurin J, et al. Aβ peptide immunization reduces behavioural impairment and plaques in a model of Alzheimer’s disease. Nature 2000; 408(6815): 979-82.
[http://dx.doi.org/10.1038/35050110] [PMID: 11140685]
[38]
Schenk DB, Koller M, Ness DK, et al. First-in-human assessment of PRX002, an anti-α-synuclein monoclonal antibody, in healthy volunteers. Mov Disord 2017; 32(2): 211-8.
[http://dx.doi.org/10.1002/mds.26878] [PMID: 27886407]
[39]
Weihofen A, Liu Y, Arndt JW, et al. Development of an aggregate-selective, human-derived α-synuclein antibody BIIB054 that ameliorates disease phenotypes in Parkinson’s disease models. Neurobiol Dis 2019; 124: 276-88.
[http://dx.doi.org/10.1016/j.nbd.2018.10.016] [PMID: 30381260]
[40]
Kingwell K. Zeroing in on neurodegenerative α-synuclein. Nat Rev Drug Discov 2017; 16(6): 371-3.
[http://dx.doi.org/10.1038/nrd.2017.95] [PMID: 28559555]
[41]
Penninkilampi R, Brothers HM, Eslick GD. Safety and efficacy of anti-amyloid-β immunotherapy in Alzheimer’s disease: A systematic review and meta-analysis. J Neuroimmune Pharmacol 2017; 12(1): 194-203.
[http://dx.doi.org/10.1007/s11481-016-9722-5] [PMID: 28025724]
[42]
Liu Z, Ren Z, Zhang J, et al. Role of ROS and nutritional antioxidants in human diseases. Front Physiol 2018; 9: 477.
[http://dx.doi.org/10.3389/fphys.2018.00477] [PMID: 29867535]
[43]
Deladino L, Alvarez I, De Ancos B, Sánchez-Moreno C, Molina-García AD, Schneider Teixeira A. Betalains and phenolic compounds of leaves and stems of Alternanthera brasiliana and Alternanthera tenella. Food Res Int 2017; 97: 240-9.
[http://dx.doi.org/10.1016/j.foodres.2017.04.017] [PMID: 28578047]
[44]
Hussain G, Zhang L, Rasul A, et al. Role of plant-derived flavonoids and their mechanism in attenuation of Alzheimer’s and Parkinson’s diseases: An update of recent data. Molecules 2018; 23(4): 814.
[http://dx.doi.org/10.3390/molecules23040814] [PMID: 29614843]
[45]
Selvaraj B, Kim DW, Huh G, Lee H, Kang K, Lee JW. Synthesis and biological evaluation of isoliquiritigenin derivatives as a neuroprotective agent against glutamate mediated neurotoxicity in HT22 cells. Bioorg Med Chem Lett 2020; 30(8): 127058.
[http://dx.doi.org/10.1016/j.bmcl.2020.127058] [PMID: 32122738]
[46]
Kim HD, Jeong KH, Jung UJ, Kim SR. Naringin treatment induces neuroprotective effects in a mouse model of Parkinson’s disease in vivo, but not enough to restore the lesioned dopaminergic system. J Nutr Biochem 2016; 28: 140-6.
[http://dx.doi.org/10.1016/j.jnutbio.2015.10.013] [PMID: 26878791]
[47]
Lou H, Jing X, Wei X, Shi H, Ren D, Zhang X. Naringenin protects against 6-OHDA-induced neurotoxicity via activation of the Nrf2/ARE signaling pathway. Neuropharmacology 2014; 79: 380-8.
[http://dx.doi.org/10.1016/j.neuropharm.2013.11.026] [PMID: 24333330]
[48]
Antunes MS, Goes ATR, Boeira SP, Prigol M, Jesse CR. Protective effect of hesperidin in a model of Parkinson’s disease induced by 6-hydroxydopamine in aged mice. Nutrition 2014; 30(11-12): 1415-22.
[http://dx.doi.org/10.1016/j.nut.2014.03.024] [PMID: 25280422]
[49]
Muhammad T, Ikram M, Ullah R, Rehman S, Kim M. Hesperetin, a citrus flavonoid, attenuates LPS-induced neuroinflammation, apoptosis and memory impairments by modulating TLR4/NF-κB signaling. Nutrients 2019; 11(3): 648.
[http://dx.doi.org/10.3390/nu11030648] [PMID: 30884890]
[50]
Su Q, Tao W, Huang H, Du Y, Chu X, Chen G. Protective effect of liquiritigenin on depressive-like behavior in mice after lipopolysaccharide administration. Psychiatry Res 2016; 240: 131-6.
[http://dx.doi.org/10.1016/j.psychres.2016.04.002] [PMID: 27107388]
[51]
Bitu Pinto N, da Silva Alexandre B, Neves K R T, Silva A H, Leal L K A, Viana G S. Neuroprotective properties of the standardized extract from Camellia sinensis (green tea) and its main bioactive components, epicatechin and epigallocatechin gallate, in the 6-OHDA model of Parkinson’s disease. Evidence-Based Complementary and Alternative Medicine 2015; 2015.
[52]
Chen SQ, Wang ZS, Ma YX, et al. Neuroprotective effects and mechanisms of tea bioactive components in neurodegenerative diseases. Molecules 2018; 23(3): 512.
[http://dx.doi.org/10.3390/molecules23030512] [PMID: 29495349]
[53]
Chinta SJ, Ganesan A, Reis-Rodrigues P, Lithgow GJ, Andersen JK. Anti-inflammatory role of the isoflavone diadzein in lipopolysaccharide-stimulated microglia: implications for Parkinson’s disease. Neurotox Res 2013; 23(2): 145-53.
[http://dx.doi.org/10.1007/s12640-012-9328-5] [PMID: 22573480]
[54]
Fei HX, Zhang YB, Liu T, Zhang XJ, Wu SL. Neuroprotective effect of formononetin in ameliorating learning and memory impairment in mouse model of Alzheimer’s disease. Biosci Biotechnol Biochem 2018; 82(1): 57-64.
[http://dx.doi.org/10.1080/09168451.2017.1399788] [PMID: 29191087]
[55]
Subedi L, Ji E, Shin D, Jin J, Yeo J, Kim S. Equol, a dietary daidzein gut metabolite attenuates microglial activation and potentiates neuroprotection in vitro. Nutrients 2017; 9(3): 207.
[http://dx.doi.org/10.3390/nu9030207] [PMID: 28264445]
[56]
Lee JS, Lee SJ. Mechanism of anti-α-synuclein immunotherapy. J Mov Disord 2016; 9(1): 14-9.
[http://dx.doi.org/10.14802/jmd.15059] [PMID: 26828212]
[57]
Xue X, Liu H, Qi L, et al. Baicalein ameliorated the upregulation of striatal glutamatergic transmission in the mice model of Parkinson’s disease. Brain Res Bull 2014; 103: 54-9.
[http://dx.doi.org/10.1016/j.brainresbull.2014.02.004] [PMID: 24576689]
[58]
Patil SP, Jain PD, Sancheti JS, Ghumatkar PJ, Tambe R, Sathaye S. RETRACTED: Neuroprotective and neurotrophic effects of Apigenin and Luteolin in MPTP induced parkinsonism in mice. Neuropharmacology 2014; 86: 192-202.
[http://dx.doi.org/10.1016/j.neuropharm.2014.07.012] [PMID: 25087727]
[59]
Anusha C, Sumathi T, Joseph LD. Protective role of apigenin on rotenone induced rat model of Parkinson’s disease: Suppression of neuroinflammation and oxidative stress mediated apoptosis. Chem Biol Interact 2017; 269: 67-79.
[http://dx.doi.org/10.1016/j.cbi.2017.03.016] [PMID: 28389404]
[60]
Braidy N, Behzad S, Habtemariam S, et al. Neuroprotective effects of citrus fruit-derived flavonoids, nobiletin and tangeretin in Alzheimer's and Parkinson's disease. CNS & Neurological Disorders-Drug Targets (Formerly Current Drug Targets-CNS & Neurological Disorders) 2017; 16(4): 387-97.
[61]
Yabuki Y, Ohizumi Y, Yokosuka A, Mimaki Y, Fukunaga K. Nobiletin treatment improves motor and cognitive deficits seen in MPTP-induced Parkinson model mice. Neuroscience 2014; 259: 126-41.
[http://dx.doi.org/10.1016/j.neuroscience.2013.11.051] [PMID: 24316474]
[62]
Darendelioglu E. Neuroprotective effects of chrysin on diclofenac-induced apoptosis in SH-SY5Y cells. Neurochem Res 2020; 45(5): 1064-71.
[http://dx.doi.org/10.1007/s11064-020-02982-8] [PMID: 32040722]
[63]
Solanki I, Parihar P, Mansuri ML, Parihar MS. Flavonoid-based therapies in the early management of neurodegenerative diseases. Adv Nutr 2015; 6(1): 64-72.
[http://dx.doi.org/10.3945/an.114.007500] [PMID: 25593144]
[64]
Khan A, Ali T, Rehman SU, et al. Neuroprotective effect of quercetin against the detrimental effects of LPS in the adult mouse brain. Front Pharmacol 2018; 9: 1383.
[http://dx.doi.org/10.3389/fphar.2018.01383] [PMID: 30618732]
[65]
Ay M, Luo J, Langley M, et al. Molecular mechanisms underlying protective effects of quercetin against mitochondrial dysfunction and progressive dopaminergic neurodegeneration in cell culture and MitoPark transgenic mouse models of Parkinson’s Disease. J Neurochem 2017; 141(5): 766-82.
[http://dx.doi.org/10.1111/jnc.14033] [PMID: 28376279]
[66]
Cai Z, Zeng W, Tao K, Lu F, Gao G, Yang Q. Myricitrin alleviates MPP+-induced mitochondrial dysfunction in a DJ-1-dependent manner in SN4741 cells. Biochem Biophys Res Commun 2015; 458(2): 227-33.
[http://dx.doi.org/10.1016/j.bbrc.2015.01.060] [PMID: 25623535]
[67]
Ren R, Shi C, Cao J, et al. Neuroprotective effects of a standardized flavonoid extract of safflower against neurotoxin-induced cellular and animal models of Parkinson’s disease. Sci Rep 2016; 6(1): 22135.
[http://dx.doi.org/10.1038/srep22135] [PMID: 26906725]
[68]
Jamali-Raeufy N, Baluchnejadmojarad T, Roghani M. keimasi S, goudarzi M. Isorhamnetin exerts neuroprotective effects in STZ-induced diabetic rats via attenuation of oxidative stress, inflammation and apoptosis. J Chem Neuroanat 2019; 102: 101709.
[http://dx.doi.org/10.1016/j.jchemneu.2019.101709] [PMID: 31698018]
[69]
Min J, Yu SW, Baek SH, et al. Neuroprotective effect of cyanidin-3-O-glucoside anthocyanin in mice with focal cerebral ischemia. Neurosci Lett 2011; 500(3): 157-61.
[http://dx.doi.org/10.1016/j.neulet.2011.05.048] [PMID: 21651957]
[70]
Huang W, Zhu Y, Li C, Sui Z, Min W. Effect of blueberry anthocyanins malvidin and glycosides on the antioxidant properties in endothelial cells. Oxid Med Cell Longev 2016; 2016: 1591803.
[http://dx.doi.org/10.1155/2016/1591803]
[71]
Kim SM, Chung MJ, Ha TJ, et al. Neuroprotective effects of black soybean anthocyanins via inactivation of ASK1–JNK/p38 pathways and mobilization of cellular sialic acids. Life Sci 2012; 90(21-22): 874-82.
[http://dx.doi.org/10.1016/j.lfs.2012.04.025] [PMID: 22575822]
[72]
Bakoyiannis I, Daskalopoulou A, Pergialiotis V, Perrea D. Phytochemicals and cognitive health: Are flavonoids doing the trick? Biomed Pharmacother 2019; 109: 1488-97.
[http://dx.doi.org/10.1016/j.biopha.2018.10.086] [PMID: 30551400]
[73]
Abbott NJ, Patabendige AAK, Dolman DEM, Yusof SR, Begley DJ. Structure and function of the blood–brain barrier. Neurobiol Dis 2010; 37(1): 13-25.
[http://dx.doi.org/10.1016/j.nbd.2009.07.030] [PMID: 19664713]
[74]
Wilkins JM, Trushina E. Application of metabolomics in Alzheimer’s disease. Front Neurol 2018; 8: 719.
[http://dx.doi.org/10.3389/fneur.2017.00719] [PMID: 29375465]
[75]
Socci V, Tempesta D, Desideri G, De Gennaro L, Ferrara M. Enhancing human cognition with cocoa flavonoids. Front Nutr 2017; 4: 19.
[http://dx.doi.org/10.3389/fnut.2017.00019] [PMID: 28560212]
[76]
Lin LC, Wang MN, Tseng TY, Sung J-S, Tsai TH. Pharmacokinetics of (-)-epigallocatechin-3-gallate in conscious and freely moving rats and its brain regional distribution. J Agric Food Chem 2007; 55(4): 1517-24.
[http://dx.doi.org/10.1021/jf062816a] [PMID: 17256961]
[77]
Ferri P, Angelino D, Gennari L, et al. Enhancement of flavonoid ability to cross the blood–brain barrier of rats by co-administration with α-tocopherol. Food Funct 2015; 6(2): 394-400.
[http://dx.doi.org/10.1039/C4FO00817K] [PMID: 25474041]
[78]
Faria A, Mateus N, Calhau C. Flavonoid transport across blood-brain barrier: Implication for their direct neuroprotective actions. Nutr Aging 2012; 1(2): 89-97.
[http://dx.doi.org/10.3233/NUA-2012-0005]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy