Generic placeholder image

Anti-Infective Agents

Editor-in-Chief

ISSN (Print): 2211-3525
ISSN (Online): 2211-3533

Mini-Review Article

An Overview of the Anti-HIV Potential of Thiazolidinone Derivatives

Author(s): Fatma Mohamed A. Abid, Nurul Syahirah Salim, Roswanira Abdul Wahab, Siti Ernieyanti Hashim, Murugesan Sankaranarayanan, Ajmal Bhat and Joazaizulfazli Jamalis*

Volume 21, Issue 5, 2023

Published on: 29 August, 2023

Article ID: e180723218819 Pages: 20

DOI: 10.2174/2211352521666230718094413

Price: $65

Abstract

Human immunodeficiency virus (HIV) is the cause of acquired immunodeficiency syndrome (AIDS), an immunosuppressive, life-threatening condition that frequently results in other potentially fatal opportunistic infections in affected patients. Despite advancements in anti-retroviral therapy, AIDS remains the main reason for worldwide mortality. Although various anti-HIV drugs have profoundly enhanced the quality of life for AIDS patients, some patients develop resistance to the drugs, and the long-term anti-HIV treatments, and their adverse effects, prevail as major therapeutic failure causes. Therefore, concerted efforts by the scientific community are crucial to identifying new candidates for anti-HIV therapies. In this respect, the thiazolidinone moiety has acquired prominence in drug discovery and development due to its antifungal, antiviral, antidepressant, anticancer, and antibacterial properties. This moiety also demonstrated significant anti- HIV activity as a core heterocycle or derivative of substituted heterocycles. To expedite the synthesis of more novel anti-HIV drugs containing a thiazolidinone nucleus, we compiled a list of thiazolidinone-containing previously documented anti-HIV compounds. We hope that this could serve as a guide for future researchers in their design of effective thiazolidine-containing compounds showing anti-HIV activity.

Graphical Abstract

[1]
Kayabekir, A.E.; Bekdaş, G.; Nigdeli, S.M.; Yang, X.S. A comprehensive review of the flower pollination algorithm for solving engineering problems. Stud. Comput. Intell., 2018, 744, 171-188.
[http://dx.doi.org/10.1007/978-3-319-67669-2_8]
[2]
UNAIDS Global HIV & AIDS statistics-Fact sheet. Available From:, https://www.unaids.org/en/resources/fact-sheet
[3]
Perach, M.; Rubinek, T.; Hughes, S.H.; Hizi, A. Analysis of HIV-2 RT mutants provides evidence that resistance of HIV-1 RT and HIV-2 RT to nucleoside analogs involves a repositioning of the template-primer. J. Mol. Biol., 1997, 268(3), 648-654.
[http://dx.doi.org/10.1006/jmbi.1997.0927] [PMID: 9171288]
[4]
Ren, J.; Bird, L.E.; Chamberlain, P.P.; Stewart-Jones, G.B.; Stuart, D.I.; Stammers, D.K. Structure of HIV-2 reverse transcriptase at 2.35-Å resolution and the mechanism of resistance to non-nucleoside inhibitors. Proc. Natl. Acad. Sci. USA, 2002, 99(22), 14410-14415.
[http://dx.doi.org/10.1073/pnas.222366699] [PMID: 12386343]
[5]
Geronikaki, A.; Eleftheriou, P.; Poroikov, V. Anti- HIV Agents: Current Status and Recent Trends.Communicable Diseases of the Developing World; Saxena, A.K. Ed. Springer Cham; Switzerland, 2016, Vol. 29, pp. 37-95.
[http://dx.doi.org/10.1007/7355_2015_5001]
[6]
Chander, S.; Wang, P.; Ashok, P.; Yang, L.M.; Zheng, Y.T.; Sankaranarayanan, M. Design, synthesis and anti-HIV-1 RT evaluation of 2-(benzyl(4-chlorophenyl)amino)-1-(piperazin-1-yl)ethanone derivatives. Bioorg. Med. Chem. Lett., 2017, 27(1), 61-65.
[http://dx.doi.org/10.1016/j.bmcl.2016.11.030] [PMID: 27894873]
[7]
Viira, B.; García-Sosa, A.T.; Maran, U. Chemical structure and correlation analysis of HIV-1 NNRT and NRT inhibitors and database-curated, published inhibition constants with chemical structure in diverse datasets. J. Mol. Graph. Model., 2017, 76, 205-223.
[http://dx.doi.org/10.1016/j.jmgm.2017.06.019] [PMID: 28738270]
[8]
Witvrouw, M.; Pannecouque, C.; Switzer, W.M.; Folks, T.M.; Clercq, E.D.; Heneine, W. Susceptibility of HIV-2, SIV and SHIV to various anti-HIV-1 compounds: Implications for treatment and postexposure prophylaxis. Antivir. Ther., 2004, 9(1), 57-65.
[http://dx.doi.org/10.1177/135965350400900115] [PMID: 15040537]
[9]
Boyer, P.L.; Sarafianos, S.G.; Clark, P.K.; Arnold, E.; Hughes, S.H. Why do HIV-1 and HIV-2 use different pathways to develop AZT resistance? PLoS Pathog., 2006, 2(2), e10.
[http://dx.doi.org/10.1371/journal.ppat.0020010] [PMID: 16485036]
[10]
Barré-Sinoussi, F.; Chermann, J.C.; Rey, F.; Nugeyre, M.T.; Chamaret, S.; Gruest, J.; Dauguet, C.; Axler-Blin, C.; Vézinet-Brun, F.; Rouzioux, C.; Rozenbaum, W.; Montagnier, L. Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS). Science, 1983, 220(4599), 868-871.
[http://dx.doi.org/10.1126/science.6189183] [PMID: 6189183]
[11]
Sundquist, W.I.; Kräusslich, H.G. HIV-1 assembly, budding, and maturation. Cold Spring Harb. Perspect. Med., 2012, 2(7), a006924.
[http://dx.doi.org/10.1101/cshperspect.a006924] [PMID: 22762019]
[12]
Bastos, M.M.; Costa, C.C.P.; Bezerra, T.C.; da Silva, F.C.; Boechat, N. Efavirenz a nonnucleoside reverse transcriptase inhibitor of first-generation: Approaches based on its medicinal chemistry. Eur. J. Med. Chem., 2016, 108, 455-465.
[http://dx.doi.org/10.1016/j.ejmech.2015.11.025] [PMID: 26708112]
[13]
Minuto, J.J.; Haubrich, R. Etravirine: A second-generation NNRTI for treatment-experienced adults with resistant HIV-1 infection. Future HIV Ther., 2008, 2(6), 525-537.
[http://dx.doi.org/10.2217/17469600.2.6.525] [PMID: 19881888]
[14]
Rimsky, L.; Vingerhoets, J.; Van Eygen, V.; Eron, J.; Clotet, B.; Hoogstoel, A.; Boven, K.; Picchio, G. Genotypic and phenotypic characterization of HIV-1 isolates obtained from patients on rilpivirine therapy experiencing virologic failure in the phase 3 ECHO and THRIVE studies: 48-week analysis. J. Acquir. Immune Defic. Syndr., 2012, 59(1), 39-46.
[http://dx.doi.org/10.1097/QAI.0b013e31823df4da] [PMID: 22067667]
[15]
Ghosn, J.; Chaix, M.L.; Delaugerre, C. HIV-1 resistance to first- and second-generation non-nucleoside reverse transcriptase inhibitors. AIDS Rev., 2009, 11(3), 165-173.
[PMID: 19654858]
[16]
Vernekar, S.K.V.; Liu, Z.; Nagy, E.; Miller, L.; Kirby, K.A.; Wilson, D.J.; Kankanala, J.; Sarafianos, S.G.; Parniak, M.A.; Wang, Z. Design, synthesis, biochemical, and antiviral evaluations of C6 benzyl and C6 biarylmethyl substituted 2-hydroxylisoquinoline-1,3-diones: Dual inhibition against HIV reverse transcriptase-associated RNase H and polymerase with antiviral activities. J. Med. Chem., 2015, 58(2), 651-664.
[http://dx.doi.org/10.1021/jm501132s] [PMID: 25522204]
[17]
Makurumidze, R.; Decroo, T.; Lynen, L.; Chinwadzimba, Z.K.; Van Damme, W.; Hakim, J.; Rusakaniko, S. District-level strategies to control the HIV epidemic in Zimbabwe: A practical example of precision public health. BMC Res. Notes, 2020, 13(1), 393.
[http://dx.doi.org/10.1186/s13104-020-05234-8] [PMID: 32847619]
[18]
Vidya, M.; Saravanan, S.; Uma, S.; Kumarasamy, N.; Sunil, S.S.; Kantor, R.; Katzenstein, D.; Ramratnam, B.; Mayer, K.H.; Suniti, S.; Balakrishnan, P. Genotypic HIV type-1 drug resistance among patients with immunological failure to first-line antiretroviral therapy in south India. Antivir. Ther., 2009, 14(7), 1005-1009.
[http://dx.doi.org/10.3851/IMP1411] [PMID: 19918105]
[19]
Salim, J.K.; Hassan, Q.M.A.; Jassem, A.M.; Sultan, H.A.; Dhumad, H.A.; Emshary, H.A. An efficient ultrasound-assisted CH3COONa catalyzed synthesis of Thiazolidinone-Schiff base derivative. Opt. Lett., 2022, 133, 112917.
[20]
Aqlan, F.M.; Al-Bogami, A.S.; Alqahtani, N.F.; Wani, M.Y.; Khan, S.A. Thiazolidinone: A structural motif of great synthetic and biological importance. J. Mol. Struct., 2022, 1250(1), 131771.
[http://dx.doi.org/10.1016/j.molstruc.2021.131771]
[21]
Kaur Manjal, S.; Kaur, R.; Bhatia, R.; Kumar, K.; Singh, V.; Shankar, R.; Kaur, R.; Rawal, R.K. Synthetic and medicinal perspective of thiazolidinones: A review. Bioorg. Chem., 2017, 75, 406-423.
[http://dx.doi.org/10.1016/j.bioorg.2017.10.014] [PMID: 29102723]
[22]
Chitre, T.S.; Patil, S.M.; Sujalegaonkar, A.G.; Asgaonkar, K.D. Designing of thiazolinin-4-one pharmacophore using QSAR studies for anti-HIV activity. Indian J. Pharm. Educ. Res, 2021, 55(2), 581-589.
[http://dx.doi.org/10.5530/ijper.55.2.97]
[23]
Molina, D.A.; Ramos, G.A.; Zamora-Vélez, A.; Gallego-López, G.M.; Rocha-Roa, C.; Gómez-Marin, J.E.; Cortes, E. In vitro evaluation of new 4-thiazolidinones on invasion and growth of Toxoplasma gondii. Int. J. Parasitol. Drugs Drug Resist., 2021, 16, 129-139.
[http://dx.doi.org/10.1016/j.ijpddr.2021.05.004] [PMID: 34102589]
[24]
Bielenica, A.; Szulczyk, D.; Olejarz, W.; Madeddu, S.; Giliberti, G.; Materek, I.B.; Koziol, A.E.; Struga, M. 1H-Tetrazol-5-amine and 1,3-thiazolidin-4-one derivatives containing 3-(trifluoromethyl)phenyl scaffold: Synthesis, cytotoxic and anti-HIV studies. Biomed. Pharmacother., 2017, 94, 804-812.
[http://dx.doi.org/10.1016/j.biopha.2017.07.152] [PMID: 28802233]
[25]
Rawal, R.K.; Tripathi, R.; Katti, S.B.; Pannecouque, C.; De Clercq, E. Design and synthesis of 2-(2,6-dibromophenyl)-3-heteroaryl-1,3-thiazolidin-4-ones as anti-HIV agents. Eur. J. Med. Chem., 2008, 43(12), 2800-2806.
[http://dx.doi.org/10.1016/j.ejmech.2007.12.015] [PMID: 18242784]
[26]
Murugesan, V.; Makwana, N.; Suryawanshi, R.; Saxena, R.; Tripathi, R.; Paranjape, R.; Kulkarni, S.; Katti, S.B. Rational design and synthesis of novel thiazolidin-4-ones as non-nucleoside HIV-1 reverse transcriptase inhibitors. Bioorg. Med. Chem., 2014, 22(12), 3159-3170.
[http://dx.doi.org/10.1016/j.bmc.2014.04.018] [PMID: 24794742]
[27]
Pitta, E.; Geronikaki, A.; Surmava, S.; Eleftheriou, P.; Mehta, V.P.; Van der Eycken, E.V. Synthesis and HIV-1 RT inhibitory action of novel (4/6-substituted benzo[d]thiazol -2-yl)thiazolidin-4-ones. Divergence from the non-competitive inhibition mechanism. J. Enzyme Inhib. Med. Chem., 2013, 28(1), 113-122.
[http://dx.doi.org/10.3109/14756366.2011.636362] [PMID: 22380777]
[28]
Suryawanshi, R.; Jadhav, S.; Makwana, N.; Desai, D.; Chaturbhuj, D.; Sonawani, A.; Idicula-Thomas, S.; Murugesan, V.; Katti, S.B.; Tripathy, S.; Paranjape, R.; Kulkarni, S. Evaluation of 4-thiazolidinone derivatives as potential reverse transcriptase inhibitors against HIV-1 drug resistant strains. Bioorg. Chem., 2017, 71, 211-218.
[http://dx.doi.org/10.1016/j.bioorg.2017.02.007] [PMID: 28236450]
[29]
Mistry, K.; Desai, K. Synthesis of novel heterocyclic 4-thiazolidinone derivatives and their antibacterial activity. J. Chem., 2004, 1(4), 189-193.
[30]
Ashvini, P.P.; Tejasvi, K.P.; Ankita, R.P.; Chetna, S.P.; Patil, S.T.; Pawar, S.P. Chemistry and biological activities of 4-thiazolidinone. World J. Pharm. Pharm. Sci., 2015, 4(5), 1780-1791.
[31]
Posner, M.R.; Hershock, D.M.; Blajman, C.R.; Mickiewicz, E.; Winquist, E.; Gorbounova, V.; Tjulandin, S.; Shin, D.M.; Cullen, K.; Ervin, T.J.; Murphy, B.A.; Raez, L.E.; Cohen, R.B.; Spaulding, M.; Tishler, R.B.; Roth, B.; Viroglio, R.C.; Venkatesan, V.; Romanov, I.; Agarwala, S.; Harter, K.W.; Dugan, M.; Cmelak, A.; Markoe, A.M.; Read, P.W.; Steinbrenner, L.; Colevas, A.D.; Norris, C.M., Jr; Haddad, R.I. Cisplatin and fluorouracil alone or with docetaxel in head and neck cancer. N. Engl. J. Med., 2007, 357(17), 1705-1715.
[http://dx.doi.org/10.1056/NEJMoa070956] [PMID: 17960013]
[32]
Portman, J.R.; Strick, T.R. Transcription-coupled repair and complex biology. J. Mol. Biol., 2018, 430(22), 4496-4512.
[http://dx.doi.org/10.1016/j.jmb.2018.04.033] [PMID: 29733857]
[33]
Cihlar, T.; Fordyce, M. Current status and prospects of HIV treatment. Curr. Opin. Virol., 2016, 18, 50-56.
[http://dx.doi.org/10.1016/j.coviro.2016.03.004] [PMID: 27023283]
[34]
de Ruyck, J.; Brysbaert, G.; Blossey, R.; Lensink, M. Molecular docking as a popular tool in drug design, an in silico travel. Adv. Appl. Bioinform. Chem., 2016, 9, 1-11.
[http://dx.doi.org/10.2147/AABC.S105289] [PMID: 27390530]
[35]
Tautermann, C.S.; Seeliger, D.; Kriegl, J.M. What can we learn from molecular dynamics simulations for GPCR drug design? Comput. Struct. Biotechnol. J., 2015, 13, 111-121.
[http://dx.doi.org/10.1016/j.csbj.2014.12.002] [PMID: 25709761]
[36]
Ferreira, L.; dos Santos, R.; Oliva, G.; Andricopulo, A. Molecular docking and structure-based drug design strategies. Molecules, 2015, 20(7), 13384-13421.
[http://dx.doi.org/10.3390/molecules200713384] [PMID: 26205061]
[37]
Barreca, M.L.; Chimirri, A.; De Luca, L.; Monforte, A.M.; Monforte, P.; Rao, A.; Zappalà, M.; Balzarini, J.; De Clercq, E.; Pannecouque, C.; Witvrouw, M. Discovery of 2,3-diaryl-1,3-thiazolidin-4-ones as potent anti-HIV-1 agents. Bioorg. Med. Chem. Lett., 2001, 11(13), 1793-1796.
[http://dx.doi.org/10.1016/S0960-894X(01)00304-3] [PMID: 11425562]
[38]
Rao, A.; Carbone, A.; Chimirri, A.; De Clercq, E.; Monforte, A.M.; Monforte, P.; Pannecouque, C.; Zappalà, M. Synthesis and anti-HIV activity of 2,3-diaryl-1,3-thiazolidin-4-(thi)one derivatives. Farmaco, 2002, 57(9), 747-751.
[http://dx.doi.org/10.1016/S0014-827X(02)01268-5] [PMID: 12385525]
[39]
Barreca, M.L.; Balzarini, J.; Chimirri, A.; Clercq, E.D.; Luca, L.D.; Höltje, H.D.; Höltje, M.; Monforte, A.M.; Monforte, P.; Pannecouque, C.; Rao, A.; Zappalà, M. Design, synthesis, structure-activity relationships, and molecular modeling studies of 2,3-diaryl-1,3-thiazolidin-4-ones as potent anti-HIV agents. J. Med. Chem., 2002, 45(24), 5410-5413.
[http://dx.doi.org/10.1021/jm020977+] [PMID: 12431069]
[40]
Rao, A.; Carbone, A.; Chimirri, A.; De Clercq, E.; Monforte, A.M.; Monforte, P.; Pannecouque, C.; Zappalà, M. Synthesis and anti-HIV activity of 2,3-diaryl-1,3-thiazolidin-4-ones. Farmaco, 2003, 58(2), 115-120.
[http://dx.doi.org/10.1016/S0014-827X(02)00024-1] [PMID: 12581777]
[41]
Rao, A.; Balzarini, J.; Carbone, A.; Chimirri, A.; De Clercq, E.; Monforte, A.M.; Monforte, P.; Pannecouque, C.; Zappalà, M. 2-(2,6-Dihalophenyl)-3-(pyrimidin-2-yl)-1,3-thiazolidin-4-ones as non-nucleoside HIV-1 reverse transcriptase inhibitors. Antiviral Res., 2004, 63(2), 79-84.
[http://dx.doi.org/10.1016/j.antiviral.2004.03.004] [PMID: 15302136]
[42]
Rao, A.; Balzarini, J.; Carbone, A.; Chimirri, A.; De Clercq, E.; Monforte, A.M.; Monforte, P.; Pannecouque, C.; Zappalà, M. Synthesis of new 2,3-diaryl-1,3-thiazolidin-4-ones as anti-HIV agents. Farmaco, 2004, 59(1), 33-39.
[http://dx.doi.org/10.1016/j.farmac.2003.09.001] [PMID: 14751314]
[43]
Rawal, R.K.; Prabhakar, Y.S.; Katti, S.B.; De Clercq, E. 2-(Aryl)-3-furan-2-ylmethyl-thiazolidin-4-ones as selective HIV-RT Inhibitors. Bioorg. Med. Chem., 2005, 13(24), 6771-6776.
[http://dx.doi.org/10.1016/j.bmc.2005.07.063] [PMID: 16198576]
[44]
Rawal, R.K.; Tripathi, R.; Katti, S.B.; Pannecouque, C.; De Clercq, E. Design, synthesis, and evaluation of 2-aryl-3-heteroaryl-1,3-thiazolidin-4-ones as anti-HIV agents. Bioorg. Med. Chem., 2007, 15(4), 1725-1731.
[http://dx.doi.org/10.1016/j.bmc.2006.12.003] [PMID: 17178227]
[45]
Rawal, R.K.; Tripathi, R.; Katti, S.B.; Pannecouque, C.; De Clercq, E. Synthesis and evaluation of 2-(2,6-dihalophenyl)-3-pyrimidinyl-1,3-thiazolidin-4-one analogues as anti-HIV-1 agents. Bioorg. Med. Chem., 2007, 15(9), 3134-3142.
[http://dx.doi.org/10.1016/j.bmc.2007.02.044] [PMID: 17349793]
[46]
Balzarini, J.; Orzeszko, B.; Maurin, J.K.; Orzeszko, A. Synthesis and anti-HIV studies of 2-adamantyl-substituted thiazolidin-4-ones. Eur. J. Med. Chem., 2007, 42(7), 993-1003.
[http://dx.doi.org/10.1016/j.ejmech.2007.01.003] [PMID: 17321639]
[47]
Chen, H.; Bai, J.; Jiao, L.; Guo, Z.; Yin, Q.; Li, X. Design, microwave-assisted synthesis and HIV-RT inhibitory activity of 2-(2,6-dihalophenyl)-3-(4,6-dimethyl-5-(un)substituted-pyrimidin-2-yl)thiazolidin-4-ones. Bioorg. Med. Chem., 2009, 17(11), 3980-3986.
[http://dx.doi.org/10.1016/j.bmc.2009.04.024] [PMID: 19411176]
[48]
Murugesan, V.; Tiwari, V.S.; Saxena, R.; Tripathi, R.; Paranjape, R.; Kulkarni, S.; Makwana, N.; Suryawanshi, R.; Katti, S.B. Lead optimization at C-2 and N-3 positions of thiazolidin-4-ones as HIV-1 non-nucleoside reverse transcriptase inhibitors. Bioorg. Med. Chem., 2011, 19(22), 6919-6926.
[http://dx.doi.org/10.1016/j.bmc.2011.09.018] [PMID: 21982685]
[49]
Chimirri, A.; Grasso, S.; Monforte, A.M.; Monforte, P.; Rao, A.; Zappalà, M.; Bruno, G.; Nicolò, F.; Pannecouque, C.; Witvrouw, M.; De Clercq, E. Synthesis, structure and in vitro anti-human immunodeficiency virus activity of novel 3-methyl-1H,3H-thiazolo[3,4-a]benzimidazoles. Antivir. Chem. Chemother., 1998, 9(5), 431-438.
[http://dx.doi.org/10.1177/095632029800900507] [PMID: 9875396]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy