Generic placeholder image

Anti-Infective Agents

Editor-in-Chief

ISSN (Print): 2211-3525
ISSN (Online): 2211-3533

Review Article

Prospects for New Antibiotics Discovered through Genome Analysis

Author(s): Arun Kumar Singh, Rishabha Malviya* and Rishav Sharma

Volume 21, Issue 5, 2023

Published on: 29 August, 2023

Article ID: e170723218816 Pages: 11

DOI: 10.2174/2211352521666230717164854

Price: $65

Abstract

Antibiotic-resistant illnesses are on the rise worldwide, and the pipeline for developing new antibiotics is drying up. As a result, researchers need to create novel compounds with antimicrobial action. Recent decades have seen a dearth of novel antibiotics because of the reliance on conventional empirical screening procedures using both natural and synthetic chemicals to find them. There is hope that the massive amount of bacterial genome sequence data that has become accessible since the sequencing of the first bacterial genome more than 20 years ago might help lead to the development of new antibiotic drugs. Genes with significant levels of conservation both within and between bacterial species can be found using comparative genomic techniques; these genes may be involved in essential bacterial functions. Bioactive chemicals found in natural products have been successfully used in treating everything from infectious diseases to cancer, but over the past 20-30 years, the effectiveness of screening methods based on fermentation has decreased. Researchers urgently need answers to the unmet demand for bacterial infection resistance. Now more than ever, with the advent of cheap, highthroughput genomic sequencing technology, natural product discovery can be revitalized. Using bioinformatics, investigators may foretell whether or not a certain microbial strain would generate compounds with novel chemical structures, which may have novel modes of action in inhibiting bacterial growth. This manuscript describes how this potential might be utilised, with a particular emphasis on manipulating the expression of dormant biosynthetic gene clusters that are hypothesised to encode new antibiotics. Additionally, it consolidates the work of the past and the present to utilise bacterial genomic data in the identification and development of new antibiotics.

Graphical Abstract

[1]
Liu, Y.Y.; Wang, Y.; Walsh, T.R.; Yi, L.X.; Zhang, R.; Spencer, J.; Doi, Y.; Tian, G.; Dong, B.; Huang, X.; Yu, L.F.; Gu, D.; Ren, H.; Chen, X.; Lv, L.; He, D.; Zhou, H.; Liang, Z.; Liu, J.H.; Shen, J. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: A microbiological and molecular biological study. Lancet Infect. Dis., 2016, 16(2), 161-168.
[http://dx.doi.org/10.1016/S1473-3099(15)00424-7] [PMID: 26603172]
[2]
Walsh, T.R.; Weeks, J.; Livermore, D.M.; Toleman, M.A. Dissemination of NDM-1 positive bacteria in the New Delhi environment and its implications for human health: an environmental point prevalence study. Lancet Infect. Dis., 2011, 11(5), 355-362.
[http://dx.doi.org/10.1016/S1473-3099(11)70059-7] [PMID: 21478057]
[3]
Threat Report . Antibiotic/Antimicrobial Resistance., Centers for Disease Control and Prevention 2013.
[5]
Fleischmann, R.D.; Adams, M.D.; White, O.; Clayton, R.A.; Kirkness, E.F.; Kerlavage, A.R.; Bult, C.J.; Tomb, J.F.; Dougherty, B.A.; Merrick, J.M.; McKenney, K. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. science, 1995, 269(5223), 496-512.
[6]
Caesar, L.K.; Montaser, R.; Keller, N.P.; Kelleher, N.L. Metabolomics and genomics in natural products research: complementary tools for targeting new chemical entities. Nat. Prod. Rep., 2021, 38(11), 2041-2065.
[http://dx.doi.org/10.1039/D1NP00036E] [PMID: 34787623]
[7]
Katz, L.; Baltz, R.H. Natural product discovery: past, present, and future. J. Ind. Microbiol. Biotechnol., 2016, 43(2-3), 155-176.
[http://dx.doi.org/10.1007/s10295-015-1723-5] [PMID: 26739136]
[8]
World Health Organization, 2018. Global antimicrobial resistance surveillance system (GLASS) report: early implementation 2017-2018. Global antimicrobial resistance surveillance system (GLASS) report: early implementation 2017-2018.
[9]
Genilloud, O. Natural products discovery and potential for new antibiotics. Curr. Opin. Microbiol., 2019, 51, 81-87.
[http://dx.doi.org/10.1016/j.mib.2019.10.012] [PMID: 31739283]
[10]
Skinnider, M.A.; Merwin, N.J.; Johnston, C.W.; Magarvey, N.A. PRISM 3: Expanded prediction of natural product chemical structures from microbial genomes. Nucleic Acids Res., 2017, 45(W1), W49-W54.
[http://dx.doi.org/10.1093/nar/gkx320] [PMID: 28460067]
[11]
Medema, M.H.; Kottmann, R.; Yilmaz, P.; Cummings, M.; Biggins, J.B.; Blin, K.; de Bruijn, I.; Chooi, Y.H.; Claesen, J.; Coates, R.C.; Cruz-Morales, P.; Duddela, S.; Düsterhus, S.; Edwards, D.J.; Fewer, D.P.; Garg, N.; Geiger, C.; Gomez-Escribano, J.P.; Greule, A.; Hadjithomas, M.; Haines, A.S.; Helfrich, E.J.N.; Hillwig, M.L.; Ishida, K.; Jones, A.C.; Jones, C.S.; Jungmann, K.; Kegler, C.; Kim, H.U.; Kötter, P.; Krug, D.; Masschelein, J.; Melnik, A.V.; Mantovani, S.M.; Monroe, E.A.; Moore, M.; Moss, N.; Nützmann, H.W.; Pan, G.; Pati, A.; Petras, D.; Reen, F.J.; Rosconi, F.; Rui, Z.; Tian, Z.; Tobias, N.J.; Tsunematsu, Y.; Wiemann, P.; Wyckoff, E.; Yan, X.; Yim, G.; Yu, F.; Xie, Y.; Aigle, B.; Apel, A.K.; Balibar, C.J.; Balskus, E.P.; Barona-Gómez, F.; Bechthold, A.; Bode, H.B.; Borriss, R.; Brady, S.F.; Brakhage, A.A.; Caffrey, P.; Cheng, Y.Q.; Clardy, J.; Cox, R.J.; De Mot, R.; Donadio, S.; Donia, M.S.; van der Donk, W.A.; Dorrestein, P.C.; Doyle, S.; Driessen, A.J.M.; Ehling-Schulz, M.; Entian, K.D.; Fischbach, M.A.; Gerwick, L.; Gerwick, W.H.; Gross, H.; Gust, B.; Hertweck, C.; Höfte, M.; Jensen, S.E.; Ju, J.; Katz, L.; Kaysser, L.; Klassen, J.L.; Keller, N.P.; Kormanec, J.; Kuipers, O.P.; Kuzuyama, T.; Kyrpides, N.C.; Kwon, H.J.; Lautru, S.; Lavigne, R.; Lee, C.Y.; Linquan, B.; Liu, X.; Liu, W.; Luzhetskyy, A.; Mahmud, T.; Mast, Y.; Méndez, C.; Metsä-Ketelä, M.; Micklefield, J.; Mitchell, D.A.; Moore, B.S.; Moreira, L.M.; Müller, R.; Neilan, B.A.; Nett, M.; Nielsen, J.; O’Gara, F.; Oikawa, H.; Osbourn, A.; Osburne, M.S.; Ostash, B.; Payne, S.M.; Pernodet, J.L.; Petricek, M.; Piel, J.; Ploux, O.; Raaijmakers, J.M.; Salas, J.A.; Schmitt, E.K.; Scott, B.; Seipke, R.F.; Shen, B.; Sherman, D.H.; Sivonen, K.; Smanski, M.J.; Sosio, M.; Stegmann, E.; Süssmuth, R.D.; Tahlan, K.; Thomas, C.M.; Tang, Y.; Truman, A.W.; Viaud, M.; Walton, J.D.; Walsh, C.T.; Weber, T.; van Wezel, G.P.; Wilkinson, B.; Willey, J.M.; Wohlleben, W.; Wright, G.D.; Ziemert, N.; Zhang, C.; Zotchev, S.B.; Breitling, R.; Takano, E.; Glöckner, F.O. Minimum information about a biosynthetic gene cluster. Nat. Chem. Biol., 2015, 11(9), 625-631.
[http://dx.doi.org/10.1038/nchembio.1890] [PMID: 26284661]
[12]
Tang, X.; Li, J.; Millán-Aguiñaga, N.; Zhang, J.J.; O’Neill, E.C.; Ugalde, J.A.; Jensen, P.R.; Mantovani, S.M.; Moore, B.S. Identification of thiotetronic acid antibiotic biosynthetic pathways by targetdirected genome mining. ACS Chem. Biol., 2015, 10(12), 2841-2849.
[http://dx.doi.org/10.1021/acschembio.5b00658] [PMID: 26458099]
[13]
Panter, F.; Krug, D.; Baumann, S.; Müller, R. Self-resistance guided genome mining uncovers new topoisomerase inhibitors from myxobacteria. Chem. Sci. (Camb.), 2018, 9(21), 4898-4908.
[http://dx.doi.org/10.1039/C8SC01325J] [PMID: 29910943]
[14]
Alanjary, M.; Kronmiller, B.; Adamek, M.; Blin, K.; Weber, T.; Huson, D.; Philmus, B.; Ziemert, N. The Antibiotic Resistant Target Seeker (ARTS), an exploration engine for antibiotic cluster prioritization and novel drug target discovery. Nucleic Acids Res., 2017, 45(W1), W42-W48.
[http://dx.doi.org/10.1093/nar/gkx360] [PMID: 28472505]
[15]
Hug, J.; Bader, C.; Remškar, M.; Cirnski, K.; Müller, R. Concepts and methods to access novel antibiotics from actinomycetes. Antibiotics (Basel), 2018, 7(2), 44.
[http://dx.doi.org/10.3390/antibiotics7020044] [PMID: 29789481]
[16]
Gomez-Escribano, J.; Alt, S.; Bibb, M. Next generation sequencing of actinobacteria for the discovery of novel natural products. Mar. Drugs, 2016, 14(4), 78.
[http://dx.doi.org/10.3390/md14040078] [PMID: 27089350]
[17]
Qin, Z.; Munnoch, J.T.; Devine, R.; Holmes, N.A.; Seipke, R.F.; Wilkinson, K.A.; Wilkinson, B.; Hutchings, M.I. Formicamycins, antibacterial polyketides produced by Streptomyces formicae isolated from African Tetraponera plant-ants. Chem. Sci. (Camb.), 2017, 8(4), 3218-3227.
[http://dx.doi.org/10.1039/C6SC04265A] [PMID: 28507698]
[18]
Peek, J.; Lilic, M.; Montiel, D.; Milshteyn, A.; Woodworth, I.; Biggins, J.B.; Ternei, M.A.; Calle, P.Y.; Danziger, M.; Warrier, T.; Saito, K.; Braffman, N.; Fay, A.; Glickman, M.S.; Darst, S.A.; Campbell, E.A.; Brady, S.F. Rifamycin congeners kanglemycins are active against rifampicin-resistant bacteria via a distinct mechanism. Nat. Commun., 2018, 9(1), 4147.
[http://dx.doi.org/10.1038/s41467-018-06587-2] [PMID: 30297823]
[19]
Li, Y.X.; Zhong, Z.; Zhang, W.P.; Qian, P.Y. Discovery of cationic nonribosomal peptides as gram-negative antibiotics through global genome mining. Nat. Commun., 2018, 9(1), 3273.
[http://dx.doi.org/10.1038/s41467-018-05781-6] [PMID: 30115920]
[20]
Baltz, R.H. Gifted microbes for genome mining and natural product discovery. J. Ind. Microbiol. Biotechnol., 2017, 44(4-5), 573-588.
[http://dx.doi.org/10.1007/s10295-016-1815-x] [PMID: 27520548]
[21]
Amos, G.C.A.; Awakawa, T.; Tuttle, R.N.; Letzel, A.C.; Kim, M.C.; Kudo, Y.; Fenical, W.; Moore, B.S.; Jensen, P.R. Comparative transcriptomics as a guide to natural product discovery and biosynthetic gene cluster functionality. Proc. Natl. Acad. Sci. USA, 2017, 114(52), E11121-E11130.
[http://dx.doi.org/10.1073/pnas.1714381115] [PMID: 29229817]
[22]
Wang, M.; Carver, J.J.; Phelan, V.V.; Sanchez, L.M.; Garg, N.; Peng, Y.; Nguyen, D.D.; Watrous, J.; Kapono, C.A.; Luzzatto-Knaan, T.; Porto, C.; Bouslimani, A.; Melnik, A.V.; Meehan, M.J.; Liu, W.T.; Crüsemann, M.; Boudreau, P.D.; Esquenazi, E.; Sandoval-Calderón, M.; Kersten, R.D.; Pace, L.A.; Quinn, R.A.; Duncan, K.R.; Hsu, C.C.; Floros, D.J.; Gavilan, R.G.; Kleigrewe, K.; Northen, T.; Dutton, R.J.; Parrot, D.; Carlson, E.E.; Aigle, B.; Michelsen, C.F.; Jelsbak, L.; Sohlenkamp, C.; Pevzner, P.; Edlund, A.; McLean, J.; Piel, J.; Murphy, B.T.; Gerwick, L.; Liaw, C.C.; Yang, Y.L.; Humpf, H.U.; Maansson, M.; Keyzers, R.A.; Sims, A.C.; Johnson, A.R.; Sidebottom, A.M.; Sedio, B.E.; Klitgaard, A.; Larson, C.B.; Boya, P. C.A.; Torres-Mendoza, D.; Gonzalez, D.J.; Silva, D.B.; Marques, L.M.; Demarque, D.P.; Pociute, E.; O’Neill, E.C.; Briand, E.; Helfrich, E.J.N.; Granatosky, E.A.; Glukhov, E.; Ryffel, F.; Houson, H.; Mohimani, H.; Kharbush, J.J.; Zeng, Y.; Vorholt, J.A.; Kurita, K.L.; Charusanti, P.; McPhail, K.L.; Nielsen, K.F.; Vuong, L.; Elfeki, M.; Traxler, M.F.; Engene, N.; Koyama, N.; Vining, O.B.; Baric, R.; Silva, R.R.; Mascuch, S.J.; Tomasi, S.; Jenkins, S.; Macherla, V.; Hoffman, T.; Agarwal, V.; Williams, P.G.; Dai, J.; Neupane, R.; Gurr, J.; Rodríguez, A.M.C.; Lamsa, A.; Zhang, C.; Dorrestein, K.; Duggan, B.M.; Almaliti, J.; Allard, P.M.; Phapale, P.; Nothias, L.F.; Alexandrov, T.; Litaudon, M.; Wolfender, J.L.; Kyle, J.E.; Metz, T.O.; Peryea, T.; Nguyen, D.T.; VanLeer, D.; Shinn, P.; Jadhav, A.; Müller, R.; Waters, K.M.; Shi, W.; Liu, X.; Zhang, L.; Knight, R.; Jensen, P.R.; Palsson, B.Ø.; Pogliano, K.; Linington, R.G.; Gutiérrez, M.; Lopes, N.P.; Gerwick, W.H.; Moore, B.S.; Dorrestein, P.C.; Bandeira, N. Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nat. Biotechnol., 2016, 34(8), 828-837.
[http://dx.doi.org/10.1038/nbt.3597] [PMID: 27504778]
[23]
Senges, C.H.R.; Al-Dilaimi, A.; Marchbank, D.H.; Wibberg, D.; Winkler, A.; Haltli, B.; Nowrousian, M.; Kalinowski, J.; Kerr, R.G.; Bandow, J.E. The secreted metabolome of Streptomyces chartreusis and implications for bacterial chemistry. Proc. Natl. Acad. Sci. USA, 2018, 115(10), 2490-2495.
[http://dx.doi.org/10.1073/pnas.1715713115] [PMID: 29463727]
[24]
Covington, B.C.; McLean, J.A.; Bachmann, B.O. Comparative mass spectrometry-based metabolomics strategies for the investigation of microbial secondary metabolites. Nat. Prod. Rep., 2017, 34(1), 6-24.
[http://dx.doi.org/10.1039/C6NP00048G] [PMID: 27604382]
[25]
Ogasawara, Y.; Kawata, J.; Noike, M.; Satoh, Y.; Furihata, K.; Dairi, T. Exploring Peptide Ligase Orthologs in Actinobacteria—Discovery of Pseudopeptide Natural Products, Ketomemicins. ACS Chem. Biol., 2016, 11(6), 1686-1692.
[http://dx.doi.org/10.1021/acschembio.6b00046] [PMID: 27023439]
[26]
Myronovskyi, M.; Rosenkränzer, B.; Nadmid, S.; Pujic, P.; Normand, P.; Luzhetskyy, A. Generation of a cluster-free Streptomyces albus chassis strains for improved heterologous expression of secondary metabolite clusters. Metab. Eng., 2018, 49, 316-324.
[http://dx.doi.org/10.1016/j.ymben.2018.09.004] [PMID: 30196100]
[27]
Hover, B.M.; Kim, S.H.; Katz, M.; Charlop-Powers, Z.; Owen, J.G.; Ternei, M.A.; Maniko, J.; Estrela, A.B.; Molina, H.; Park, S.; Perlin, D.S.; Brady, S.F. Culture-independent discovery of the malacidins as calcium-dependent antibiotics with activity against multidrug-resistant Gram-positive pathogens. Nat. Microbiol., 2018, 3(4), 415-422.
[http://dx.doi.org/10.1038/s41564-018-0110-1] [PMID: 29434326]
[28]
Eyles, T.H.; Vior, N.M.; Truman, A.W. Rapid and robust yeast-mediated pathway refactoring generates multiple new bottromycin-related metabolites. ACS Synth. Biol., 2018, 7(5), 1211-1218.
[http://dx.doi.org/10.1021/acssynbio.8b00038] [PMID: 29694038]
[29]
Zhang, J.J.; Tang, X.; Zhang, M.; Nguyen, D.; Moore, B.S. Broad-host-range expression reveals native and host regulatory elements that influence heterologous antibiotic production in Gram-negative bacteria. MBio, 2017, 8(5), e01291-17.
[http://dx.doi.org/10.1128/mBio.01291-17] [PMID: 28874475]
[30]
Horbal, L.; Marques, F.; Nadmid, S.; Mendes, M.V.; Luzhetskyy, A. Secondary metabolites overproduction through transcriptional gene cluster refactoring. Metab. Eng., 2018, 49, 299-315.
[http://dx.doi.org/10.1016/j.ymben.2018.09.010] [PMID: 30240601]
[31]
Tan, G.Y.; Deng, K.; Liu, X.; Tao, H.; Chang, Y.; Chen, J.; Chen, K.; Sheng, Z.; Deng, Z.; Liu, T. Heterologous biosynthesis of spinosad: an omics-guided large polyketide synthase gene cluster reconstitution in Streptomyces. ACS Synth. Biol., 2017, 6(6), 995-1005.
[http://dx.doi.org/10.1021/acssynbio.6b00330] [PMID: 28264562]
[32]
Liu, Y.; Gong, R.; Liu, X.; Zhang, P.; Zhang, Q.; Cai, Y.S.; Deng, Z.; Winkler, M.; Wu, J.; Chen, W. Discovery and characterization of the tubercidin biosynthetic pathway from Streptomyces tubercidicus NBRC 13090. Microb. Cell Fact., 2018, 17(1), 131.
[http://dx.doi.org/10.1186/s12934-018-0978-8] [PMID: 30153835]
[33]
Foulston, L. Genome mining and prospects for antibiotic discovery. Curr. Opin. Microbiol., 2019, 51, 1-8.
[http://dx.doi.org/10.1016/j.mib.2019.01.001] [PMID: 30776510]
[34]
Kasuga, K.; Sasaki, A.; Matsuo, T.; Yamamoto, C.; Minato, Y.; Kuwahara, N.; Fujii, C.; Kobayashi, M.; Agematu, H.; Tamura, T.; Komatsu, M.; Ishikawa, J.; Ikeda, H.; Kojima, I. Heterologous production of kasugamycin, an aminoglycoside antibiotic from Streptomyces kasugaensis, in Streptomyces lividans and Rhodococcus erythropolis L-88 by constitutive expression of the biosynthetic gene cluster. Appl. Microbiol. Biotechnol., 2017, 101(10), 4259-4268.
[http://dx.doi.org/10.1007/s00253-017-8189-5] [PMID: 28243709]
[35]
Xu, M.; Wang, Y.; Zhao, Z.; Gao, G.; Huang, S.X.; Kang, Q.; He, X.; Lin, S.; Pang, X.; Deng, Z.; Tao, M. Functional genome mining for metabolites encoded by large gene clusters through heterologous expression of a whole-genome bacterial artificial chromosome library in Streptomyces spp. Appl. Environ. Microbiol., 2016, 82(19), 5795-5805.
[http://dx.doi.org/10.1128/AEM.01383-16] [PMID: 27451447]
[36]
Phelan, R.M.; Sachs, D.; Petkiewicz, S.J.; Barajas, J.F.; Blake-Hedges, J.M.; Thompson, M.G.; Reider Apel, A.; Rasor, B.J.; Katz, L.; Keasling, J.D. Development of next generation synthetic biology tools for use in Streptomyces venezuelae. ACS Synth. Biol., 2017, 6(1), 159-166.
[http://dx.doi.org/10.1021/acssynbio.6b00202] [PMID: 27605473]
[37]
Baltz, R.H. Genetic manipulation of secondary metabolite biosynthesis for improved production in Streptomyces and other actinomycetes. J. Ind. Microbiol. Biotechnol., 2016, 43(2-3), 343-370.
[http://dx.doi.org/10.1007/s10295-015-1682-x] [PMID: 26364200]
[38]
Shi, Y.; Jiang, Z.; Li, X.; Zuo, L.; Lei, X.; Yu, L.; Wu, L.; Jiang, J.; Hong, B. Biosynthesis of antibiotic chuangxinmycin from Actinoplanes tsinanensis. Acta Pharm. Sin. B, 2018, 8(2), 283-294.
[http://dx.doi.org/10.1016/j.apsb.2017.07.005] [PMID: 29719789]
[39]
Xu, X.; Zhou, H.; Liu, Y.; Liu, X.; Fu, J.; Li, A.; Li, Y.; Shen, Y.; Bian, X.; Zhang, Y. Heterologous expression guides identification of the biosynthetic gene cluster of chuangxinmycin, an indole alkaloid antibiotic. J. Nat. Prod., 2018, 81(4), 1060-1064.
[http://dx.doi.org/10.1021/acs.jnatprod.7b00835] [PMID: 29565122]
[40]
Pantel, L.; Florin, T.; Dobosz-Bartoszek, M.; Racine, E.; Sarciaux, M.; Serri, M.; Houard, J.; Campagne, J.M.; de Figueiredo, R.M.; Midrier, C.; Gaudriault, S.; Givaudan, A.; Lanois, A.; Forst, S.; Aumelas, A.; Cotteaux-Lautard, C.; Bolla, J.M.; Vingsbo Lundberg, C.; Huseby, D.L.; Hughes, D.; Villain-Guillot, P.; Mankin, A.S.; Polikanov, Y.S.; Gualtieri, M. Odilorhabdins, antibacterial agents that cause miscoding by binding at a new ribosomal site. Mol. Cell, 2018, 70(1), 83-94.e7.
[http://dx.doi.org/10.1016/j.molcel.2018.03.001] [PMID: 29625040]
[41]
Nasrin, S.; Ganji, S.; Kakirde, K.S.; Jacob, M.R.; Wang, M.; Ravu, R.R.; Cobine, P.A.; Khan, I.A.; Wu, C.C.; Mead, D.A.; Li, X.C.; Liles, M.R. Chloramphenicol derivatives with antibacterial activity identified by functional metagenomics. J. Nat. Prod., 2018, 81(6), 1321-1332.
[http://dx.doi.org/10.1021/acs.jnatprod.7b00903] [PMID: 29897754]
[42]
Dark, M. Whole-genome sequencing in bacteriology: state of the art. Infect. Drug Resist., 2013, 6, 115-123.
[http://dx.doi.org/10.2147/IDR.S35710] [PMID: 24143115]
[43]
Sintchenko, V.; Roper, M.P. Pathogen genome bioinformatics. Clinical Bioinformatics, 2014, 1168, 173-193.
[44]
Kumar, K.; Desai, V.; Cheng, L.; Khitrov, M.; Grover, D.; Satya, R.V.; Yu, C.; Zavaljevski, N.; Reifman, J. AGeS: a software system for microbial genome sequence annotation. PLoS One, 2011, 6(3), e17469.
[http://dx.doi.org/10.1371/journal.pone.0017469] [PMID: 21408217]
[45]
Land, M.; Hauser, L.; Jun, S.R.; Nookaew, I.; Leuze, M.R.; Ahn, T.H.; Karpinets, T.; Lund, O.; Kora, G.; Wassenaar, T.; Poudel, S.; Ussery, D.W. Insights from 20 years of bacterial genome sequencing. Funct. Integr. Genomics, 2015, 15(2), 141-161.
[http://dx.doi.org/10.1007/s10142-015-0433-4] [PMID: 25722247]
[46]
Huang, K.; Brady, A.; Mahurkar, A.; White, O.; Gevers, D.; Huttenhower, C.; Segata, N. MetaRef: a pan-genomic database for comparative and community microbial genomics. Nucleic Acids Res., 2014, 42(D1), D617-D624.
[http://dx.doi.org/10.1093/nar/gkt1078] [PMID: 24203705]
[47]
van Tonder, A.J.; Mistry, S.; Bray, J.E.; Hill, D.M.C.; Cody, A.J.; Farmer, C.L.; Klugman, K.P.; von Gottberg, A.; Bentley, S.D.; Parkhill, J.; Jolley, K.A.; Maiden, M.C.J.; Brueggemann, A.B. Defining the estimated core genome of bacterial populations using a Bayesian decision model. PLOS Comput. Biol., 2014, 10(8), e1003788.
[http://dx.doi.org/10.1371/journal.pcbi.1003788] [PMID: 25144616]
[48]
Kaas, R.S.; Friis, C.; Ussery, D.W.; Aarestrup, F.M. Estimating variation within the genes and inferring the phylogeny of 186 sequenced diverse Escherichia coli genomes. BMC Genomics, 2012, 13(1), 577.
[http://dx.doi.org/10.1186/1471-2164-13-577] [PMID: 23114024]
[49]
Xu, F.; Nazari, B.; Moon, K.; Bushin, L.B.; Seyedsayamdost, M.R. Discovery of a cryptic antifungal compound from Streptomyces albus J1074 using high-throughput elicitor screens. J. Am. Chem. Soc., 2017, 139(27), 9203-9212.
[http://dx.doi.org/10.1021/jacs.7b02716] [PMID: 28590725]
[50]
Akhter, N.; Liu, Y.; Auckloo, B.; Shi, Y.; Wang, K.; Chen, J.; Wu, X.; Wu, B. Stress-driven discovery of new angucycline-type antibiotics from a marine Streptomyces pratensis NA-ZhouS1. Mar. Drugs, 2018, 16(9), 331.
[http://dx.doi.org/10.3390/md16090331] [PMID: 30213076]
[51]
Tanaka, Y.; Izawa, M.; Hiraga, Y.; Misaki, Y.; Watanabe, T.; Ochi, K. Metabolic perturbation to enhance polyketide and nonribosomal peptide antibiotic production using triclosan and ribosome-targeting drugs. Appl. Microbiol. Biotechnol., 2017, 101(11), 4417-4431.
[http://dx.doi.org/10.1007/s00253-017-8216-6] [PMID: 28293709]
[52]
Crüsemann, M.; O’Neill, E.C.; Larson, C.B.; Melnik, A.V.; Floros, D.J.; da Silva, R.R.; Jensen, P.R.; Dorrestein, P.C.; Moore, B.S. Prioritizing natural product diversity in a collection of 146 bacterial strains based on growth and extraction protocols. J. Nat. Prod., 2017, 80(3), 588-597.
[http://dx.doi.org/10.1021/acs.jnatprod.6b00722] [PMID: 28335604]
[53]
van Dissel, D.; van Wezel, G.P. Morphology-driven downscaling of Streptomyces lividans to micro-cultivation. Antonie van Leeuwenhoek, 2018, 111(3), 457-469.
[http://dx.doi.org/10.1007/s10482-017-0967-7] [PMID: 29094245]
[54]
Wang, H.; Zhao, G.; Ding, X. Morphology engineering of Streptomyces coelicolor M145 by sub-inhibitory concentrations of antibiotics. Sci. Rep., 2017, 7(1), 13226.
[http://dx.doi.org/10.1038/s41598-017-13493-y] [PMID: 29038577]
[55]
Thong, W.L.; Shin-ya, K.; Nishiyama, M.; Kuzuyama, T. Discovery of an antibacterial isoindolinone-containing tetracyclic polyketide by cryptic gene activation and characterization of its biosynthetic gene cluster. ACS Chem. Biol., 2018, 13(9), 2615-2622.
[http://dx.doi.org/10.1021/acschembio.8b00553] [PMID: 30080389]
[56]
Ochi, K.; Okamoto, S.; Tozawa, Y.; Inaoka, T.; Hosaka, T.; Xu, J.; Kurosawa, K. Ribosome engineering and secondary metabolite production. Adv. Appl. Microbiol., 2004, 56(56), 155-184.
[http://dx.doi.org/10.1016/S0065-2164(04)56005-7] [PMID: 15566979]
[57]
Zhang, X.; Lu, C.; Bai, L. Conversion of the high-yield salinomycin producer Streptomyces albus BK3-25 into a surrogate host for polyketide production. Sci. China Life Sci., 2017, 60(9), 1000-1009.
[http://dx.doi.org/10.1007/s11427-017-9122-8] [PMID: 28812299]
[58]
Luo, S.; Chen, X.A.; Mao, X.M.; Li, Y.Q. Transposon-based identification of a negative regulator for the antibiotic hyper-production in Streptomyces. Appl. Microbiol. Biotechnol., 2018, 102(15), 6581-6592.
[http://dx.doi.org/10.1007/s00253-018-9103-5] [PMID: 29876602]
[59]
Xu, Z.; Wang, Y.; Chater, K.F.; Ou, H.Y.; Xu, H.H.; Deng, Z.; Tao, M. Large-scale transposition mutagenesis of Streptomyces coelicolor identifies hundreds of genes influencing antibiotic biosynthesis. Appl. Environ. Microbiol., 2017, 83(6), e02889-16.
[http://dx.doi.org/10.1128/AEM.02889-16] [PMID: 28062460]
[60]
Xu, J.; Zhang, J.; Zhuo, J.; Li, Y.; Tian, Y.; Tan, H. Activation and mechanism of a cryptic oviedomycin gene cluster via the disruption of a global regulatory gene, adpA, in Streptomyces ansochromogenes. J. Biol. Chem., 2017, 292(48), 19708-19720.
[http://dx.doi.org/10.1074/jbc.M117.809145] [PMID: 28972184]
[61]
Daniel-Ivad, M.; Hameed, N.; Tan, S.; Dhanjal, R.; Socko, D.; Pak, P.; Gverzdys, T.; Elliot, M.A.; Nodwell, J.R. An engineered allele of afsQ1 facilitates the discovery and investigation of cryptic natural products. ACS Chem. Biol., 2017, 12(3), 628-634.
[http://dx.doi.org/10.1021/acschembio.6b01002] [PMID: 28075554]
[62]
Som, N.F.; Heine, D.; Holmes, N.A.; Munnoch, J.T.; Chandra, G.; Seipke, R.F.; Hoskisson, P.A.; Wilkinson, B.; Hutchings, M.I. The conserved actinobacterial two-component system MtrAB coordinates chloramphenicol production with sporulation in Streptomyces venezuelae NRRL B-65442. Front. Microbiol., 2017, 8, 1145.
[http://dx.doi.org/10.3389/fmicb.2017.01145] [PMID: 28702006]
[63]
Som, N.F.; Heine, D.; Holmes, N.; Knowles, F.; Chandra, G.; Seipke, R.F.; Hoskisson, P.A.; Wilkinson, B.; Hutchings, M.I. The MtrAB two-component system controls antibiotic production in Streptomyces coelicolor A3(2). Microbiology (Reading), 2017, 163(10), 1415-1419.
[http://dx.doi.org/10.1099/mic.0.000524] [PMID: 28884676]
[64]
Zhang, B.; Tian, W.; Wang, S.; Yan, X.; Jia, X.; Pierens, G.K.; Chen, W.; Ma, H.; Deng, Z.; Qu, X. Activation of natural products biosynthetic pathways via a protein modification level regulation. ACS Chem. Biol., 2017, 12(7), 1732-1736.
[http://dx.doi.org/10.1021/acschembio.7b00225] [PMID: 28562006]
[65]
Kim, J.H.; Komatsu, M.; Shin-ya, K.; Omura, S.; Ikeda, H. Distribution and functional analysis of the phosphopantetheinyl transferase superfamily in Actinomycetales microorganisms. Proc. Natl. Acad. Sci. USA, 2018, 115(26), 6828-6833.
[http://dx.doi.org/10.1073/pnas.1800715115] [PMID: 29903901]
[66]
Kallifidas, D.; Jiang, G.; Ding, Y.; Luesch, H. Rational engineering of Streptomyces albus J1074 for the overexpression of secondary metabolite gene clusters. Microb. Cell Fact., 2018, 17(1), 25.
[http://dx.doi.org/10.1186/s12934-018-0874-2] [PMID: 29454348]
[67]
Tan, G.Y.; Liu, T. Rational synthetic pathway refactoring of natural products biosynthesis in actinobacteria. Metab. Eng., 2017, 39, 228-236.
[http://dx.doi.org/10.1016/j.ymben.2016.12.006] [PMID: 28013086]
[68]
Brophy, J.A.N.; Voigt, C.A. Principles of genetic circuit design. Nat. Methods, 2014, 11(5), 508-520.
[http://dx.doi.org/10.1038/nmeth.2926] [PMID: 24781324]
[69]
Strau β A.; Lahaye, T. Zinc fingers, TAL effectors, or Cas9-based DNA binding proteins: what’s best for targeting desired genome loci? Mol. Plant, 2013, 6(5), 1384-1387.
[http://dx.doi.org/10.1093/mp/sst075] [PMID: 23718948]
[70]
Li, L.; Wei, K.; Zheng, G.; Liu, X.; Chen, S.; Jiang, W.; Lu, Y. CRISPR-Cpf1-assisted multiplex genome editing and transcriptional repression in Streptomyces. Appl. Environ. Microbiol., 2018, 84(18), e00827-18.
[http://dx.doi.org/10.1128/AEM.00827-18] [PMID: 29980561]
[71]
Zhang, M.M.; Wong, F.T.; Wang, Y.; Luo, S.; Lim, Y.H.; Heng, E.; Yeo, W.L.; Cobb, R.E.; Enghiad, B.; Ang, E.L.; Zhao, H. CRISPR–Cas9 strategy for activation of silent Streptomyces biosynthetic gene clusters. Nat. Chem. Biol., 2017, 13(6), 607-609.
[http://dx.doi.org/10.1038/nchembio.2341] [PMID: 28398287]
[72]
Lim, Y.H.; Wong, F.T.; Yeo, W.L.; Ching, K.C.; Lim, Y.W.; Heng, E.; Chen, S.; Tsai, D.J.; Lauderdale, T.L.; Shia, K.S.; Ho, Y.S.; Hoon, S.; Ang, E.L.; Zhang, M.M.; Zhao, H. Auroramycin: A Potent Antibiotic from Streptomyces roseosporus by CRISPR-Cas9 Activation. ChemBioChem, 2018, 19(16), 1716-1719.
[http://dx.doi.org/10.1002/cbic.201800266] [PMID: 29799651]
[73]
Wei, J.; Tian, J.; Pan, G.; Xie, J.; Bao, J.; Zhou, Z. Development and application of a T7 RNA polymerase-dependent expression system for antibiotic production improvement in Streptomyces. Biotechnol. Lett., 2017, 39(6), 857-864.
[http://dx.doi.org/10.1007/s10529-017-2309-2] [PMID: 28247198]
[74]
Bilyk, B.; Horbal, L.; Luzhetskyy, A. Chromosomal position effect influences the heterologous expression of genes and biosynthetic gene clusters in Streptomyces albus J1074. Microb. Cell Fact., 2017, 16(1), 5.
[http://dx.doi.org/10.1186/s12934-016-0619-z] [PMID: 28052753]
[75]
Yi, J.S.; Kim, M.W.; Kim, M.; Jeong, Y.; Kim, E.J.; Cho, B.K.; Kim, B.G. A novel approach for gene expression optimization through native promoter and 5' UTR combinations based on RNA-seq, ribo-seq, and TSS-seq of Streptomyces coelicolor. ACS Synth. Biol., 2017, 6(3), 555-565.
[http://dx.doi.org/10.1021/acssynbio.6b00263] [PMID: 27966890]
[76]
Horbal, L.; Siegl, T.; Luzhetskyy, A. A set of synthetic versatile genetic control elements for the efficient expression of genes in Actino-bacteria. Sci. Rep., 2018, 8(1), 491.
[http://dx.doi.org/10.1038/s41598-017-18846-1] [PMID: 29323285]
[77]
Richter, M.F.; Drown, B.S.; Riley, A.P.; Garcia, A.; Shirai, T.; Svec, R.L.; Hergenrother, P.J. Predictive compound accumulation rules yield a broad-spectrum antibiotic. Nature, 2017, 545(7654), 299-304.
[http://dx.doi.org/10.1038/nature22308] [PMID: 28489819]
[78]
Smith, P.A.; Koehler, M.F.T.; Girgis, H.S.; Yan, D.; Chen, Y.; Chen, Y.; Crawford, J.J.; Durk, M.R.; Higuchi, R.I.; Kang, J.; Murray, J.; Paraselli, P.; Park, S.; Phung, W.; Quinn, J.G.; Roberts, T.C.; Rougé, L.; Schwarz, J.B.; Skippington, E.; Wai, J.; Xu, M.; Yu, Z.; Zhang, H.; Tan, M.W.; Heise, C.E. Optimized arylomycins are a new class of Gram-negative antibiotics. Nature, 2018, 561(7722), 189-194.
[http://dx.doi.org/10.1038/s41586-018-0483-6] [PMID: 30209367]
[79]
Baltz, R. Renaissance in antibacterial discovery from actinomycetes. Curr. Opin. Pharmacol., 2008, 8(5), 557-563.
[http://dx.doi.org/10.1016/j.coph.2008.04.008] [PMID: 18524678]
[80]
Payne, D.J.; Gwynn, M.N.; Holmes, D.J.; Pompliano, D.L. Drugs for bad bugs: confronting the challenges of antibacterial discovery. Nat. Rev. Drug Discov., 2007, 6(1), 29-40.
[http://dx.doi.org/10.1038/nrd2201] [PMID: 17159923]
[81]
Wecke, T.; Mascher, T. Antibiotic research in the age of omics: from expression profiles to interspecies communication. J. Antimicrob. Chemother., 2011, 66(12), 2689-2704.
[http://dx.doi.org/10.1093/jac/dkr373] [PMID: 21930574]
[82]
Alvarez-Sieiro, P.; Montalbán-López, M.; Mu, D.; Kuipers, O.P. Bacteriocins of lactic acid bacteria: extending the family. Appl. Microbiol. Biotechnol., 2016, 100(7), 2939-2951.
[http://dx.doi.org/10.1007/s00253-016-7343-9] [PMID: 26860942]
[83]
Fields, F.R.; Lee, S.W.; McConnell, M.J. Using bacterial genomes and essential genes for the development of new antibiotics. Biochem. Pharmacol., 2017, 134, 74-86.
[http://dx.doi.org/10.1016/j.bcp.2016.12.002] [PMID: 27940263]
[84]
Flaherty, R.A.; Freed, S.D.; Lee, S.W. The wide world of ribosomally encoded bacterial peptides. PLoS Pathog., 2014, 10(7), e1004221.
[http://dx.doi.org/10.1371/journal.ppat.1004221] [PMID: 25079075]
[85]
Hammami, R.; Zouhir, A.; Ben Hamida, J.; Fliss, I. BACTIBASE: a new web-accessible database for bacteriocin characterization. BMC Microbiol., 2007, 7(1), 89.
[http://dx.doi.org/10.1186/1471-2180-7-89] [PMID: 17941971]
[86]
van Heel, A.J.; de Jong, A.; Montalbán-López, M.; Kok, J.; Kuipers, O.P. BAGEL3: automated identification of genes encoding bacteriocins and (non-)bactericidal posttranslationally modified peptides. Nucleic Acids Res., 2013, 41(W1), W448-W453.
[http://dx.doi.org/10.1093/nar/gkt391] [PMID: 23677608]
[87]
Blin, K.; Medema, M.H.; Kazempour, D.; Fischbach, M.A.; Breitling, R.; Takano, E.; Weber, T. antiSMASH 2.0-a versatile platform for genome mining of secondary metabolite producers. Nucleic Acids Res., 2013, 41(W1), W204-W212.
[http://dx.doi.org/10.1093/nar/gkt449] [PMID: 23737449]
[88]
Letzel, A.C.; Pidot, S.J.; Hertweck, C. Genome mining for ribosomally synthesized and post-translationally modified peptides (RiPPs) in anaerobic bacteria. BMC Genomics, 2014, 15(1), 983.
[http://dx.doi.org/10.1186/1471-2164-15-983] [PMID: 25407095]
[89]
Duncan, M.W.; Aebersold, R.; Caprioli, R.M. The pros and cons of peptide-centric proteomics. Nat. Biotechnol., 2010, 28(7), 659-664.
[http://dx.doi.org/10.1038/nbt0710-659] [PMID: 20622832]
[90]
Mohimani, H.; Kersten, R.D.; Liu, W.T.; Wang, M.; Purvine, S.O.; Wu, S.; Brewer, H.M.; Pasa-Tolic, L.; Bandeira, N.; Moore, B.S.; Pevzner, P.A.; Dorrestein, P.C. Automated genome mining of ribosomal peptide natural products. ACS Chem. Biol., 2014, 9(7), 1545-1551.
[http://dx.doi.org/10.1021/cb500199h] [PMID: 24802639]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy