Generic placeholder image

Current Molecular Medicine

Editor-in-Chief

ISSN (Print): 1566-5240
ISSN (Online): 1875-5666

Review Article

Current Update of Research on Exosomes in Cancer

Author(s): Reshma Tendulkar* and Mugdha Tendulkar

Volume 24, Issue 1, 2024

Published on: 10 August, 2023

Page: [26 - 39] Pages: 14

DOI: 10.2174/1566524023666230717105000

Price: $65

conference banner
Abstract

Exosomes are vesicles secreted by the plasma membrane of the cells delimited by a lipid bilayer membrane into the extracellular space of the cell. Their release is associated with the disposal mechanism to remove unwanted materials from the cells. Exosomes released from primary tumour sites migrate to other parts of the body to create a metastatic environment for spreading the tumour cells. We have reviewed that exosomes interfere with the tumour progression by (i) promoting angiogenesis, (ii) initiating metastasis, (iii) regulating tumour microenvironment (TME) and inflammation, (iv) modifying energy metabolism, and (v) transferring mutations. We have found that EVs play an important role in inducing tumour drug resistance against anticancer drugs. This review discusses the potential of exosomes to generate a significant therapeutic effect along with improved diagnosis, prognosis, insights on the various research conducted and their significant findings of our interest.

[1]
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021; 71(3): 209-49.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[2]
Guan X. Cancer metastases: challenges and opportunities. Acta Pharm Sin B 2015; 5(5): 402-18.
[http://dx.doi.org/10.1016/j.apsb.2015.07.005]
[3]
Lambert AW, Pattabiraman DR, Weinberg RA. Emerging biological principles of metastasis. Cell 2017; 168(4): 670-91.
[http://dx.doi.org/10.1016/j.cell.2016.11.037] [PMID: 28187288]
[4]
Mittal S, Gupta P, Chaluvally-Raghavan P, Pradeep S. Emerging role of extracellular vesicles in immune regulation and cancer progression. Cancers 2020; 12(12): 3563.
[http://dx.doi.org/10.3390/cancers12123563] [PMID: 33260606]
[5]
Ratti M, Lampis A, Ghidini M, et al. MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) as new tools for cancer therapy: First steps from bench to bedside. Target Oncol 2020; 15(3): 261-78.
[http://dx.doi.org/10.1007/s11523-020-00717-x] [PMID: 32451752]
[6]
Qin S, Jiang J, Lu Y, et al. Emerging role of tumor cell plasticity in modifying therapeutic response. Signal Transduct Target Ther 2020; 5(1): 228.
[http://dx.doi.org/10.1038/s41392-020-00313-5] [PMID: 33028808]
[7]
Housman G, Byler S, Heerboth S, et al. Drug resistance in cancer: An overview. Cancers 2014; 6(3): 1769-92.
[http://dx.doi.org/10.3390/cancers6031769] [PMID: 25198391]
[8]
Azmi AS, Bao B, Sarkar FH. Exosomes in cancer development, metastasis, and drug resistance: A comprehensive review. Cancer Metastasis Rev 2013; 32(3-4): 623-42.
[http://dx.doi.org/10.1007/s10555-013-9441-9] [PMID: 23709120]
[9]
Conde-Vancells J, Rodriguez-Suarez E, Embade N, et al. Characterization and comprehensive proteome profiling of exosomes secreted by hepatocytes. J Proteome Res 2008; 7(12): 5157-66.
[http://dx.doi.org/10.1021/pr8004887] [PMID: 19367702]
[10]
Rani S, Ryan AE, Griffin MD, Ritter T. Mesenchymal stem cell-derived extracellular vesicles: Toward cell-free therapeutic applications. Mol Ther 2015; 23(5): 812-23.
[http://dx.doi.org/10.1038/mt.2015.44] [PMID: 25868399]
[11]
Robbins PD, Morelli AE. Regulation of immune responses by extracellular vesicles. Nat Rev Immunol 2014; 14(3): 195-208.
[http://dx.doi.org/10.1038/nri3622] [PMID: 24566916]
[12]
Kim SH, Lechman ER, Bianco N, et al. Exosomes derived from IL-10-treated dendritic cells can suppress inflammation and collagen-induced arthritis. J Immunol 2005; 174(10): 6440-8.
[http://dx.doi.org/10.4049/jimmunol.174.10.6440] [PMID: 15879146]
[13]
Mulcahy LA, Pink RC, Carter DRF. Routes and mechanisms of extracellular vesicle uptake. J Extracell Vesicles 2014; 3(1): 24641.
[http://dx.doi.org/10.3402/jev.v3.24641] [PMID: 25143819]
[14]
Carobolante G, Mantaj J, Ferrari E, Vllasaliu D. Cow milk and intestinal epithelial cell-derived extracellular vesicles as systems for enhancing oral drug delivery. Pharmaceutics 2020; 12(3): 226.
[http://dx.doi.org/10.3390/pharmaceutics12030226] [PMID: 32143503]
[15]
Peak T, Panigrahi G, Praharaj P, et al. PD65-01 Do exosomes contribute to the development of enzalutamide-resistant prostate cancer. J Urol 2018; 199(4S): e1224.
[http://dx.doi.org/10.1016/j.juro.2018.02.2985]
[16]
Koch R, Aung T, Vogel D, et al. Nuclear trapping through inhibition of exosomal export by indomethacin increases cytostatic efficacy of doxorubicin and pixantrone. Clin Cancer Res 2016; 22(2): 395-404.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-0577] [PMID: 26369630]
[17]
Qiao L, Hu S, Huang K, et al. Tumor cell-derived exosomes home to their cells of origin and can be used as Trojan horses to deliver cancer drugs. Theranostics 2020; 10(8): 3474-87.
[http://dx.doi.org/10.7150/thno.39434] [PMID: 32206102]
[18]
Mostafazadeh M, Samadi N, Kahroba H, Baradaran B, Haiaty S, Nouri M. Potential roles and prognostic significance of exosomes in cancer drug resistance. Cell Biosci 2021; 11(1): 1.
[http://dx.doi.org/10.1186/s13578-020-00515-y] [PMID: 33407894]
[19]
Shenoda BB, Ajit SK. Modulation of immune responses by exosomes derived from antigen-presenting cells. Clin Med Insights Pathol 2016; 9s1(S1): CPath.S39925.
[http://dx.doi.org/10.4137/CPath.S39925] [PMID: 27660518]
[20]
Pitt JM, Charrier M, viaud S, et al. Dendritic cell-derived exosomes as immunotherapies in the fight against cancer. J Immunol 2014; 193(3): 1006-11.
[http://dx.doi.org/10.4049/jimmunol.1400703] [PMID: 25049431]
[21]
Luan X, Sansanaphongpricha K, Myers I, Chen H, Yuan H, Sun D. Engineering exosomes as refined biological nanoplatforms for drug delivery. Acta Pharmacol Sin 2017; 38(6): 754-63.
[http://dx.doi.org/10.1038/aps.2017.12] [PMID: 28392567]
[22]
Xi XM, Xia SJ, Lu R. Drug loading techniques for exosome-based drug delivery systems. Pharmazie 2021; 76(2): 61-7.
[PMID: 33714281]
[23]
Das CK, Jena BC, Banerjee I, et al. Exosome as a novel shuttle for delivery of therapeutics across biological barriers. Mol Pharm 2019; 16(1): 24-40.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b00901] [PMID: 30513203]
[24]
Orefice NS. Development of new strategies using extracellular vesicles loaded with exogenous nucleic acid. Pharmaceutics 2020; 12(8): 705.
[http://dx.doi.org/10.3390/pharmaceutics12080705] [PMID: 32722622]
[25]
Shtam TA, Kovalev RA, Varfolomeeva EY, Makarov EM, Kil YV, Filatov MV. Exosomes are natural carriers of exogenous siRNA to human cells in vitro. Cell Commun Signal 2013; 11(1): 88.
[http://dx.doi.org/10.1186/1478-811X-11-88] [PMID: 24245560]
[26]
Ohno S, Takanashi M, Sudo K, et al. Systemically injected exosomes targeted to EGFR deliver antitumor microRNA to breast cancer cells. Mol Ther 2013; 21(1): 185-91.
[http://dx.doi.org/10.1038/mt.2012.180] [PMID: 23032975]
[27]
Rezaei R, Baghaei K, Amani D, et al. Exosome-mediated delivery of functionally active miRNA-375-3p mimic regulate epithelial mesenchymal transition (EMT) of colon cancer cells. Life Sci 2021; 269: 119035.
[http://dx.doi.org/10.1016/j.lfs.2021.119035] [PMID: 33450254]
[28]
Zhang D, Lee H, Zhu Z, Minhas JK, Jin Y. Enrichment of selective miRNAs in exosomes and delivery of exosomal miRNAs in vitro and in vivo. Am J Physiol Lung Cell Mol Physiol 2017; 312(1): L110-21.
[http://dx.doi.org/10.1152/ajplung.00423.2016] [PMID: 27881406]
[29]
Sayyed AA, Gondaliya P, Mali M, et al. MiR-155 inhibitor-laden exosomes reverse resistance to cisplatin in a 3D tumor spheroid and xenograft model of oral cancer. Mol Pharm 2021; 18(8): 3010-25.
[http://dx.doi.org/10.1021/acs.molpharmaceut.1c00213] [PMID: 34176265]
[30]
Katakowski M, Buller B, Zheng X, et al. Exosomes from marrow stromal cells expressing miR-146b inhibit glioma growth. Cancer Lett 2013; 335(1): 201-4.
[http://dx.doi.org/10.1016/j.canlet.2013.02.019] [PMID: 23419525]
[31]
Yao S, Yin Y, Jin G, et al. Exosome-mediated delivery of miR‐204‐5p inhibits tumor growth and chemoresistance. Cancer Med 2020; 9(16): 5989-98.
[http://dx.doi.org/10.1002/cam4.3248] [PMID: 32618144]
[32]
Jan A, Rahman S, Khan S, Tasduq S, Choi I. Biology, pathophysiological role, and clinical implications of exosomes: a critical appraisal. Cells 2019; 8(2): 99.
[http://dx.doi.org/10.3390/cells8020099] [PMID: 30699987]
[33]
Tian T, Wang Y, Wang H, Zhu Z, Xiao Z. Visualizing of the cellular uptake and intracellular trafficking of exosomes by live-cell microscopy. J Cell Biochem 2010; 111(2): 488-96.
[http://dx.doi.org/10.1002/jcb.22733] [PMID: 20533300]
[34]
Hu S, Wang X, Li Z, et al. Platelet membrane and stem cell exosome hybrids enhance cellular uptake and targeting to heart injury. Nano Today 2021; 39: 101210.
[http://dx.doi.org/10.1016/j.nantod.2021.101210] [PMID: 34306170]
[35]
Zhang Y, Bi J, Huang J, Tang Y, Du S, Li P. Exosome: A review of its classification, isolation techniques, storage, diagnostic and targeted therapy applications. Int J Nanomedicine 2020; 15: 6917-34.
[http://dx.doi.org/10.2147/IJN.S264498] [PMID: 33061359]
[36]
Salunkhe S. Dheeraj, Basak M, Chitkara D, Mittal A. Surface functionalization of exosomes for target-specific delivery and in vivo imaging & tracking: Strategies and significance. J Control Release 2020; 326: 599-614.
[http://dx.doi.org/10.1016/j.jconrel.2020.07.042] [PMID: 32730952]
[37]
Zhan Q, Yi K, Li X, et al. Phosphatidylcholine-engineered exosomes for enhanced tumor cell uptake and intracellular antitumor drug delivery. Macromol Biosci 2021; 21(8): 2100042.
[http://dx.doi.org/10.1002/mabi.202100042] [PMID: 33949800]
[38]
Choi ES, Song J, Kang YY, Mok H. Mannose-modified serum exosomes for the elevated uptake to murine dendritic cells and lymphatic accumulation. Macromol Biosci 2019; 19(7): 1900042.
[http://dx.doi.org/10.1002/mabi.201900042] [PMID: 31141293]
[39]
Zuo B, Qi H, Lu Z, et al. Alarmin-painted exosomes elicit persistent antitumor immunity in large established tumors in mice. Nat Commun 2020; 11(1): 1790.
[http://dx.doi.org/10.1038/s41467-020-15569-2] [PMID: 32286296]
[40]
Wang J, Yeung BZ, Cui M, et al. Exosome is a mechanism of intercellular drug transfer: Application of quantitative pharmacology. J Control Release 2017; 268: 147-58.
[http://dx.doi.org/10.1016/j.jconrel.2017.10.020] [PMID: 29054369]
[41]
Bebawy M, Combes V, Lee E, et al. Membrane microparticles mediate transfer of P-glycoprotein to drug sensitive cancer cells. Leukemia 2009; 23(9): 1643-9.
[http://dx.doi.org/10.1038/leu.2009.76] [PMID: 19369960]
[42]
Corcoran C, Rani S, O’Brien K, et al. Docetaxel-resistance in prostate cancer: evaluating associated phenotypic changes and potential for resistance transfer via exosomes. PLoS One 2012; 7(12): e50999.
[http://dx.doi.org/10.1371/journal.pone.0050999] [PMID: 23251413]
[43]
Kato T, Mizutani K, Kameyama K, et al. Serum exosomal P-glycoprotein is a potential marker to diagnose docetaxel resistance and select a taxoid for patients with prostate cancer. Urol Oncol 2015; 33(9): 385.e15-20.
[http://dx.doi.org/10.1016/j.urolonc.2015.04.019] [PMID: 26027763]
[44]
Torreggiani E, Roncuzzi L, Perut F, Zini N, Baldini N. Multimodal transfer of MDR by exosomes in human osteosarcoma. Int J Oncol 2016; 49(1): 189-96.
[http://dx.doi.org/10.3892/ijo.2016.3509] [PMID: 27176642]
[45]
Setoguchi K, TeSlaa T, Koehler CM, Teitell MA. P53 regulates rapid apoptosis in human pluripotent stem cells. J Mol Biol 2016; 428(7): 1465-75.
[http://dx.doi.org/10.1016/j.jmb.2015.07.019] [PMID: 26239243]
[46]
Cao Z, Xu L, Zhao S. Exosome-derived miR-27a produced by PSC-27 cells contributes to prostate cancer chemoresistance through p53. Biochem Biophys Res Commun 2019; 515(2): 345-51.
[http://dx.doi.org/10.1016/j.bbrc.2019.05.120] [PMID: 31153637]
[47]
Fu X, Liu M, Qu S, et al. Exosomal microRNA-32-5p induces multidrug resistance in hepatocellular carcinoma via the PI3K/Akt pathway. J Exp Clin Cancer Res 2018; 37(1): 52.
[http://dx.doi.org/10.1186/s13046-018-0677-7] [PMID: 29530052]
[48]
Kang M, Ren M, Li Y, Fu Y, Deng M, Li C. Exosome-mediated transfer of lncRNA PART1 induces gefitinib resistance in esophageal squamous cell carcinoma via functioning as a competing endogenous RNA. J Exp Clin Cancer Res 2018; 37(1): 171.
[http://dx.doi.org/10.1186/s13046-018-0845-9] [PMID: 30049286]
[49]
Xu CG, Yang MF, Ren YQ, Wu CH, Wang LQ. Exosomes mediated transfer of lncRNA UCA1 results in increased tamoxifen resistance in breast cancer cells. Eur Rev Med Pharmacol Sci 2016; 20(20): 4362-8.
[PMID: 27831634]
[50]
Dong H, Wang W, Chen R, et al. Exosome-mediated transfer of lncRNA SNHG14 promotes trastuzumab chemoresistance in breast cancer. Int J Oncol 2018; 53(3): 1013-26.
[http://dx.doi.org/10.3892/ijo.2018.4467] [PMID: 30015837]
[51]
Deng X, Ruan H, Zhang X, Xu X, Zhu Y, et al. Long non-coding RNA CCAL transferred from fibroblasts by exosomes promotes chemoresistance of colorectal cancer cells. Int J Cancer 2019; 29(5): 653-68.
[52]
Kreger B, Johansen E, Cerione R, Antonyak M. The enrichment of survivin in exosomes from breast cancer cells treated with paclitaxel promotes cell survival and chemoresistance. Cancers 2016; 8(12): 111.
[http://dx.doi.org/10.3390/cancers8120111] [PMID: 27941677]
[53]
Cesi G, Philippidou D, Kozar I, et al. A new ALK isoform transported by extracellular vesicles confers drug resistance to melanoma cells. Mol Cancer 2018; 17(1): 145.
[http://dx.doi.org/10.1186/s12943-018-0886-x] [PMID: 30290811]
[54]
Zhang Q, Liu RX, Chan KW, et al. Exosomal transfer of p-STAT3 promotes acquired 5-FU resistance in colorectal cancer cells. J Exp Clin Cancer Res 2019; 38(1): 320.
[http://dx.doi.org/10.1186/s13046-019-1314-9] [PMID: 31324203]
[55]
Fang Y, Zhou W, Rong Y, et al. Exosomal miRNA-106b from cancer-associated fibroblast promotes gemcitabine resistance in pancreatic cancer. Exp Cell Res 2019; 383(1): 111543.
[http://dx.doi.org/10.1016/j.yexcr.2019.111543] [PMID: 31374207]
[56]
Wang M, Qiu R, Yu S, et al. Paclitaxel resistant gastric cancer MGC 803 cells promote epithelial to mesenchymal transition and chemoresistance in paclitaxel sensitive cells via exosomal delivery of miR 155 5p. Int J Oncol 2019; 54(1): 326-38.
[PMID: 30365045]
[57]
O’Connor MJ. Targeting the DNA damage response in cancer. Mol Cell 2015; 60(4): 547-60.
[http://dx.doi.org/10.1016/j.molcel.2015.10.040] [PMID: 26590714]
[58]
Tian H, Gao Z, Li H, et al. DNA damage response – A double-edged sword in cancer prevention and cancer therapy. Cancer Lett 2015; 358(1): 8-16.
[http://dx.doi.org/10.1016/j.canlet.2014.12.038] [PMID: 25528631]
[59]
Zhang Z, Yin J, Lu C, Wei Y, Zeng A, You Y. Exosomal transfer of long non-coding RNA SBF2-AS1 enhances chemoresistance to temozolomide in glioblastoma. J Exp Clin Cancer Res 2019; 38(1): 166.
[http://dx.doi.org/10.1186/s13046-019-1139-6] [PMID: 30992025]
[60]
Lou G, Liu Y, Zhang T, Li S, Chen Z, Zheng M. Exosome derived from miR-199*-modified adipose tissue-derived MSCs increase chemosensitivity of hepatocellular carcinoma. J Hepatol 2018; 68: S685.
[http://dx.doi.org/10.1016/S0168-8278(18)31628-3]
[61]
Yu T, Wang X, Zhi T, et al. Delivery of MGMT mRNA to glioma cells by reactive astrocyte-derived exosomes confers a temozolomide resistance phenotype. Cancer Lett 2018; 433: 210-20.
[http://dx.doi.org/10.1016/j.canlet.2018.06.041] [PMID: 30008386]
[62]
Donaldson MM, Kao SF, Eslamizar L, et al. Optimization and qualification of an 8-color intracellular cytokine staining assay for quantifying T cell responses in rhesus macaques for pre-clinical vaccine studies. J Immunol Methods 2012; 386(1-2): 10-21.
[http://dx.doi.org/10.1016/j.jim.2012.08.011] [PMID: 22955212]
[63]
Dai S, Feng C, Li W, Jiang W, Wang L. Quantitative detection of tumor necrosis factor-α by single molecule counting based on a hybridization chain reaction. Biosens Bioelectron 2014; 60: 180-4.
[http://dx.doi.org/10.1016/j.bios.2014.04.016] [PMID: 24800682]
[64]
Lippitz BE. Cytokine patterns in patients with cancer: a systematic review. Lancet Oncol 2013; 14(6): e218-28.
[http://dx.doi.org/10.1016/S1470-2045(12)70582-X] [PMID: 23639322]
[65]
Taniguchi K, Karin M. IL-6 and related cytokines as the critical lynchpins between inflammation and cancer. Semin Immunol 2014; 26(1): 54-74.
[http://dx.doi.org/10.1016/j.smim.2014.01.001] [PMID: 24552665]
[66]
Webber J, Steadman R, Mason MD, Tabi Z, Clayton A. Cancer exosomes trigger fibroblast to myofibroblast differentiation. Cancer Res 2010; 70(23): 9621-30.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-1722] [PMID: 21098712]
[67]
Pillai SR, Damaghi M, Marunaka Y, Spugnini EP, Fais S, Gillies RJ. Causes, consequences, and therapy of tumors acidosis. Cancer Metastasis Rev 2019; 38(1-2): 205-22.
[http://dx.doi.org/10.1007/s10555-019-09792-7] [PMID: 30911978]
[68]
Logozzi M, Spugnini E, Mizzoni D, Di Raimo R, Fais S. Extracellular acidity and increased exosome release as key phenotypes of malignant tumors. Cancer Metastasis Rev 2019; 38(1-2): 93-101.
[http://dx.doi.org/10.1007/s10555-019-09783-8] [PMID: 30715644]
[69]
Fais S, Venturi G, Gatenby B. Microenvironmental acidosis in carcinogenesis and metastases: New strategies in prevention and therapy. Cancer Metastasis Rev 2014; 33(4): 1095-108.
[http://dx.doi.org/10.1007/s10555-014-9531-3] [PMID: 25376898]
[70]
Parolini I, Federici C, Raggi C, et al. Microenvironmental pH is a key factor for exosome traffic in tumor cells. J Biol Chem 2009; 284(49): 34211-22.
[http://dx.doi.org/10.1074/jbc.M109.041152] [PMID: 19801663]
[71]
Peak TC, Panigrahi GK, Praharaj PP, et al. Syntaxin 6-mediated exosome secretion regulates enzalutamide resistance in prostate cancer. Mol Carcinog 2020; 59(1): 62-72.
[http://dx.doi.org/10.1002/mc.23129] [PMID: 31674708]
[72]
Wu C, Silvers C, Guancial E, Hsu JW, Messing E, Lee Y-F. Abstract 5475: Cancer exosome promotes cisplatin resistance In bladder cancer and inhibition of exosome sensitizes bladder cancer cells to cisplatin chemotherapy. Cancer Res 2015; 75(S15): 5475-.
[http://dx.doi.org/10.1158/1538-7445.AM2015-5475]
[73]
Xu JH, Hu SL, Shen GD, Shen G. Tumor suppressor genes and their underlying interactions in paclitaxel resistance in cancer therapy. Cancer Cell Int 2016; 16(1): 13.
[http://dx.doi.org/10.1186/s12935-016-0290-9] [PMID: 26900348]
[74]
Yin J, Zeng A, Zhang Z, Shi Z, Yan W, You Y. Exosomal transfer of miR-1238 contributes to temozolomide-resistance in glioblastoma. EBioMedicine 2019; 42: 238-51.
[http://dx.doi.org/10.1016/j.ebiom.2019.03.016] [PMID: 30917935]
[75]
Kibria G, Hatakeyama H, Harashima H. Cancer multidrug resistance: Mechanisms involved and strategies for circumvention using a drug delivery system. Arch Pharm Res 2014; 37(1): 4-15.
[http://dx.doi.org/10.1007/s12272-013-0276-2] [PMID: 24272889]
[76]
Prieto-Vila M, Takahashi R, Usuba W, Kohama I, Ochiya T. Drug resistance driven by cancer stem cells and their niche. Int J Mol Sci 2017; 18(12): 2574.
[http://dx.doi.org/10.3390/ijms18122574] [PMID: 29194401]
[77]
Smith AG, Macleod KF. Autophagy, cancer stem cells and drug resistance. J Pathol 2019; 247(5): 708-18.
[http://dx.doi.org/10.1002/path.5222] [PMID: 30570140]
[78]
Todaro M, Alea MP, Di Stefano AB, et al. Colon cancer stem cells dictate tumor growth and resist cell death by production of interleukin-4. Cell Stem Cell 2007; 1(4): 389-402.
[http://dx.doi.org/10.1016/j.stem.2007.08.001] [PMID: 18371377]
[79]
Wilson BJ, Schatton T, Zhan Q, et al. ABCB5 identifies a therapy-refractory tumor cell population in colorectal cancer patients. Cancer Res 2011; 71(15): 5307-16.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-0221] [PMID: 21652540]
[80]
Friedmann-Morvinski D, Verma IM. Dedifferentiation and reprogramming: Origins of cancer stem cells. EMBO Rep 2014; 15(3): 244-53.
[http://dx.doi.org/10.1002/embr.201338254] [PMID: 24531722]
[81]
You J, Li M, Cao LM, et al. Snail1-dependent cancer-associated fibroblasts induce epithelial-mesenchymal transition in lung cancer cells via exosomes. QJM 2019; 112(8): 581-90.
[http://dx.doi.org/10.1093/qjmed/hcz093] [PMID: 31106370]
[82]
Rodrigues CFD, Serrano E, Patrício MI, et al. Stroma-derived IL-6, G-CSF and Activin-A mediated dedifferentiation of lung carcinoma cells into cancer stem cells. Sci Rep 2018; 8(1): 11573.
[http://dx.doi.org/10.1038/s41598-018-29947-w] [PMID: 30069023]
[83]
Hu YB, Yan C, Mu L, et al. Exosomal Wnt-induced dedifferentiation of colorectal cancer cells contributes to chemotherapy resistance. Oncogene 2019; 38(11): 1951-65.
[http://dx.doi.org/10.1038/s41388-018-0557-9] [PMID: 30390075]
[84]
Santos JC, Lima NS, Sarian LO, Matheu A, Ribeiro ML, Derchain SFM. Exosome-mediated breast cancer chemoresistance via miR-155 transfer. Sci Rep 2018; 8(1): 829.
[http://dx.doi.org/10.1038/s41598-018-19339-5] [PMID: 29339789]
[85]
Hu JL, Wang W, Lan XL, et al. CAFs secreted exosomes promote metastasis and chemotherapy resistance by enhancing cell stemness and epithelial-mesenchymal transition in colorectal cancer. Mol Cancer 2019; 18(1): 91.
[http://dx.doi.org/10.1186/s12943-019-1019-x] [PMID: 31064356]
[86]
Santos P, Almeida F. Role of exosomal miRNAs and the tumor microenvironment in drug resistance. Cells 2020; 9(6): 1450.
[http://dx.doi.org/10.3390/cells9061450] [PMID: 32545155]
[87]
Whiteside TL. Immune modulation of T-cell and NK (natural killer) cell activities by TEXs (tumour-derived exosomes). Biochem Soc Trans 2013; 41(1): 245-51.
[http://dx.doi.org/10.1042/BST20120265] [PMID: 23356291]
[88]
Czystowska M, Han J, Szczepanski MJ, et al. IRX-2, a novel immunotherapeutic, protects human T cells from tumor-induced cell death. Cell Death Differ 2009; 16(5): 708-18.
[http://dx.doi.org/10.1038/cdd.2008.197] [PMID: 19180118]
[89]
Bergmann C, Strauss L, Wieckowski E, et al. Tumor-derived microvesicles in sera of patients with head and neck cancer and their role in tumor progression. Head Neck 2009; 31(3): 371-80.
[http://dx.doi.org/10.1002/hed.20968] [PMID: 19073006]
[90]
Hoffmann TK, Dworacki G, Tsukihiro T, et al. Spontaneous apoptosis of circulating T lymphocytes in patients with head and neck cancer and its clinical importance. Clin Cancer Res 2002; 8(8): 2553-62.
[PMID: 12171883]
[91]
Szczepanski MJ, Szajnik M, Welsh A, Whiteside TL, Boyiadzis M. Blast-derived microvesicles in sera from patients with acute myeloid leukemia suppress natural killer cell function via membrane-associated transforming growth factor- 1. Haematologica 2011; 96(9): 1302-9.
[http://dx.doi.org/10.3324/haematol.2010.039743] [PMID: 21606166]
[92]
Xiang X, Poliakov A, Liu C, et al. Induction of myeloid-derived suppressor cells by tumor exosomes. Int J Cancer 2009; 124(11): 2621-33.
[http://dx.doi.org/10.1002/ijc.24249] [PMID: 19235923]
[93]
Filipazzi P, Bürdek M, Villa A, Rivoltini L, Huber V. Recent advances on the role of tumor exosomes in immunosuppression and disease progression. Semin Cancer Biol 2012; 22(4): 342-9.
[http://dx.doi.org/10.1016/j.semcancer.2012.02.005] [PMID: 22369922]
[94]
Ciravolo V, Huber V, Ghedini GC, et al. Potential role of HER2-overexpressing exosomes in countering trastuzumab-based therapy. J Cell Physiol 2012; 227(2): 658-67.
[http://dx.doi.org/10.1002/jcp.22773] [PMID: 21465472]
[95]
Han M, Gu Y, Lu P, et al. RETRACTED ARTICLE: Exosome-mediated lncRNA AFAP1-AS1 promotes trastuzumab resistance through binding with AUF1 and activating ERBB2 translation. Mol Cancer 2020; 19(1): 26.
[http://dx.doi.org/10.1186/s12943-020-1145-5] [PMID: 32020881]
[96]
Aung T, Chapuy B, Vogel D, et al. Exosomal evasion of humoral immunotherapy in aggressive B-cell lymphoma modulated by ATP-binding cassette transporter A3. Proc Natl Acad Sci 2011; 108(37): 15336-41.
[http://dx.doi.org/10.1073/pnas.1102855108] [PMID: 21873242]
[97]
El Bairi K, Atanasov AG, Amrani M, Afqir S. The arrival of predictive biomarkers for monitoring therapy response to natural compounds in cancer drug discovery. Biomed Pharmacother 2019; 109: 2492-8.
[http://dx.doi.org/10.1016/j.biopha.2018.11.097] [PMID: 30551510]
[98]
Logozzi M, Mizzoni D, Di Raimo R, Fais S. Exosomes: A source for new and old biomarkers in cancer. Cancers 2020; 12(9): 2566.
[http://dx.doi.org/10.3390/cancers12092566] [PMID: 32916840]
[99]
Osti D, Del Bene M, Rappa G, et al. Clinical significance of extracellular vesicles in plasma from glioblastoma patients. Clin Cancer Res 2019; 25(1): 266-76.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-1941] [PMID: 30287549]
[100]
Huang X, Yuan T, Liang M, et al. Exosomal miR-1290 and miR-375 as prognostic markers in castration-resistant prostate cancer. Eur Urol 2015; 67(1): 33-41.
[http://dx.doi.org/10.1016/j.eururo.2014.07.035] [PMID: 25129854]
[101]
Yang Y, Zhang R, Du J, et al. Predictive role of UCA1-containing exosomes in cetuximab-resistant colorectal cancer. Cancer Cell Int 2018; 18(1): 164.
[http://dx.doi.org/10.1186/s12935-018-0660-6] [PMID: 30377411]
[102]
Del Re M, Biasco E, Crucitta S, et al. The detection of androgen receptor splice variant 7 in plasma-derived exosomal RNA strongly predicts resistance to hormonal therapy in metastatic prostate cancer patients. Eur Urol 2017; 71(4): 680-7.
[http://dx.doi.org/10.1016/j.eururo.2016.08.012] [PMID: 27733296]
[103]
Jin G, Liu Y, Zhang J, et al. A panel of serum exosomal microRNAs as predictive markers for chemoresistance in advanced colorectal cancer. Cancer Chemother Pharmacol 2019; 84(2): 315-25.
[http://dx.doi.org/10.1007/s00280-019-03867-6] [PMID: 31089750]
[104]
Yagi T, Iinuma H, Hayama T, et al. Plasma exosomal microRNA 125b as a monitoring biomarker of resistance to mFOLFOX6 based chemotherapy in advanced and recurrent colorectal cancer patients. Mol Clin Oncol 2019; 11(4): 416-24.
[http://dx.doi.org/10.3892/mco.2019.1911] [PMID: 31497299]
[105]
Kato T, Mizutani K, Horie K, et al. The cluster of differentiation 44 variant 8-10 messenger RNA contained in exosomes is a potential marker for docetaxel resistance among prostate cancer patients. Eur Urol Suppl 2019; 18(1): e473.
[http://dx.doi.org/10.1016/S1569-9056(19)30354-9]
[106]
Wang T, Ning K, Lu T, et al. Increasing circulating exosomes-carrying TRPC5 predicts chemoresistance in metastatic breast cancer patients. Cancer Sci 2017; 108(3): 448-54.
[http://dx.doi.org/10.1111/cas.13150] [PMID: 28032400]
[107]
Yang S, Wang D, Li J, et al. Predictive role of GSTP1-containing exosomes in chemotherapy-resistant breast cancer. Gene 2017; 623: 5-14.
[http://dx.doi.org/10.1016/j.gene.2017.04.031] [PMID: 28438694]
[108]
Fan J, Wei Q, Koay EJ, Liu Y, Zhao Z, Hu Y. Abstract 585: Exosomal EphA2 transmits chemoresistance and predicts pancreatic cancer patient responses to therapy. Cancer Res 2018; 78(S13): 585.
[http://dx.doi.org/10.1158/1538-7445.AM2018-585]
[109]
Kim MS, Haney MJ, Zhao Y, et al. Engineering macrophage-derived exosomes for targeted paclitaxel delivery to pulmonary metastases: in vitro and in vivo evaluations. Nanomedicine 2018; 14(1): 195-204.
[http://dx.doi.org/10.1016/j.nano.2017.09.011] [PMID: 28982587]
[110]
Bunggulawa EJ, Wang W, Yin T, et al. Recent advancements in the use of exosomes as drug delivery systems. J Nanobiotechnology 2018; 16(1): 81.
[http://dx.doi.org/10.1186/s12951-018-0403-9] [PMID: 30326899]
[111]
Kim MS, Haney MJ, Zhao Y, et al. Development of exosome-encapsulated paclitaxel to overcome MDR in cancer cells. Nanomedicine 2016; 12(3): 655-64.
[http://dx.doi.org/10.1016/j.nano.2015.10.012] [PMID: 26586551]
[112]
Saari H, Lázaro-Ibáñez E, Viitala T, Vuorimaa-Laukkanen E, Siljander P, Yliperttula M. Microvesicle- and exosomemediated drug delivery enhances the cytotoxicity of Paclitaxel in autologous prostate cancer cells. J Control Release 2015; 220(Pt B): 727-37.
[http://dx.doi.org/10.1016/j.jconrel.2015.09.031] [PMID: 26390807]
[113]
Hadla M, Palazzolo S, Corona G, et al. Exosomes increase the therapeutic index of doxorubicin in breast and ovarian cancer mouse models. Nanomedicine 2016; 11(18): 2431-41.
[http://dx.doi.org/10.2217/nnm-2016-0154] [PMID: 27558906]
[114]
Rizzolio F, Hadla M, Corona G, et al. Abstract 2205: Exosomal encapsulation of doxorubicin reduces the cardiac toxicity of mice. Cancer Res 2016; 76(S14): 2205.
[http://dx.doi.org/10.1158/1538-7445.AM2016-2205]
[115]
Li H, Yang C, Shi Y, Zhao L. Exosomes derived from siRNA against GRP78 modified bone-marrow-derived mesenchymal stem cells suppress Sorafenib resistance in hepatocellular carcinoma. J Nanobiotechnology 2018; 16(1): 103.
[http://dx.doi.org/10.1186/s12951-018-0429-z] [PMID: 30572882]
[116]
Lou G, Song X, Yang F, et al. Exosomes derived from miR-122-modified adipose tissue-derived MSCs increase chemosensitivity of hepatocellular carcinoma. J Hematol Oncol 2015; 8(1): 122.
[http://dx.doi.org/10.1186/s13045-015-0220-7] [PMID: 26514126]
[117]
Munoz JL, Bliss SA, Greco SJ, Ramkissoon SH, Ligon KL, Rameshwar P. Delivery of functional anti-miR-9 by mesenchymal stem cell–derived exosomes to glioblastoma multiforme cells conferred chemosensitivity. Mol Ther Nucleic Acids 2013; 2(10): e126.
[http://dx.doi.org/10.1038/mtna.2013.60] [PMID: 24084846]
[118]
Wang G, Zhao W, Wang H, et al. Exosomal MiR-744 inhibits proliferation and sorafenib chemoresistance in hepatocellular carcinoma by targeting PAX2. Med Sci Monit 2019; 25: 7209-17.
[http://dx.doi.org/10.12659/MSM.919219] [PMID: 31553714]
[119]
Toffoli G, Hadla M, Corona G, et al. Exosomal doxorubicin reduces the cardiac toxicity of doxorubicin. Nanomedicine 2015; 10(19): 2963-71.
[http://dx.doi.org/10.2217/nnm.15.118] [PMID: 26420143]
[120]
Yang T, Martin P, Fogarty B, et al. Exosome delivered anticancer drugs across the blood-brain barrier for brain cancer therapy in Danio rerio. Pharm Res 2015; 32(6): 2003-14.
[http://dx.doi.org/10.1007/s11095-014-1593-y] [PMID: 25609010]
[121]
Iessi E, Logozzi M, Lugini L, et al. Acridine Orange/exosomes increase the delivery and the effectiveness of Acridine Orange in human melanoma cells: A new prototype for theranostics of tumors. J Enzyme Inhib Med Chem 2017; 32(1): 648-57.
[http://dx.doi.org/10.1080/14756366.2017.1292263] [PMID: 28262028]
[122]
Liang G, Zhu Y, Ali DJ, Tian T, Xu H. Engineered exosomes for targeted co-delivery of miR-21 inhibitor and chemotherapeutics to reverse drug resistance in colon cancer. J Nanobiotechnology 2020; 18(1): 1-15.
[http://dx.doi.org/10.1186/s12951-019-0560-5] [PMID: 31898555]
[123]
Munagala R, Aqil F, Jeyabalan J, Gupta RC. Bovine milk-derived exosomes for drug delivery. Cancer Lett 2016; 371(1): 48-61.
[http://dx.doi.org/10.1016/j.canlet.2015.10.020] [PMID: 26604130]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy