Generic placeholder image

Current Molecular Medicine

Editor-in-Chief

ISSN (Print): 1566-5240
ISSN (Online): 1875-5666

Review Article

Genistein Effects on Various Human Disorders Mediated via Nrf2 Signaling

Author(s): Kasra Shirvanian, Reyhaneh Vali, Tahereh Farkhondeh*, Amir Abderam, Michael Aschner and Saeed Samarghandian*

Volume 24, Issue 1, 2024

Published on: 09 January, 2023

Page: [40 - 50] Pages: 11

DOI: 10.2174/1566524023666221128162753

Price: $65

conference banner
Abstract

Genistein is a flavonoid, mostly found in soybean extract and is widely used for its antioxidant and anti-inflammatory activities. Genistein can interact with estrogen receptors due to its structural similarities to estrogen. It also inhibits protein tyrosine kinases and affects a variety of intracellular signal transductions. Genistein attenuates oxidative stress via diverse cellular mechanisms. However, nuclear factor (erythroidderived 2)-like 2 (Nrf2), the main antioxidant regulator, potentiates genistein's antioxidant effects and reduces cell damage. Nrf2 includes of seven domains and controls the expression of the phase II antioxidant enzymes to decrease oxidative stress. In this review, we address findings related to Nrf2 signaling pathways in the context of genistein’s effects on diverse human diseases.

[1]
Barnes S. Evolution of the health benefits of soy isoflavones. Exp Biol Med 1998; 217(3): 386-96.
[http://dx.doi.org/10.3181/00379727-217-44249] [PMID: 9492352]
[2]
Anderson JJB, Ambrose WW, Garner SC. Biphasic effects of genistein on bone tissue in the ovariectomized, lactating rat model. Exp Biol Med 1998; 217(3): 345-50.
[http://dx.doi.org/10.3181/00379727-217-44243] [PMID: 9492346]
[3]
Honoré EK, Koudy WJ, Anthony MS, Clarkson TB. Soy isoflavones enhance coronary vascular reactivity in atherosclerotic female macaques. Fertil Steril 1997; 67(1): 148-54.
[http://dx.doi.org/10.1016/S0015-0282(97)81872-9] [PMID: 8986700]
[4]
Potter SM, Baum JA, Teng H, Stillman RJ, Shay NF, Erdman JW Jr. Soy protein and isoflavones: Their effects on blood lipids and bone density in postmenopausal women. Am J Clin Nutr 1998; 68(6): 1375S-9S.
[http://dx.doi.org/10.1093/ajcn/68.6.1375S] [PMID: 9848502]
[5]
McMurray RW. Estrogen, prolactin, and autoimmunity: actions and interactions. Int Immunopharmacol 2001; 1(6): 995-1008.
[http://dx.doi.org/10.1016/S1567-5769(01)00045-5] [PMID: 11407318]
[6]
Polkowski K, Mazurek AP. Biological properties of genistein. A review of in vitro and in vivo data. Acta Poloniae Pliarmaceutica—. Drug Res 2000; 57(2): l35-55.
[7]
Sharifi-Rad J, Quispe C, Imran M, et al. Genistein: an integrative overview of its mode of action, pharmacological properties, and health benefits. Oxid Med Cell Longev 2021; 2021: 1-36.
[http://dx.doi.org/10.1155/2021/3268136] [PMID: 34336089]
[8]
Copple IM, Goldring CE, Kitteringham NR, Park BK. The Nrf2–Keap1 defence pathway: Role in protection against drug-induced toxicity. Toxicology 2008; 246(1): 24-33.
[http://dx.doi.org/10.1016/j.tox.2007.10.029] [PMID: 18083283]
[9]
Kobayashi M, Yamamoto M. Nrf2–Keap1 regulation of cellular defense mechanisms against electrophiles and reactive oxygen species. Adv Enzyme Regul 2006; 46(1): 113-40.
[http://dx.doi.org/10.1016/j.advenzreg.2006.01.007] [PMID: 16887173]
[10]
Ashrafizadeh M, Rafiei H, Mohammadinejad R, Afshar EG, Farkhondeh T, Samarghandian S. Potential therapeutic effects of curcumin mediated by JAK/STAT signaling pathway: a review. Phytother Res 2020; 34(8): 1745-1760.
[11]
Ashrafizadeh M, Ahmadi Z, Kotla NG, et al. Nanoparticles targeting STATs in cancer therapy. Cells 2019; 8(10): 1158.
[http://dx.doi.org/10.3390/cells8101158] [PMID: 31569687] [PMCID: PMC6829305]
[12]
Samarghandian S, Farkhondeh T, Samini F. A review on possible therapeutic effect of Nigella sativa and thymoquinone in neurodegenerative diseases. CNS Neurol Disord Drug Targets 2018; 17(6): 412-20.
[13]
Samarghandian S, Asadi-Samani M, Farkhondeh T, Bahmani M. Assessment the effect of saffron ethanolic extract (Crocus sativus L.) on oxidative damages in aged male rat liver. Der Pharmacia Lett 2016; 8(3): 283-290.
[14]
Ashrafizadeh M, Mirzaei S, Hashemi F, et al. New insight towards development of paclitaxel and docetaxel resistance in cancer cells: EMT as a novel molecular mechanism and therapeutic possibilities. Biomed Pharmacother 2021; 141: 111824. Epub 2021 Jun 25.
[http://dx.doi.org/10.1016/j.biopha.2021.111824] [PMID: 34175815]
[15]
Boroumand N, Samarghandian S, Hashemy SI. Immunomodulatory, anti-inflammatory, and antioxidant effects of curcumin. J Herbmed Pharmacol 2018; 7(4): 211-9.
[16]
Ma W, Yuan L, Yu H, et al. Genistein as a neuroprotective antioxidant attenuates redox imbalance induced by β‐amyloid peptides 25–35 in PC12 cells. Int J Dev Neurosci 2010; 28(4): 289-95.
[http://dx.doi.org/10.1016/j.ijdevneu.2010.03.003] [PMID: 20362658]
[17]
Xi YD, Yu HL, Ding J, et al. Flavonoids protect cerebrovascular endothelial cells through Nrf2 and PI3K from β-amyloid peptide-induced oxidative damage. Curr Neurovasc Res 2012; 9(1): 32-41.
[http://dx.doi.org/10.2174/156720212799297092] [PMID: 22272764]
[18]
Mirahmadi SMS, Shahmohammadi A, Rousta AM, et al. Soy isoflavone genistein attenuates lipopolysaccharide-induced cognitive impairments in the rat via exerting anti-oxidative and anti-inflammatory effects. Cytokine 2018; 104: 151-9.
[http://dx.doi.org/10.1016/j.cyto.2017.10.008] [PMID: 29102164]
[19]
Li Y, Zhang JJ, Chen RJ, et al. Genistein mitigates oxidative stress and inflammation by regulating Nrf2/HO-1 and NF-κB signaling pathways in hypoxic-ischemic brain damage in neonatal mice. Ann Transl Med 2022; 10(2): 32.
[http://dx.doi.org/10.21037/atm-21-4958] [PMID: 35282070]
[20]
Yi S, Chen S, Xiang J, et al. Genistein exerts a cell-protective effect via Nrf2/HO-1//PI3K signaling in Ab25-35-induced Alzheimer’s disease models in vitro. Folia Histochem Cytobiol 2021; 59(1): 49-56.
[http://dx.doi.org/10.5603/FHC.a2021.0006] [PMID: 33605427]
[21]
Guo J, Yang G, He Y, et al. Involvement of α7nAChR in the protective effects of genistein against β-amyloid-induced oxidative stress in neurons via a PI3K/Akt/Nrf2 pathway-related mechanism. Cell Mol Neurobiol 2021; 41(2): 377-93.
[http://dx.doi.org/10.1007/s10571-020-01009-8] [PMID: 33215356]
[22]
Hu QP, Huang XY, Feng W, et al. Genistein protects epilepsy-induced brain injury through regulating the JAK2/STAT3 and Keap1/Nrf2 signaling pathways in the developing rats. Eur J Pharmacol 2021; 912: 174620.
[23]
Wang R, Tu J, Zhang Q, et al. Genistein attenuates ischemic oxidative damage and behavioral deficits via eNOS/Nrf2/HO-1 signaling. Hippocampus 2013; 23(7): 634-47.
[http://dx.doi.org/10.1002/hipo.22126] [PMID: 23536494]
[24]
Wang S, Wei H, Cai M, et al. Genistein attenuates brain damage induced by transient cerebral ischemia through up-regulation of ERK activity in ovariectomized mice. Int J Biol Sci 2014; 10(4): 457-65.
[http://dx.doi.org/10.7150/ijbs.7562] [PMID: 24719563]
[25]
Lee SH, Kim JK, Jang HD. Genistein inhibits osteoclastic differentiation of RAW 264.7 cells via regulation of ROS production and scavenging. Int J Mol Sci 2014; 15(6): 10605-21.
[http://dx.doi.org/10.3390/ijms150610605] [PMID: 24927148]
[26]
Liu FC, Wang CC, Lu JW, et al. Chondroprotective effects of genistein against osteoarthritis induced joint inflammation. Nutrients 2019; 11(5): 1180.
[http://dx.doi.org/10.3390/nu11051180] [PMID: 31137797]
[27]
Wang K, Hu S, Wang B, Wang J, Wang X, Xu C. Genistein protects intervertebral discs from degeneration via Nrf2-mediated antioxidant defense system: An in vitro and in vivo study. J Cell Physiol 2019; 234(9): 16348-56.
[http://dx.doi.org/10.1002/jcp.28301] [PMID: 30779107]
[28]
Steiner C, Peters WHM, Gallagher EP, Magee P, Rowland I, Pool-Zobel BL. Genistein protects human mammary epithelial cells from benzo(a)pyrene-7,8-dihydrodiol-9,10-epoxide and 4-hydroxy-2-nonenal genotoxicity by modulating the glutathione/glutathione S-transferase system. Carcinogenesis 2006; 28(3): 738-48.
[http://dx.doi.org/10.1093/carcin/bgl180] [PMID: 17065199]
[29]
Liu X, Sun C, Liu B, et al. Genistein mediates the selective radiosensitizing effect in NSCLC A549 cells via inhibiting methylation of the keap1 gene promoter region. Oncotarget 2016; 7(19): 27267-79.
[http://dx.doi.org/10.18632/oncotarget.8403] [PMID: 27029077]
[30]
Zhai X, Lin M, Zhang F, et al. Dietary flavonoid genistein induces Nrf2 and phase II detoxification gene expression via ERKs and PKC pathways and protects against oxidative stress in Caco-2 cells. Mol Nutr Food Res 2013; 57(2): 249-59.
[http://dx.doi.org/10.1002/mnfr.201200536] [PMID: 23255485]
[31]
Jacobsen BK, Knutsen SF, Fraser GE. Does high soy milk intake reduce prostate cancer incidence? The Adventist Health Study (United States). Cancer Causes Control 1998; 9(6): 553-7.
[http://dx.doi.org/10.1023/A:1008819500080] [PMID: 10189040]
[32]
Kurahashi N, Iwasaki M, Sasazuki S, Otani T, Inoue M, Tsugane S. Soy product and isoflavone consumption in relation to prostate cancer in Japanese men. Cancer Epidemiol Biomarkers Prev 2007; 16(3): 538-45.
[http://dx.doi.org/10.1158/1055-9965.EPI-06-0517] [PMID: 17337648]
[33]
Kurahashi N, Iwasaki M, Inoue M, Sasazuki S, Tsugane S. Plasma isoflavones and subsequent risk of prostate cancer in a nested case-control study: The Japan Public Health Center. J Clin Oncol 2008; 26(36): 5923-9.
[http://dx.doi.org/10.1200/JCO.2008.16.8807] [PMID: 19018085]
[34]
Taylor CK, Levy RM, Elliott JC, Burnett BP. The effect of genistein aglycone on cancer and cancer risk: a review of in vitro, preclinical, and clinical studies. Nutr Rev 2009; 67(7): 398-415.
[http://dx.doi.org/10.1111/j.1753-4887.2009.00213.x] [PMID: 19566600]
[35]
Bhamre S, Sahoo D, Tibshirani R, Dill DL, Brooks JD. Gene expression changes induced by genistein in the prostate cancer cell line LNCaP. Open Prostate Cancer J 2010; 3(1): 86-98.
[http://dx.doi.org/10.2174/1876822901003010086]
[36]
Kim GY, Suh J, Jang JH, et al. Genistein inhibits proliferation of BRCA1 mutated breast cancer cells: The GPR30-Akt axis as a potential target. J Cancer Prev 2019; 24(4): 197-207.
[http://dx.doi.org/10.15430/JCP.2019.24.4.197] [PMID: 31950019]
[37]
Sahin K, Yenice E, Bilir B, et al. Genistein prevents development of spontaneous ovarian cancer and inhibits tumor growth in hen model. Cancer Prev Res 2019; 12(3): 135-46.
[http://dx.doi.org/10.1158/1940-6207.CAPR-17-0289] [PMID: 30651293]
[38]
Luo M, Zheng LW, Wang YS, et al. Genistein exhibits therapeutic potential for PCOS mice via the ER-Nrf2-Foxo1-ROS pathway. Food Funct 2021; 12(18): 8800-11.
[http://dx.doi.org/10.1039/D1FO00684C] [PMID: 34374402]
[39]
Gao Z, Gao X, Fan W, et al. Bisphenol A and genistein have opposite effects on adult chicken ovary by acting on ERα/Nrf2-Keap1-signaling pathway. Chem Biol Interact 2021; 347: 109616.
[http://dx.doi.org/10.1016/j.cbi.2021.109616] [PMID: 34363818]
[40]
Eo H, Ann JY, Lim Y. Dietary supplementation of genistein attenuates inflammatory responses and oxidative stress during cutaneous wound healing in diabetic mice. J Agric Sci 2015; 7(2): 80.
[41]
Kim MJ, Lim Y. Protective effect of short-term genistein supplementation on the early stage in diabetes-induced renal damage. Mediators Inflamm 2013; 2013: 1-14.
[http://dx.doi.org/10.1155/2013/510212] [PMID: 23737649]
[42]
Jia Q, Yang R, Liu XF, Ma SF, Wang L. Genistein attenuates renal fibrosis in streptozotocin induced diabetic rats. Mol Med Rep 2019; 19(1): 423-31.
[PMID: 30431100]
[43]
Luo Q, Li Y, Huang C, et al. Soy isoflavones improve the spermatogenic defects in diet-induced obesity rats through Nrf2/HO-1 pathway. Molecules 2019; 24(16): 2966.
[http://dx.doi.org/10.3390/molecules24162966] [PMID: 31443330]
[44]
Zhang H, Zheng F, Zhao J, Guo D, Chen X. Genistein inhibits ox-LDL-induced VCAM-1, ICAM-1 and MCP-1 expression of HUVECs through heme oxygenase-1. Arch Med Res 2013; 44(1): 13-20.
[http://dx.doi.org/10.1016/j.arcmed.2012.12.001] [PMID: 23291378]
[45]
Chen M, Samuel VP, Wu Y, et al. Nrf2/HO-1 mediated protective activity of genistein against doxorubicin-induced cardiac toxicity. J Environ Pathol Toxicol Oncol 2019; 38(2): 143-52.
[http://dx.doi.org/10.1615/JEnvironPatholToxicolOncol.2019029341] [PMID: 31679277]
[46]
Bai Z, Wang Z. Genistein protects against doxorubicin‐induced cardiotoxicity through Nrf‐2/HO‐1 signaling in mice model. Environ Toxicol 2019; 34(5): 645-51.
[http://dx.doi.org/10.1002/tox.22730] [PMID: 30734460]
[47]
Zhang T, Wang F, Xu HX, et al. Activation of nuclear factor erythroid 2-related factor 2 and PPARγ plays a role in the genistein-mediated attenuation of oxidative stress-induced endothelial cell injury. Br J Nutr 2013; 109(2): 223-35.
[http://dx.doi.org/10.1017/S0007114512001110] [PMID: 22716961]
[48]
Li Y, Zhang H. Soybean isoflavones ameliorate ischemic cardiomyopathy by activating Nrf2-mediated antioxidant responses. Food Funct 2017; 8(8): 2935-44.
[http://dx.doi.org/10.1039/C7FO00342K] [PMID: 28745354]
[49]
Bousquet J, Cristol JP, Czarlewski W, et al. Nrf2-interacting nutrients and COVID-19: time for research to develop adaptation strategies. Clin Transl Allergy 2020; 10(1): 58.
[http://dx.doi.org/10.1186/s13601-020-00362-7] [PMID: 33292691]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy