Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Systematic Review Article

CD163 as a Potential Biomarker-associated Immune Inflammation in Diabetes Mellitus: A Systematic Review and Bioinformatics Analysis

Author(s): Yang Cao, Ning Liang, Kaili Kong, Xiaomei Qiao, Ting Liu, Jing-ai Fang and Xiaodong Zhang*

Volume 24, Issue 2, 2024

Published on: 24 August, 2023

Page: [208 - 219] Pages: 12

DOI: 10.2174/1871530323666230714162324

Price: $65

Abstract

Background: Several studies have identified CD163 as a potential mediator of diabetes mellitus through an immune-inflammation. Further study is necessary to identify its specific mechanism.

Objectives: In this study, we aimed to investigate CD163 as a potential biomarker associated with immune inflammation in diabetes mellitus through a systematic review and bioinformatics analysis.

Methods: We searched PubMed, Web of Science, the Cochrane Library, and Embase databases with a time limit of September 2, 2022. Furthermore, we conducted a systematic search and review based on PRISMA guidelines. Additionally, diabetic gene expression microarray datasets GSE29221, GSE30528, GSE30529, and GSE20966 were downloaded from the GEO database (http://www.ncbi.nlm.nih.gov/geo) for bioinformatics analysis. The PROSPERO number for this study is CRD420222347160.

Results: Following the inclusion and exclusion criteria, seven articles included 1607 patients, comprising 912 diabetic patients and 695 non-diabetic patients. This systematic review found significantly higher levels of CD163 in diabetic patients compared to non-diabetic patients. People with diabetes had higher levels of CRP expression compared to the control group. Similarly, two of the three papers that used TNF- α as an outcome indicator showed higher expression levels in diabetic patients. Furthermore, IL-6 expression levels were higher in diabetic patients than in the control group. A total of 62 samples were analyzed by bioinformatics (33 case controls and 29 experimental groups), and 85 differential genes were identified containing CD163. According to the immune cell correlation analysis, CD163 was associated with macrophage M2, γδ T lymphocytes, macrophage M1, and other immune cells. Furthermore, to evaluate the diagnostic performance of CD163, we validated it using the GSE20966 dataset. In the validation set, CD163 showed high diagnostic accuracy.

Conclusion: This study suggests CD163 participates in the inflammatory immune response associated with diabetes mellitus and its complications by involving several immune cells. Furthermore, the results suggest CD163 may be a potential biomarker reflecting immune inflammation in diabetic mellitus.

Graphical Abstract

[1]
IDF Diabetes Atlas. 2022. Available from: https://diabetesatlas.org/
[2]
Laakso, M.; Kuusisto, J. Stančáková, A.; Kuulasmaa, T.; Pajukanta, P.; Lusis, A.J.; Collins, F.S.; Mohlke, K.L.; Boehnke, M. The Metabolic Syndrome in Men study: A resource for studies of metabolic and cardiovascular diseases. J. Lipid Res., 2017, 58(3), 481-493.
[http://dx.doi.org/10.1194/jlr.O072629] [PMID: 28119442]
[3]
Rojahn, T.B.; Vorstandlechner, V.; Krausgruber, T.; Bauer, W.M.; Alkon, N.; Bangert, C.; Thaler, F.M.; Sadeghyar, F.; Fortelny, N.; Gernedl, V.; Rindler, K.; Elbe-Bürger, A.; Bock, C.; Mildner, M.; Brunner, P.M. Single-cell transcriptomics combined with interstitial fluid proteomics defines cell type–specific immune regulation in atopic dermatitis. J. Allergy Clin. Immunol., 2020, 146(5), 1056-1069.
[http://dx.doi.org/10.1016/j.jaci.2020.03.041] [PMID: 32344053]
[4]
Schaer, D.J.; Buehler, P.W. Cell-free hemoglobin and its scavenger proteins: New disease models leading the way to targeted therapies. Cold Spring Harb. Perspect. Med., 2013, 3(6), a013433.
[http://dx.doi.org/10.1101/cshperspect.a013433] [PMID: 23645855]
[5]
Skytthe, M.K.; Graversen, J.H.; Moestrup, S.K. Targeting of CD163+ macrophages in inflammatory and malignant diseases. Int. J. Mol. Sci., 2020, 21(15), 5497.
[http://dx.doi.org/10.3390/ijms21155497] [PMID: 32752088]
[6]
Magalhães, J.P.; Santos, D.A.; Correia, I.R.; Hetherington-Rauth, M.; Ribeiro, R.; Raposo, J.F.; Matos, A.; Bicho, M.D.; Sardinha, L.B. Impact of combined training with different exercise intensities on inflammatory and lipid markers in type 2 diabetes: A secondary analysis from a 1-year randomized controlled trial. Cardiovasc. Diabetol., 2020, 19(1), 169.
[http://dx.doi.org/10.1186/s12933-020-01136-y] [PMID: 33028418]
[7]
Ratajczak, W.; Atkinson, S.D.; Kelly, C. The TWEAK/Fn14/CD163 axis—implications for metabolic disease. Rev. Endocr. Metab. Disord., 2022, 23(3), 449-462.
[http://dx.doi.org/10.1007/s11154-021-09688-4] [PMID: 34542797]
[8]
Kazankov, K.; Bojsen-Møller, K.N.; Møller, H.J.; Madsbad, S.; Grønbæk, H. Macrophage activation marker sCD163 is associated with liver injury and hepatic insulin resistance in obese patients before and after Roux‐en‐Y gastric bypass. Physiol. Rep., 2022, 10(2), e15157.
[http://dx.doi.org/10.14814/phy2.15157] [PMID: 35040267]
[9]
Samuelsson, M.; Dereke, J.; Svensson, M.K.; Landin-Olsson, M.; Hillman, M. Soluble plasma proteins ST2 and CD163 as early biomarkers of nephropathy in Swedish patients with diabetes, 15–34 years of age: A prospective cohort study. Diabetol. Metab. Syndr., 2017, 9(1), 41.
[http://dx.doi.org/10.1186/s13098-017-0240-2] [PMID: 28559931]
[10]
Kallestrup, M.; Møller, H.J.; Tankisi, H.; Andersen, H. Soluble CD163 levels are elevated in cerebrospinal fluid and serum in people with Type 2 diabetes mellitus and are associated with impaired peripheral nerve function. Diabet. Med., 2015, 32(1), 54-61.
[http://dx.doi.org/10.1111/dme.12568] [PMID: 25156085]
[11]
Brønden, A.; Larsen, E.L.; Karstoft, K.; Henriksen, T.; Vilsbøll, T.; Poulsen, H.E.; Knop, F.K. Changes in oxidative nucleic acid modifications and inflammation following one-week treatment with the bile acid sequestrant sevelamer: Two randomised, placebo-controlled trials. J. Diabetes Complications, 2020, 34(2), 107446.
[http://dx.doi.org/10.1016/j.jdiacomp.2019.107446] [PMID: 31672458]
[12]
Rojo-Martínez, G.; Maymó-Masip, E.; Rodríguez, M.M.; Solano, E.; Goday, A.; Soriguer, F.; Valdés, S.; Chaves, F.J.; Delgado, E.; Colomo, N.; Hernández, P.; Vendrell, J.; Chacón, M.R. Serum sCD163 levels are associated with type 2 diabetes mellitus and are influenced by coffee and wine consumption: Results of the Di@bet.es study. PLoS One, 2014, 9(6), e101250.
[http://dx.doi.org/10.1371/journal.pone.0101250] [PMID: 24978196]
[13]
Parkner, T.; Sørensen, L.P.; Nielsen, A.R.; Fischer, C.P.; Bibby, B.M.; Nielsen, S.; Pedersen, B.K.; Møller, H.J. Soluble CD163: A biomarker linking macrophages and insulin resistance. Diabetologia, 2012, 55(6), 1856-1862.
[http://dx.doi.org/10.1007/s00125-012-2533-1] [PMID: 22450890]
[14]
Siwan, E.; Twigg, S.M.; Min, D. Alterations of CD163 expression in the complications of diabetes: A systematic review. J. Diabetes Complications, 2022, 36(4), 108150.
[http://dx.doi.org/10.1016/j.jdiacomp.2022.108150] [PMID: 35190247]
[15]
Cutolo, M.; Campitiello, R.; Gotelli, E.; Soldano, S. The Role of M1/M2 macrophage polarization in rheumatoid arthritis synovitis. Front. Immunol., 2022, 13, 867260.
[http://dx.doi.org/10.3389/fimmu.2022.867260] [PMID: 35663975]
[16]
Huang, Y.J.; Lin, C.H.; Yang, H.Y.; Luo, S.F.; Kuo, C.F. Corrigendum: Urine soluble CD163 is a promising biomarker for the diagnosis and evaluation of lupus nephritis. Front. Immunol., 2022, 13, 1003761.
[http://dx.doi.org/10.3389/fimmu.2022.1003761] [PMID: 36105812]
[17]
Davidsson, S.; Huotilainen, S.; Carlsson, J.; Sundqvist, P. Soluble levels of CD163, PD-L1, and IL-10 in renal cell carcinoma patients. Diagnostics, 2022, 12(2), 336.
[http://dx.doi.org/10.3390/diagnostics12020336] [PMID: 35204426]
[18]
Carolan, E.; Hogan, A.E.; Corrigan, M.; Gaotswe, G.; O’Connell, J.; Foley, N.; O’Neill, L.A.; Cody, D.; O’Shea, D. The impact of childhood obesity on inflammation, innate immune cell frequency, and metabolic microRNA expression. J. Clin. Endocrinol. Metab., 2014, 99(3), E474-E478.
[http://dx.doi.org/10.1210/jc.2013-3529] [PMID: 24423308]
[19]
Møller, H.J. Soluble CD163. Scand. J. Clin. Lab. Invest., 2012, 72(1), 1-13.
[http://dx.doi.org/10.3109/00365513.2011.626868] [PMID: 22060747]
[20]
Shakeri-Manesch, S.; Zeyda, M.; Huber, J.; Ludvik, B.; Prager, G.; Stulnig, T.M. Diminished upregulation of visceral adipose heme oxygenase-1 correlates with waist-to-hip ratio and insulin resistance. Int. J. Obes., 2009, 33(11), 1257-1264.
[http://dx.doi.org/10.1038/ijo.2009.160] [PMID: 19687791]
[21]
Schaer, D.J.; Boretti, F.S.; Schoedon, G.; Schaffner, A. Induction of the CD163-dependent haemoglobin uptake by macrophages as a novel anti-inflammatory action of glucocorticoids. Br. J. Haematol., 2002, 119(1), 239-243.
[http://dx.doi.org/10.1046/j.1365-2141.2002.03790.x] [PMID: 12358930]
[22]
Varga, G.; Ehrchen, J.; Tsianakas, A.; Tenbrock, K.; Rattenholl, A.; Seeliger, S.; Mack, M.; Roth, J.; Sunderkoetter, C. Glucocorticoids induce an activated, anti-inflammatory monocyte subset in mice that resembles myeloid-derived suppressor cells. J. Leukoc. Biol., 2008, 84(3), 644-650.
[http://dx.doi.org/10.1189/jlb.1107768] [PMID: 18611985]
[23]
Ordeix, L.; Montserrat-Sangrà, S.; Martínez-Orellana, P.; Solano-Gallego, L. Toll-like receptors 2, 4, and 7, interferon-gamma, interleukin 10, and programmed death ligand 1 transcripts in leishmanin skin test-positive reactions of ibizan hound dogs. J. Immunol. Res., 2020, 2020, 1-8.
[http://dx.doi.org/10.1155/2020/9602576] [PMID: 32211445]
[24]
Tiemessen, M.M.; Jagger, A.L.; Evans, H.G.; van Herwijnen, M.J.C.; John, S.; Taams, L.S. CD4 + CD25 + Foxp3 + regulatory T cells induce alternative activation of human monocytes/macrophages. Proc. Natl. Acad. Sci., 2007, 104(49), 19446-19451.
[http://dx.doi.org/10.1073/pnas.0706832104] [PMID: 18042719]
[25]
Weaver, L.K.; Pioli, P.A.; Wardwell, K.; Vogel, S.N.; Guyre, P.M. Up-regulation of human monocyte CD163 upon activation of cell-surface Toll-like receptors. J. Leukoc. Biol., 2007, 81(3), 663-671.
[http://dx.doi.org/10.1189/jlb.0706428] [PMID: 17164428]
[26]
Buechler, C.; Eisinger, K.; Krautbauer, S. Diagnostic and prognostic potential of the macrophage specific receptor CD163 in inflammatory diseases. Inflamm. Allergy Drug Targets, 2013, 12(6), 391-402.
[http://dx.doi.org/10.2174/18715281113126660060] [PMID: 24090317]
[27]
Etzerodt, A.; Moestrup, S.K. CD163 and inflammation: Biological, diagnostic, and therapeutic aspects. Antioxid. Redox Signal., 2013, 18(17), 2352-2363.
[http://dx.doi.org/10.1089/ars.2012.4834] [PMID: 22900885]
[28]
Kowal, K.; Silver, R. Sławińska, E.; Bielecki, M.; Chyczewski, L.; Kowal-Bielecka, O. CD163 and its role in inflammation. Folia Histochem. Cytobiol., 2011, 49(3), 365-374.
[http://dx.doi.org/10.5603/FHC.2011.0052] [PMID: 22038213]
[29]
Etzerodt, A.; Maniecki, M.B.; Møller, K.; Møller, H.J.; Moestrup, S.K. Tumor necrosis factor α-converting enzyme (TACE/ADAM17) mediates ectodomain shedding of the scavenger receptor CD163. J. Leukoc. Biol., 2010, 88(6), 1201-1205.
[http://dx.doi.org/10.1189/jlb.0410235] [PMID: 20807704]
[30]
Sporrer, D.; Weber, M.; Wanninger, J.; Weigert, J.; Neumeier, M.; Stögbauer, F.; Lieberer, E.; Bala, M.; Kopp, A.; Schäffler, A.; Buechler, C. Adiponectin downregulates CD163 whose cellular and soluble forms are elevated in obesity. Eur. J. Clin. Invest., 2009, 39(8), 671-679.
[http://dx.doi.org/10.1111/j.1365-2362.2009.02170.x] [PMID: 19490068]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy