Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Review Article

Liver Disorders Caused by Inborn Errors of Metabolism

Author(s): Omid Vakili, Alireza Mafi and Morteza Pourfarzam*

Volume 24, Issue 2, 2024

Published on: 21 September, 2023

Page: [194 - 207] Pages: 14

DOI: 10.2174/1871530323666230623120935

Price: $65

Abstract

Inborn errors of metabolism (IEMs) are a vast array of inherited/congenital disorders, affecting a wide variety of metabolic pathways and/or biochemical processes inside the cells. Although IEMs are usually rare, they can be represented as serious health problems. During the neonatal period, these inherited defects can give rise to almost all key signs of liver malfunction, including jaundice, coagulopathy, hepato- and splenomegaly, ascites, etc. Since the liver is a vital organ with multiple synthetic, metabolic, and excretory functions, IEM-related hepatic dysfunction could seriously be considered life-threatening. In this context, the identification of those hepatic manifestations and their associated characteristics may promote the differential diagnosis of IEMs immediately after birth, making therapeutic strategies more successful in preventing the occurrence of subsequent events. Among all possible liver defects caused by IEMs, cholestatic jaundice, hepatosplenomegaly, and liver failure have been shown to be manifested more frequently. Therefore, the current study aims to review substantial IEMs that mostly result in the aforementioned hepatic disorders, relying on clinical principles, especially through the first years of life. In this article, a group of uncommon hepatic manifestations linked to IEMs is also discussed in brief.

Graphical Abstract

[1]
Garrod, A. The Croonian lectures on inborn errors of metabolism. Lancet, 1908, 172(4427), 1-7.
[http://dx.doi.org/10.1016/S0140-6736(01)78482-6]
[2]
Ferreira, C.R.; Rahman, S.; Keller, M.; Zschocke, J.; Abdenur, J.; Ali, H.; Artuch, R.; Ballabio, A.; Barshop, B.; Baumgartner, M.; Bertini, E.S.; Blau, N.; Carelli, V.; Carroll, C.; Chinnery, P.F.; Christodoulou, J.; Cornejo, V.; Darin, N.; Derks, T.; Diodato, D.; Dionisi-Vici, C.; Duley, J.A.; Fukao, T.; García-Cazorla, Á.; Giugliani, R.; Goldstein, A.; Hoffmann, G.; Horvath, R.; Ibarra, I.; Inwood, A.; Jaeken, J.; Jimenez-Mallebrera, C.; Karaa, A.; Klopstock, T.; Kölker, S.; Kornblum, C.; Kožich, V.; Lamperti, C.; Larsson, N-G.; Lemes, A.; Lewis, B.; Mancuso, M.; McFarland, R.; Mochel, F.; Montoya, J.; Morava, E.; Naess, K.; Okuyama, T.; Olry, A.; Paquis-Flucklinger, V.; Parikh, S.; Patterson, M.; Pérez de Ferrán, C.; Peters, V.; Prokisch, H.; Saada, A.; Salomons, G.S.; Saudubray, J-M.; Scarpa, M.; Schara-Schmidt, U.; Schiff, M.; Servidei, S.; Smeitink, J.; Suomalainen, A.; Tangeraas, T.; Taylor, R.W.; Thiele, I.; Thorburn, D.; Hove, J.; der Ploeg, A.T.; Karnebeek, C.; Visser, G.; Vockley, J.; Wanders, R.; Webster, D.; Wedell, A.; Wiley, V.; Wredenberg, A.; Zeviani, M. An international classification of inherited metabolic disorders (ICIMD). J. Inherit. Metab. Dis., 2021, 44(1), 164-177.
[http://dx.doi.org/10.1002/jimd.12348] [PMID: 33340416]
[3]
Driesen, K.; Witters, P. Understanding inborn errors of metabolism through metabolomics. Metabolites, 2022, 12(5), 398.
[http://dx.doi.org/10.3390/metabo12050398] [PMID: 35629902]
[4]
Pourfarzam, M; Zadhoush, F Newborn screening for inherited metabolic disorders; news and views. J. Res. Med. Sci., 2013, 18(9), 801.
[5]
Sanderson, S.; Green, A.; Preece, M.A.; Burton, H. The incidence of inherited metabolic disorders in the West Midlands, UK. Arch. Dis. Child., 2006, 91(11), 896-899.
[http://dx.doi.org/10.1136/adc.2005.091637] [PMID: 16690699]
[6]
Bharadwaj, A; Wahi, N; Saxena, A. Occurrence of inborn errors of metabolism in newborns, diagnosis and prophylaxis. Endo. Metabol. Immune Dis. Drug Tar., 2021, 21(4), 592-616.
[7]
Waters, D.; Adeloye, D.; Woolham, D.; Wastnedge, E.; Patel, S.; Rudan, I. Global birth prevalence and mortality from inborn errors of metabolism: a systematic analysis of the evidence. J. Glob. Health, 2018, 8(2), 021102.
[http://dx.doi.org/10.7189/jogh.08.021102] [PMID: 30479748]
[8]
Campistol, J. Epilepsy in inborn errors of metabolism with therapeutic options. Semin. Pediatr. Neurol., 2016, 23(4), 321-331.
[http://dx.doi.org/10.1016/j.spen.2016.11.006] [PMID: 28284393]
[9]
Vernon, H.J. Inborn errors of metabolism: advances in diagnosis and therapy. JAMA Pediatr., 2015, 169(8), 778-782.
[http://dx.doi.org/10.1001/jamapediatrics.2015.0754] [PMID: 26075348]
[10]
Saudubray, J.M.; Garcia-Cazorla, À. Inborn errors of metabolism overview: pathophysiology, manifestations, evaluation, and management. Pediatr. Clin. North Am., 2018, 65(2), 179-208.
[http://dx.doi.org/10.1016/j.pcl.2017.11.002] [PMID: 29502909]
[11]
van Karnebeek, C.D.M.; Stockler, S. Treatable inborn errors of metabolism causing intellectual disability: A systematic literature review. Mol. Genet. Metab., 2012, 105(3), 368-381.
[http://dx.doi.org/10.1016/j.ymgme.2011.11.191] [PMID: 22212131]
[12]
Auger, N.; Bilodeau-Bertrand, M.; Brousseau, É.; Nelson, C.; Arbour, L. Observational study of birth outcomes in children with inborn errors of metabolism. Pediatr. Res., 2022, 92(4), 1181-1187.
[http://dx.doi.org/10.1038/s41390-022-01946-8] [PMID: 35058604]
[13]
Agana, M.; Frueh, J.; Kamboj, M.; Patel, D.R.; Kanungo, S. Common metabolic disorder (inborn errors of metabolism) concerns in primary care practice. Ann. Transl. Med., 2018, 6(24), 469.
[http://dx.doi.org/10.21037/atm.2018.12.34] [PMID: 30740400]
[14]
Chanprasert, S.; Scaglia, F. Adult liver disorders caused by inborn errors of metabolism: Review and update. Mol. Genet. Metab., 2015, 114(1), 1-10.
[http://dx.doi.org/10.1016/j.ymgme.2014.10.011] [PMID: 25467056]
[15]
Saudubray, J.M.; Garcia-Cazorla, À. Inborn errors of metabolism overview. Pediatr. Clin. North Am., 2018, 65(2), 179-208.
[http://dx.doi.org/10.1016/j.pcl.2017.11.002] [PMID: 29502909]
[16]
Sharma, S.; Prasad, A. Inborn errors of metabolism and epilepsy: current understanding, diagnosis, and treatment approaches. Int. J. Mol. Sci., 2017, 18(7), 1384.
[http://dx.doi.org/10.3390/ijms18071384] [PMID: 28671587]
[17]
Onofrio, F.Q.; Hirschfield, G.M. The pathophysiology of cholestasis and its relevance to clinical practice. Clin. Liver Dis., 2020, 15(3), 110-114.
[http://dx.doi.org/10.1002/cld.894] [PMID: 32257122]
[18]
Hasan, M.S.; Karim, A.B.; Rukunuzzaman, M.; Haque, A.; Akhter, M.A.; Shoma, U.K.; Yasmin, F.; Rahman, M.A. Role of liver biopsy in the diagnosis of neonatal cholestasis due to biliary atresia. Mymensingh Med. J., 2018, 27(4), 826-833.
[PMID: 30487501]
[19]
Feldman, A.G.; Sokol, R.J. Neonatal cholestasis. Neoreviews, 2013, 14(2), e63-e73.
[http://dx.doi.org/10.1542/neo.14-2-e63] [PMID: 24244109]
[20]
Hoerning, A.; Raub, S.; Dechêne, A.; Brosch, M.N.; Kathemann, S.; Hoyer, P.F.; Gerner, P. Diversity of disorders causing neonatal cholestasis - the experience of a tertiary pediatric center in Germany. Front Pediatr., 2014, 2, 65.
[http://dx.doi.org/10.3389/fped.2014.00065] [PMID: 25003101]
[21]
Götze, T.; Blessing, H.; Grillhösl, C.; Gerner, P.; Hoerning, A. Neonatal cholestasis - differential diagnoses, current diagnostic procedures, and treatment. Front Pediatr., 2015, 3, 43.
[PMID: 26137452]
[22]
McKiernan, PJ. Neonatal cholestasis., 2002.
[http://dx.doi.org/10.1053/siny.2002.0103]
[23]
Esquinas, C.; Serreri, S.; Barrecheguren, M.; Rodríguez, E.; Nuñez, A.; Casas-Maldonado, F.; Blanco, I.; Pirina, P.; Lara, B.; Miravitlles, M. Long-term evolution of lung function in individuals with alpha-1 antitrypsin deficiency from the Spanish registry (REDAAT). Int. J. Chron. Obstruct. Pulmon. Dis., 2018, 13, 1001-1007.
[http://dx.doi.org/10.2147/COPD.S155226] [PMID: 29615836]
[24]
Di Dato, F.; Spadarella, S.; Puoti, M.G.; Caprio, M.G.; Pagliardini, S.; Zuppaldi, C.; Vallone, G.; Fecarotta, S.; Esposito, G.; Iorio, R.; Parenti, G.; Spagnuolo, M.I. Daily fructose traces intake and liver injury in children with hereditary fructose intolerance. Nutrients, 2019, 11(10), 2397.
[http://dx.doi.org/10.3390/nu11102397] [PMID: 31591370]
[25]
Stoller, J.K.; Brantly, M. The challenge of detecting alpha-1 antitrypsin deficiency. COPD, 2013, 10(sup1), 26-34.
[http://dx.doi.org/10.3109/15412555.2013.763782] [PMID: 23527684]
[26]
Stoller, J.K.; Aboussouan, L.S. A review of α1-antitrypsin deficiency. Am. J. Respir. Crit. Care Med., 2012, 185(3), 246-259.
[http://dx.doi.org/10.1164/rccm.201108-1428CI] [PMID: 21960536]
[27]
Voynow, J.A.; Shinbashi, M. Neutrophil elastase and chronic lung disease. Biomolecules, 2021, 11(8), 1065.
[http://dx.doi.org/10.3390/biom11081065] [PMID: 34439732]
[28]
Perlmutter, D.H. Alpha-1-antitrypsin deficiency: importance of proteasomal and autophagic degradative pathways in disposal of liver disease-associated protein aggregates. Annu. Rev. Med., 2011, 62(1), 333-345.
[http://dx.doi.org/10.1146/annurev-med-042409-151920] [PMID: 20707674]
[29]
Elliott, P.R.; Stein, P.E.; Bilton, D.; Carrell, R.W.; Lomas, D.A. Structural explanation for the deficiency of S α1-antitrypsin. Nat. Struct. Biol., 1996, 3(11), 910-911.
[http://dx.doi.org/10.1038/nsb1196-910] [PMID: 8901864]
[30]
Tan, L.; Dickens, J.A.; DeMeo, D.L.; Miranda, E.; Perez, J.; Rashid, S.T.; Day, J.; Ordoñez, A.; Marciniak, S.J.; Haq, I.; Barker, A.F.; Campbell, E.J.; Eden, E.; McElvaney, N.G.; Rennard, S.I.; Sandhaus, R.A.; Stocks, J.M.; Stoller, J.K.; Strange, C.; Turino, G.; Rouhani, F.N.; Brantly, M.; Lomas, D.A. Circulating polymers in 1-antitrypsin deficiency. Eur. Respir. J., 2014, 43(5), 1501-1504.
[http://dx.doi.org/10.1183/09031936.00111213] [PMID: 24603821]
[31]
Attanasio, S.; Ferriero, R.; Gernoux, G.; De Cegli, R.; Carissimo, A.; Nusco, E.; Campione, S.; Teckman, J.; Mueller, C.; Piccolo, P.; Brunetti-Pierri, N. CHOP and c-JUN up-regulate the mutant Z α1-antitrypsin, exacerbating its aggregation and liver proteotoxicity. J. Biol. Chem., 2020, 295(38), 13213-13223.
[http://dx.doi.org/10.1074/jbc.RA120.014307] [PMID: 32723872]
[32]
Sveger, T. Liver disease in alpha1-antitrypsin deficiency detected by screening of 200,000 infants. N. Engl. J. Med., 1976, 294(24), 1316-1321.
[http://dx.doi.org/10.1056/NEJM197606102942404] [PMID: 1083485]
[33]
Piitulainen, E.; Carlson, J.; Ohlsson, K.; Sveger, T. Alpha1-antitrypsin deficiency in 26-year-old subjects: Lung, liver, and protease/protease inhibitor studies. Chest, 2005, 128(4), 2076-2081.
[http://dx.doi.org/10.1378/chest.128.4.2076] [PMID: 16236857]
[34]
Teckman, J.; Pardee, E.; Howell, R.R.; Mannino, D.; Sharp, R.R.; Brantly, M.; Wanner, A.; Lamson, J. Appropriateness of newborn screening for α1-antitrypsin deficiency. J. Pediatr. Gastroenterol. Nutr., 2014, 58(2), 199-203.
[http://dx.doi.org/10.1097/MPG.0000000000000196] [PMID: 24121147]
[35]
Townsend, S.A.; Edgar, R.G.; Ellis, P.R.; Kantas, D.; Newsome, P.N.; Turner, A.M. Systematic review: the natural history of alpha-1 antitrypsin deficiency, and associated liver disease. Aliment. Pharmacol. Ther., 2018, 47(7), 877-885.
[http://dx.doi.org/10.1111/apt.14537] [PMID: 29446109]
[36]
Sandhaus, R.A.; Turino, G.; Brantly, M.L.; Campos, M.; Cross, C.E.; Goodman, K.; Hogarth, D.K.; Knight, S.L.; Stocks, J.M.; Stoller, J.K.; Strange, C.; Teckman, J. The diagnosis and management of alpha-1 antitrypsin deficiency in the adult. Chronic Obstr. Pulm. Dis., 2016, 3(3), 668-682.
[http://dx.doi.org/10.15326/jcopdf.3.3.2015.0182] [PMID: 28848891]
[37]
Casas, F.; Blanco, I. Martínez, M.T.; Bustamante, A.; Miravitlles, M.; Cadenas, S.; Hernández, J.M.; Lázaro, L.; Rodríguez, E.; Rodríguez- Frías, F.; Torres, M.; Lara, B. Indications for active case searches and intravenous alpha-1 antitrypsin treatment for patients with alpha-1 antitrypsin deficiency chronic pulmonary obstructive disease: an update. Arch. Bronconeumol., 2015, 51(4), 185-192.
[http://dx.doi.org/10.1016/j.arbr.2014.12.006] [PMID: 25027067]
[38]
Greulich, T.; Averyanov, A.; Borsa, L. Rozborilová, E.; Vaicius, D.; Major, T.; Chopyak, V.; Tudorache, V.; Konstantinova, T.; Camprubí, S. European screening for alpha1 -antitrypsin deficiency in subjects with lung disease. Clin. Respir. J., 2017, 11(1), 90-97.
[http://dx.doi.org/10.1111/crj.12310] [PMID: 25919395]
[39]
Miravitlles, M.; Dirksen, A.; Ferrarotti, I.; Koblizek, V.; Lange, P.; Mahadeva, R.; McElvaney, N.G.; Parr, D.; Piitulainen, E.; Roche, N.; Stolk, J.; Thabut, G.; Turner, A.; Vogelmeier, C.; Stockley, R.A. European Respiratory Society statement: diagnosis and treatment of pulmonary disease in α1 -antitrypsin deficiency. Eur. Respir. J., 2017, 50(5), 1700610.
[http://dx.doi.org/10.1183/13993003.00610-2017] [PMID: 29191952]
[40]
Campos, M.; Lascano, J. Therapeutics: alpha-1 antitrypsin augmentation therapy. Methods Mol. Biol., 2017, 1639, 249-262.
[http://dx.doi.org/10.1007/978-1-4939-7163-3_25] [PMID: 28752465]
[41]
Gruntman, A.M.; Flotte, T.R. Therapeutics: Gene therapy for alpha-1 antitrypsin deficiency. Methods Mol. Biol., 2017, 1639, 267-275.
[http://dx.doi.org/10.1007/978-1-4939-7163-3_27] [PMID: 28752467]
[42]
Gooptu, B.; Dickens, J.A.; Lomas, D.A. The molecular and cellular pathology of α1-antitrypsin deficiency. Trends Mol. Med., 2014, 20(2), 116-127.
[http://dx.doi.org/10.1016/j.molmed.2013.10.007] [PMID: 24374162]
[43]
Fregonese, L.; Stolk, J. Hereditary alpha-1-antitrypsin deficiency and its clinical consequences. Orphanet J. Rare Dis., 2008, 3(1), 16.
[http://dx.doi.org/10.1186/1750-1172-3-16] [PMID: 18565211]
[44]
Subramaniam, P.; Clayton, P.T.; Portmann, B.C.; Mieli-Vergani, G. Hadžić, N. Variable clinical spectrum of the most common inborn error of bile acid metabolism-3beta-hydroxy-Delta 5-C27-steroid dehydrogenase deficiency. J. Pediatr. Gastroenterol. Nutr., 2010, 50(1), 61-66.
[http://dx.doi.org/10.1097/MPG.0b013e3181b47b34] [PMID: 19915491]
[45]
Bove, K.E.; Heubi, J.E.; Balistreri, W.F.; Setchell, K.D.R. Bile acid synthetic defects and liver disease: a comprehensive review. Pediatr. Dev. Pathol., 2004, 7(4), 315-334.
[http://dx.doi.org/10.1007/s10024-002-1201-8] [PMID: 15383928]
[46]
Lane, E.; Murray, K.F. Neonatal cholestasis. Pediatr. Clin. North Am., 2017, 64(3), 621-639.
[http://dx.doi.org/10.1016/j.pcl.2017.01.006] [PMID: 28502442]
[47]
Clayton, P.T. Disorders of bile acid synthesis. J. Inherit. Metab. Dis., 2011, 34(3), 593-604.
[http://dx.doi.org/10.1007/s10545-010-9259-3] [PMID: 21229319]
[48]
Setchell, K.D.R.; Heubi, J.E. Defects in bile acid biosynthesis-diagnosis and treatment. J. Pediatr. Gastroenterol. Nutr., 2006, 43(1), S17-S22.
[http://dx.doi.org/10.1097/01.mpg.0000226386.79483.7b] [PMID: 16819396]
[49]
Sundaram, S.S.; Bove, K.E.; Lovell, M.A.; Sokol, R.J. Mechanisms of Disease: inborn errors of bile acid synthesis. Nat. Clin. Pract. Gastroenterol. Hepatol., 2008, 5(8), 456-468.
[http://dx.doi.org/10.1038/ncpgasthep1179] [PMID: 18577977]
[50]
Gonzales, E.; Matarazzo, L.; Franchi-Abella, S.; Dabadie, A.; Cohen, J.; Habes, D.; Hillaire, S.; Guettier, C.; Taburet, A.M.; Myara, A.; Jacquemin, E. Cholic acid for primary bile acid synthesis defects: a life-saving therapy allowing a favorable outcome in adulthood. Orphanet J. Rare Dis., 2018, 13(1), 190.
[http://dx.doi.org/10.1186/s13023-018-0920-5] [PMID: 30373615]
[51]
Gonzales, E; Gerhardt, MF; Fabre, M; Setchell, KD; Davit-Spraul, A; Vincent, I. Oral cholic acid for hereditary defects of primary bile acid synthesis: a safe and effective long-term therapy. Gastroenterology, 2009, 137(4), 1310-1320.e1-3.
[http://dx.doi.org/10.1053/j.gastro.2009.07.043]
[52]
Staretz-Chacham, O.; Lang, T.C.; LaMarca, M.E.; Krasnewich, D.; Sidransky, E. Lysosomal storage disorders in the newborn. Pediatrics, 2009, 123(4), 1191-1207.
[http://dx.doi.org/10.1542/peds.2008-0635] [PMID: 19336380]
[53]
Filocamo, M.; Morrone, A. Lysosomal storage disorders: Molecular basis and laboratory testing. Hum. Genomics, 2011, 5(3), 156-169.
[http://dx.doi.org/10.1186/1479-7364-5-3-156] [PMID: 21504867]
[54]
Fletcher, J.M. Screening for lysosomal storage disorders—A clinical perspective. J. Inherit. Metab. Dis., 2006, 29(2-3), 405-408.
[http://dx.doi.org/10.1007/s10545-006-0246-7] [PMID: 16763909]
[55]
Yu, C.; Sun, Q.; Zhou, H. Enzymatic screening and diagnosis of lysosomal storage diseases. N. Am. J. Med. Sci., 2013, 6(4), 186-193.
[http://dx.doi.org/10.7156/najms.2013.0604186] [PMID: 27293520]
[56]
Zhou, H.; Fernhoff, P.; Vogt, R.F. Newborn bloodspot screening for lysosomal storage disorders. J. Pediatr., 2011, 159(1), 7-13.e1.
[http://dx.doi.org/10.1016/j.jpeds.2011.02.026] [PMID: 21492868]
[57]
Beck, M. Treatment strategies for lysosomal storage disorders. Dev. Med. Child Neurol., 2018, 60(1), 13-18.
[http://dx.doi.org/10.1111/dmcn.13600] [PMID: 29090451]
[58]
Wenger, D.A.; Coppola, S.; Liu, S.L. Insights into the diagnosis and treatment of lysosomal storage diseases. Arch. Neurol., 2003, 60(3), 322-328.
[http://dx.doi.org/10.1001/archneur.60.3.322] [PMID: 12633142]
[59]
Ramanujam, VM; Anderson, K.E. Porphyria diagnostics-part 1: a brief overview of the porphyrias. Current protocols in human genetics., 2015, 86(1), 17-20.
[60]
Di Pierro, E.; Brancaleoni, V.; Granata, F. Advances in understanding the pathogenesis of congenital erythropoietic porphyria. Br. J. Haematol., 2016, 173(3), 365-379.
[http://dx.doi.org/10.1111/bjh.13978] [PMID: 26969896]
[61]
Koley, S.; Saoji, V. Congenital erythropoietic porphyria: Two case reports. Indian J. Dermatol., 2011, 56(1), 94-97.
[http://dx.doi.org/10.4103/0019-5154.77565] [PMID: 21572804]
[62]
Stölzel, U.; Doss, M.O.; Schuppan, D. Clinical guide and update on porphyrias. Gastroenterology, 2019, 157(2), 365-381.e4.
[http://dx.doi.org/10.1053/j.gastro.2019.04.050] [PMID: 31085196]
[63]
Dsnick, R.J.; Astrin, K.H. Congenital erythropoietic porphyria: advances in pathogenesis and treatment. Br. J. Haematol., 2002, 117(4), 779-795.
[http://dx.doi.org/10.1046/j.1365-2141.2002.03557.x] [PMID: 12060112]
[64]
Dupuis-Girod, S.; Akkari, V.; Ged, C.; Galambrun, C.; Kebaïli, K.; Deybach, J.C.; Claudy, A.; Geburher, L.; Philippe, N.; de Verneuil, H.; Bertrand, Y. Successful match-unrelated donor bone marrow transplantation for congenital erythropoietic porphyria (Günther disease). Eur. J. Pediatr., 2005, 164(2), 104-107.
[http://dx.doi.org/10.1007/s00431-004-1575-x] [PMID: 15703981]
[65]
Clayton, P.T. Inborn errors presenting with liver dysfunction. Semin. Neonatol., 2002, 7(1), 49-63.
[66]
Vinholt Schiøّdt, F.; Davern, T.J.; Shakil, A.O.; McGuire, B.; Samuel, G.; Lee, W.M. Viral hepatitis-related acute liver failure. Am. J. Gastroenterol., 2003, 98(2), 448-453.
[http://dx.doi.org/10.1016/S0002-9270(02)05891-4] [PMID: 12591067]
[67]
Tarasenko, T.N.; McGuire, P.J. The liver is a metabolic and immunologic organ: A reconsideration of metabolic decompensation due to infection in inborn errors of metabolism (IEM). Mol. Genet. Metab., 2017, 121(4), 283-288.
[http://dx.doi.org/10.1016/j.ymgme.2017.06.010] [PMID: 28666653]
[68]
Tran, C. Inborn errors of fructose metabolism. what can we learn from them? Nutrients, 2017, 9(4), 356.
[http://dx.doi.org/10.3390/nu9040356] [PMID: 28368361]
[69]
Tappy, L.; Lê, K.A. Metabolic effects of fructose and the worldwide increase in obesity. Physiol. Rev., 2010, 90(1), 23-46.
[http://dx.doi.org/10.1152/physrev.00019.2009] [PMID: 20086073]
[70]
Ali, M.; Rellos, P.; Cox, T.M. Hereditary fructose intolerance. J. Med. Genet., 1998, 35(5), 353-365.
[http://dx.doi.org/10.1136/jmg.35.5.353] [PMID: 9610797]
[71]
Yasawy, M.I.; Folsch, U.R.; Schmidt, W.E.; Schwend, M. Adult hereditary fructose intolerance. World J. Gastroenterol., 2009, 15(19), 2412-2413.
[http://dx.doi.org/10.3748/wjg.15.2412] [PMID: 19452588]
[72]
Chambers, R.A.; Pratt, R.T.C. Idiosyncrasy to fructose. Lancet, 1956, 268(6938), 340.
[http://dx.doi.org/10.1016/S0140-6736(56)92196-1] [PMID: 13358219]
[73]
Tappy, L.; Lê, K.A.; Tran, C.; Paquot, N. Fructose and metabolic diseases: New findings, new questions. Nutrition, 2010, 26(11-12), 1044-1049.
[http://dx.doi.org/10.1016/j.nut.2010.02.014] [PMID: 20471804]
[74]
Valayannopoulos, V.; Romano, S.; Mention, K.; Vassault, A.; Rabier, D.; Polak, M.; Robert, J.J.; Keyzer, Y.; Lonlay, P. What’s new in metabolic and genetic hypoglycaemias: diagnosis and management. Eur. J. Pediatr., 2008, 167(3), 257-265.
[http://dx.doi.org/10.1007/s00431-007-0600-2] [PMID: 17912550]
[75]
Coelho, A.I.; Berry, G.T.; Rubio-Gozalbo, M.E. Galactose metabolism and health. Curr. Opin. Clin. Nutr. Metab. Care, 2015, 18(4), 422-427.
[http://dx.doi.org/10.1097/MCO.0000000000000189] [PMID: 26001656]
[76]
Kotb, M.A.; Mansour, L.; Shamma, R.A. Screening for galactosemia: is there a place for it? Int. J. Gen. Med., 2019, 12, 193-205.
[http://dx.doi.org/10.2147/IJGM.S180706] [PMID: 31213878]
[77]
Berry, G.T. Galactosemia: When is it a newborn screening emergency? Mol. Genet. Metab., 2012, 106(1), 7-11.
[http://dx.doi.org/10.1016/j.ymgme.2012.03.007] [PMID: 22483615]
[78]
Pyhtila, B.M.; Shaw, K.A.; Neumann, S.E.; Fridovich-Keil, J.L. Newborn screening for galactosemia in the United States: looking back, looking around, and looking ahead. JIMD Rep., 2015, 15, 79-93.
[PMID: 24718839]
[79]
Coelho, A.I.; Rubio-Gozalbo, M.E.; Vicente, J.B.; Rivera, I. Sweet and sour: An update on classic galactosemia. J. Inherit. Metab. Dis., 2017, 40(3), 325-342.
[http://dx.doi.org/10.1007/s10545-017-0029-3] [PMID: 28281081]
[80]
Kotb, M.A.; Mansour, L.; William Shaker Basanti, C.; El Garf, W.; Ali, G.I.Z.; Mostafa El Sorogy, S.T.; Kamel, I.E.M.; Kamal, N.M. Pilot study of classic galactosemia: Neurodevelopmental impact and other complications urge neonatal screening in Egypt. J. Adv. Res., 2018, 12, 39-45.
[http://dx.doi.org/10.1016/j.jare.2018.02.001] [PMID: 30038819]
[81]
Ugan Atik, S.; Gürsoy, S.; Koçkar, T.; Önal, H.; Adal, S.E. Clinical, molecular, and genetic evaluation of galactosemia in Turkish children.Turk. Pediatri Ars., 2016, 51(4), 204-209.
[http://dx.doi.org/10.5152/TurkPediatriArs.2016.3759] [PMID: 28123333]
[82]
Adam, B.W.; Flores, S.R.; Hou, Y.; Allen, T.W.; De Jesus, V.R. Galactose-1-phosphate uridyltransferase dried blood spot quality control materials for newborn screening tests. Clin. Biochem., 2015, 48(6), 437-442.
[http://dx.doi.org/10.1016/j.clinbiochem.2014.12.009] [PMID: 25528144]
[83]
Resendez, A.; Panescu, P.; Zuniga, R.; Banda, I.; Joseph, J.; Webb, D.L.; Singaram, B. Multiwell assay for the analysis of sugar gut permeability markers: discrimination of sugar alcohols with a fluorescent probe array based on boronic acid appended viologens. Anal. Chem., 2016, 88(10), 5444-5452.
[http://dx.doi.org/10.1021/acs.analchem.6b00880] [PMID: 27116118]
[84]
Demirbas, D.; Brucker, W.J.; Berry, G.T. Inborn errors of metabolism with hepatopathy. Pediatr. Clin. North Am., 2018, 65(2), 337-352.
[http://dx.doi.org/10.1016/j.pcl.2017.11.008] [PMID: 29502917]
[85]
Walter, J.H.; Collins, J.E.; Leonard, J.V.; Chiswick, M.; Marcovitch, H. Recommendations for the management of galactosaemia Commentary. Arch. Dis. Child., 1999, 80(1), 93-96.
[http://dx.doi.org/10.1136/adc.80.1.93] [PMID: 10325771]
[86]
Panis, B.; Vermeer, C.; van Kroonenburgh, M.J.P.G.; Nieman, F.H.M.; Menheere, P.P.C.A.; Spaapen, L.J.; Rubio-Gozalbo, M.E. Effect of calcium, vitamins K 1 and D 3 on bone in galactosemia. Bone, 2006, 39(5), 1123-1129.
[http://dx.doi.org/10.1016/j.bone.2006.05.002] [PMID: 16782422]
[87]
Batey, LA; Welt, CK; Rohr, F; Wessel, A; Anastasoaie, V; Feldman, HA Skeletal health in adult patients with classic galactosemia., 2013.
[http://dx.doi.org/10.1007/s00198-012-1983-0]
[88]
Lindblad, B.; Lindstedt, S.; Steen, G. On the enzymic defects in hereditary tyrosinemia. Proc. Natl. Acad. Sci. USA, 1977, 74(10), 4641-4645.
[http://dx.doi.org/10.1073/pnas.74.10.4641] [PMID: 270706]
[89]
Bergeron, A.; D’Astous, M.; Timm, D.E.; Tanguay, R.M. Structural and functional analysis of missense mutations in fumarylacetoacetate hydrolase, the gene deficient in hereditary tyrosinemia type 1. J. Biol. Chem., 2001, 276(18), 15225-15231.
[http://dx.doi.org/10.1074/jbc.M009341200] [PMID: 11278491]
[90]
Croffie, J.M.; Gupta, S.K.; Chong, S.K.F.; Fitzgerald, J.F. Tyrosinemia type 1 should be suspected in infants with severe coagulopathy even in the absence of other signs of liver failure. Pediatrics, 1999, 103(3), 675-678.
[http://dx.doi.org/10.1542/peds.103.3.675] [PMID: 10049978]
[91]
Chinsky, J.M.; Singh, R.; Ficicioglu, C.; van Karnebeek, C.D.M.; Grompe, M.; Mitchell, G.; Waisbren, S.E.; Gucsavas-Calikoglu, M.; Wasserstein, M.P.; Coakley, K.; Scott, C.R. Diagnosis and treatment of tyrosinemia type I: a US and Canadian consensus group review and recommendations. Genet. Med., 2017, 19(12), 1380-1395.
[http://dx.doi.org/10.1038/gim.2017.101] [PMID: 28771246]
[92]
Morrow, G.; Tanguay, R.M. Biochemical and clinical aspects of hereditary tyrosinemia type 1. Adv. Exp. Med. Biol., 2017, 959, 9-21.
[http://dx.doi.org/10.1007/978-3-319-55780-9_2] [PMID: 28755181]
[93]
Halac, U.; Dubois, J.; Mitchell, G.A. The liver in tyrosinemia type i: clinical management and course in quebec. Adv. Exp. Med. Biol., 2017, 959, 75-83.
[http://dx.doi.org/10.1007/978-3-319-55780-9_6] [PMID: 28755185]
[94]
Angileri, F.; Bergeron, A.; Morrow, G.; Lettre, F.; Gray, G.; Hutchin, T.; Ball, S.; Tanguay, R.M. Geographical and ethnic distribution of mutations of the fumarylacetoacetate hydrolase gene in hereditary tyrosinemia type 1. JIMD Rep., 2014, 19, 43-58.
[http://dx.doi.org/10.1007/8904_2014_363] [PMID: 25681080]
[95]
De Jesúْs, V.R.; Adam, B.W.; Mandel, D.; Cuthbert, C.D; Matern, D. Succinylacetone as primary marker to detect tyrosinemia type I in newborns and its measurement by newborn screening programs. Mol. Genet. Metab., 2014, 113(1-2), 67-75.
[http://dx.doi.org/10.1016/j.ymgme.2014.07.010] [PMID: 25066104]
[96]
Scott, C.R. The genetic tyrosinemias. Am. J. Med. Genet. C. Semin. Med. Genet., 2006, 142C(2), 121-126.
[http://dx.doi.org/10.1002/ajmg.c.30092] [PMID: 16602095]
[97]
Lindstedt, S.; Holme, E.; Lock, E.A.; Hjalmarson, O.; Strandvik, B. Treatment of hereditary tyrosinaemia type I by inhibition of 4-hydroxyphenylpyruvate dioxygenase. Lancet, 1992, 340(8823), 813-817.
[http://dx.doi.org/10.1016/0140-6736(92)92685-9] [PMID: 1383656]
[98]
Mayorandan, S.; Meyer, U.; Gokcay, G.; Segarra, N.G.; de Baulny, H.O.; van Spronsen, F.; Zeman, J.; de Laet, C.; Spiekerkoetter, U.; Thimm, E.; Maiorana, A.; Dionisi-Vici, C.; Moeslinger, D.; Brunner-Krainz, M.; Lotz-Havla, A.S.; Cocho de Juan, J.A.; Couce Pico, M.L.; Santer, R.; Scholl-Bürgi, S.; Mandel, H.; Bliksrud, Y.T.; Freisinger, P.; Aldamiz-Echevarria, L.J.; Hochuli, M.; Gautschi, M.; Endig, J.; Jordan, J.; McKiernan, P.; Ernst, S.; Morlot, S.; Vogel, A.; Sander, J.; Das, A.M. Cross-sectional study of 168 patients with hepatorenal tyrosinaemia and implications for clinical practice. Orphanet J. Rare Dis., 2014, 9(1), 107.
[http://dx.doi.org/10.1186/s13023-014-0107-7] [PMID: 25081276]
[99]
Morris, A.A.M. Mitochondrial respiratory chain disorders and the liver. Liver Int., 1999, 19(5), 357-368.
[http://dx.doi.org/10.1111/j.1478-3231.1999.tb00063.x] [PMID: 10533792]
[100]
Lee, W.S.; Sokol, R.J. Mitochondrial hepatopathies: Advances in genetics and pathogenesis. Hepatology, 2007, 45(6), 1555-1565.
[http://dx.doi.org/10.1002/hep.21710] [PMID: 17538929]
[101]
Ohtake, A.; Murayama, K.; Mori, M.; Harashima, H.; Yamazaki, T.; Tamaru, S.; Yamashita, Y.; Kishita, Y.; Nakachi, Y.; Kohda, M.; Tokuzawa, Y.; Mizuno, Y.; Moriyama, Y.; Kato, H.; Okazaki, Y. Diagnosis and molecular basis of mitochondrial respiratory chain disorders: Exome sequencing for disease gene identification. Biochim. Biophys. Acta, Gen. Subj., 2014, 1840(4), 1355-1359.
[http://dx.doi.org/10.1016/j.bbagen.2014.01.025] [PMID: 24462578]
[102]
Kanungo, S.; Morton, J.; Neelakantan, M.; Ching, K.; Saeedian, J.; Goldstein, A. Mitochondrial disorders. Ann. Transl. Med., 2018, 6(24), 475.
[http://dx.doi.org/10.21037/atm.2018.12.13] [PMID: 30740406]
[103]
Pourfarzam, M.; Schaefer, J.; Turnbull, D.M.; Bartlett, K. Analysis of fatty acid oxidation intermediates in cultured fibroblasts to detect mitochondrial oxidation disorders. Clin. Chem., 1994, 40(12), 2267-2275.
[http://dx.doi.org/10.1093/clinchem/40.12.2267] [PMID: 7988014]
[104]
Osorio, JH; Pourfarzam, M. Determination of normal acylcarnitine levels in a healthy pediatric population as a diagnostic tool in inherited errors of mitochondrial fatty acid beta-oxidation. InAnales de Pediatria, 2007, 67(6), 548-552.
[105]
Shekhawat, P.S.; Matern, D.; Strauss, A.W. Fetal fatty acid oxidation disorders, their effect on maternal health and neonatal outcome: impact of expanded newborn screening on their diagnosis and management. Pediatr. Res., 2005, 57(5 Part 2), 78R-86R.
[http://dx.doi.org/10.1203/01.PDR.0000159631.63843.3E] [PMID: 15817498]
[106]
DiMauro, S.; DiMauro, P.M.M. Muscle carnitine palmityltransferase deficiency and myoglobinuria. Science, 1973, 182(4115), 929-931.
[http://dx.doi.org/10.1126/science.182.4115.929] [PMID: 4745596]
[107]
Merritt, J.L., II; Norris, M.; Kanungo, S. Fatty acid oxidation disorders. Ann. Transl. Med., 2018, 6(24), 473.
[http://dx.doi.org/10.21037/atm.2018.10.57] [PMID: 30740404]
[108]
El-Gharbawy, A.; Vockley, J. Inborn errors of metabolism with myopathy. Pediatr. Clin. North Am., 2018, 65(2), 317-335.
[http://dx.doi.org/10.1016/j.pcl.2017.11.006] [PMID: 29502916]
[109]
Posset, R.; Gropman, A.L.; Nagamani, S.C.S.; Burrage, L.C.; Bedoyan, J.K.; Wong, D.; Berry, G.T.; Baumgartner, M.R.; Yudkoff, M.; Zielonka, M.; Hoffmann, G.F.; Burgard, P.; Schulze, A.; McCandless, S.E.; Garcia-Cazorla, A.; Seminara, J.; Garbade, S.F. Kölker, S.; Lee, B.; Harding, C.O.; Coughlin, C.R., II; Le Mons, C.; Dobbelaere, D.; Leão Teles, E.; Cortès-Saladelafont, E.; Gleich, F.; Eyskens, F.; Enns, G.; Wilkening, G.N.; Barić, I.; Lawrence Merritt, J., II; Heringer, J.; Blasco-Alonso, J.; Zeman, J.; Häberle, J.; Sykut- Cegielska, J.; Djordjevic, M.; Batshaw, M.L.; Summar, M.; Freisinger, P.; Gallagher, R.C.; Berry, S.A.; Waisbren, S.; Stricker, T. Impact of diagnosis and therapy on cognitive function in urea cycle disorders. Ann. Neurol., 2019, 86(1), ana.25492.
[http://dx.doi.org/10.1002/ana.25492] [PMID: 31018246]
[110]
Bigot, A.; Tchan, M.C.; Thoreau, B.; Blasco, H.; Maillot, F. Liver involvement in urea cycle disorders: a review of the literature. J. Inherit. Metab. Dis., 2017, 40(6), 757-769.
[http://dx.doi.org/10.1007/s10545-017-0088-5] [PMID: 28900784]
[111]
Foschi, F.G.; Morelli, M.C.; Savini, S.; Dall’Aglio, A.C.; Lanzi, A.; Cescon, M.; Ercolani, G.; Cucchetti, A.; Pinna, A.D.; Stefanini, G.F. Urea cycle disorders: A case report of a successful treatment with liver transplant and a literature review. World J. Gastroenterol., 2015, 21(13), 4063-4068.
[http://dx.doi.org/10.3748/wjg.v21.i13.4063] [PMID: 25852294]
[112]
Lee, B.; Diaz, G.A.; Rhead, W.; Lichter-Konecki, U.; Feigenbaum, A.; Berry, S.A.; Le Mons, C.; Bartley, J.; Longo, N.; Nagamani, S.C.; Berquist, W.; Gallagher, R.C.; Harding, C.O.; McCandless, S.E.; Smith, W.; Schulze, A.; Marino, M.; Rowell, R.; Coakley, D.F.; Mokhtarani, M.; Scharschmidt, B.F. Glutamine and hyperammonemic crises in patients with urea cycle disorders. Mol. Genet. Metab., 2016, 117(1), 27-32.
[http://dx.doi.org/10.1016/j.ymgme.2015.11.005] [PMID: 26586473]
[113]
Brannelly, N.T.; Hamilton-Shield, J.P.; Killard, A.J. The measurement of ammonia in human breath and its potential in clinical diagnostics. Crit. Rev. Anal. Chem., 2016, 46(6), 490-501.
[http://dx.doi.org/10.1080/10408347.2016.1153949] [PMID: 26907707]
[114]
Nakamura, K.; Kido, J.; Mitsubuchi, H.; Endo, F. Diagnosis and treat-ment of urea cycle disorder in Japan. Pediatr. Int., 2014, 56(4), 506-509.
[http://dx.doi.org/10.1111/ped.12439]
[115]
Gupta, S.; Fenves, A.Z.; Hootkins, R. The role of RRT in hyperammonemic patients. Clin. J. Am. Soc. Nephrol., 2016, 11(10), 1872-1878.
[http://dx.doi.org/10.2215/CJN.01320216] [PMID: 27197910]
[116]
Husson, M.C.; Schiff, M.; Fouilhoux, A.; Cano, A.; Dobbelaere, D.; Brassier, A.; Mention, K.; Arnoux, J.B.; Feillet, F.; Chabrol, B.; Guffon, N.; Elie, C.; de Lonlay, P. Efficacy and safety of i.v. sodium benzoate in urea cycle disorders: a multicentre retrospective study. Orphanet J. Rare Dis., 2016, 11(1), 127.
[http://dx.doi.org/10.1186/s13023-016-0513-0] [PMID: 27663197]
[117]
Guilder, L.; Pula, S.; Pierre, G. Metabolic disorders presenting as liver disease. Paediatr. Child Health, 2017, 27(12), 533-539.
[http://dx.doi.org/10.1016/j.paed.2017.07.007]
[118]
Kasarala, G.; Tillmann, H.L. Standard liver tests. Clin. Liver Dis., 2016, 8(1), 13-18.
[http://dx.doi.org/10.1002/cld.562] [PMID: 31041056]
[119]
Sapey, T.; Mendler, M.H.; Guyader, D.; Morio, O.; Corbinais, S.; Deugnier, Y.; Brissot, P. Respective value of alkaline phosphatase, gamma-glutamyl transpeptidase and 5′ nucleotidase serum activity in the diagnosis of cholestasis: a prospective study of 80 patients. J. Clin. Gastroenterol., 2000, 30(3), 259-263.
[http://dx.doi.org/10.1097/00004836-200004000-00011] [PMID: 10777184]
[120]
Tripathi, N.; Jialal, I. Conjugated Hyperbilirubinemia; StatPearls, 2020.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy