Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Emerging Therapies and Therapeutic Targets for Composite Liver Disease: NASH

Author(s): M. Elizabeth Sobhia*, Sonia Kumari, Harish Kumar, Akshata Gandhe, Dhriti Kaushik, Harish Kumar, Jethender Jain, Ankita, Moyim Mallick, Bommana Pavani, Mridula Moudgil and Deepesh Patel

Volume 23, Issue 21, 2023

Published on: 17 July, 2023

Page: [2027 - 2047] Pages: 21

DOI: 10.2174/1568026623666230714113808

Price: $65

conference banner
Abstract

Background: Liver diseases continue to destroy the lives of people, one of which is known as Non-alcoholic Steatohepatitis (NASH) that becomes a serious liver disease all around the world over the last few years. Non-alcoholic Steatohepatitis (NASH) is a progressive form of Nonalcoholic Fatty Liver Disease (NAFLD) and is characterized by liver steatosis, inflammation, different degrees of fibrosis, and hepatocellular injury. The inflammatory mediators play a vital role in the transition of Non-alcoholic Fatty Liver (NAFL) to Non-alcoholic Steatohepatitis (NASH), which further leads to Hepatocellular Carcinoma (HCC) and becomes a cause of liver transplantation.

Objectives: Considering the severity and complexity of the disease, we aim to summarize the works of various research groups that are working in the area of NASH to find a sophisticated treatment.

Results: The present review focused on various factors that are responsible for the development and progression of this prevalent disease, emerging pharmacotherapies as well as therapeutic targets that have been utilized for the treatment of NASH. We also have conducted the structural analysis of available targets, which will be helpful for the enhancement of drug discovery through the implementation of in silico methods.

Conclusion: Efforts have been made to provide an update on research in the area of NASH, including the pharmacological agents that are currently undergoing clinical trials for the treatment of NASH. Besides the massive research, still, gaps and challenges are there in the drug development for NASH that also have been discussed.

Graphical Abstract

[1]
Kim, K.H.; Lee, M.S. Pathogenesis of nonalcoholic steatohepatitis and hormone-based therapeutic approaches. Front. Endocrinol., 2018, 9, 485.
[http://dx.doi.org/10.3389/fendo.2018.00485] [PMID: 30197624]
[2]
Van Gaal, L.F.; Mertens, J.; Francque, S.; De Block, C. Therapeutic approaches for non-alcoholic steatohepatitis. Ther. Adv. Endocrinol. Metab., 2021, 12.
[http://dx.doi.org/10.1177/20420188211034300] [PMID: 34497708]
[3]
Medina, J.; Fernández-Salazar, L.I.; García-Buey, L.; Moreno-Otero, R. Approach to the pathogenesis and treatment of nonalcoholic steatohepatitis. Diabetes Care, 2004, 27(8), 2057-2066.
[http://dx.doi.org/10.2337/diacare.27.8.2057] [PMID: 15277442]
[4]
Ferguson, D.; Finck, B.N. Emerging therapeutic approaches for the treatment of NAFLD and type 2 diabetes mellitus. Nat. Rev. Endocrinol., 2021, 17(8), 484-495.
[http://dx.doi.org/10.1038/s41574-021-00507-z] [PMID: 34131333]
[5]
Oseini, A.M.; Sanyal, A.J. Therapies in non-alcoholic steatohepatitis (NASH). Liver Int., 2017, 37(Suppl 1)(Suppl. 1), 97-103.
[http://dx.doi.org/10.1111/liv.13302] [PMID: 28052626]
[6]
James, O.F.W.; Day, C.P. Non-alcoholic steatohepatitis (NASH): A disease of emerging identity and importance. J. Hepatol., 1998, 29(3), 495-501.
[http://dx.doi.org/10.1016/S0168-8278(98)80073-1] [PMID: 9765002]
[7]
Angulo, P; Kleiner, DE; Dam-Larsen, S; Adams, LA; Bjornsson, ES; Charatcharoenwitthaya, P Liver fibrosis, but no other histologic features, is associated with long-term outcomes of patients with nonalcoholic fatty liver disease. Gastroenterology, 2015, 149(2), 389-97.
[http://dx.doi.org/10.1053/j.gastro.2015.04.043]
[8]
Pydyn, N.; Miękus, K.; Jura, J.; Kotlinowski, J. New therapeutic strategies in nonalcoholic fatty liver disease: A focus on promising drugs for nonalcoholic steatohepatitis. Pharmacol. Rep., 2020, 72(1), 1-12.
[http://dx.doi.org/10.1007/s43440-019-00020-1] [PMID: 32016853]
[9]
Povsic, M.; Wong, O.Y.; Perry, R.; Bottomley, J. A structured literature review of the epidemiology and disease burden of non-alcoholic steatohepatitis (NASH). Adv. Ther., 2019, 36(7), 1574-1594.
[http://dx.doi.org/10.1007/s12325-019-00960-3] [PMID: 31065991]
[10]
Younossi, Z.M.; Koenig, A.B.; Abdelatif, D.; Fazel, Y.; Henry, L.; Wymer, M. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology, 2016, 64(1), 73-84.
[http://dx.doi.org/10.1002/hep.28431] [PMID: 26707365]
[11]
Perumpail, B.J.; Khan, M.A.; Yoo, E.R.; Cholankeril, G.; Kim, D.; Ahmed, A. Clinical epidemiology and disease burden of nonalcoholic fatty liver disease. World J. Gastroenterol., 2017, 23(47), 8263-8276.
[http://dx.doi.org/10.3748/wjg.v23.i47.8263] [PMID: 29307986]
[12]
Dufour, J.F.; Scherer, R.; Balp, M.M.; McKenna, S.J.; Janssens, N.; Lopez, P.; Pedrosa, M. The global epidemiology of nonalcoholic steatohepatitis (NASH) and associated risk factors–A targeted literature review. Endocrine and Metabolic Science, 2021, 3, 100089.
[http://dx.doi.org/10.1016/j.endmts.2021.100089]
[13]
Duseja, A.; Singh, S.P.; Saraswat, V.A.; Acharya, S.K.; Chawla, Y.K.; Chowdhury, S.; Dhiman, R.K.; Jayakumar, R.V.; Madan, K.; Misra, S.P.; Mishra, H.; Modi, S.K.; Muruganathan, A.; Saboo, B.; Sahay, R.; Upadhyay, R. Non-alcoholic fatty liver disease and metabolic syndrome-position paper of the Indian National Association for the Study of the Liver, Endocrine Society of India, Indian College of Cardiology and Indian Society of Gastroenterology. J. Clin. Exp. Hepatol., 2015, 5(1), 51-68.
[http://dx.doi.org/10.1016/j.jceh.2015.02.006] [PMID: 25941433]
[14]
Das, K.; Das, K.; Mukherjee, P.S.; Ghosh, A.; Ghosh, S.; Mridha, A.R.; Dhibar, T.; Bhattacharya, B.; Bhattacharya, D.; Manna, B.; Dhali, G.K.; Santra, A.; Chowdhury, A. Nonobese population in a developing country has a high prevalence of nonalcoholic fatty liver and significant liver disease. Hepatology, 2010, 51(5), 1593-1602.
[http://dx.doi.org/10.1002/hep.23567] [PMID: 20222092]
[15]
Mohan, V.; Farooq, S.; Deepa, M.; Ravikumar, R.; Pitchumoni, C.S. Prevalence of non-alcoholic fatty liver disease in urban south Indians in relation to different grades of glucose intolerance and metabolic syndrome. Diabetes Res. Clin. Pract., 2009, 84(1), 84-91.
[http://dx.doi.org/10.1016/j.diabres.2008.11.039] [PMID: 19168251]
[16]
Chalmers, J.; Ban, L.; Leena, K.B.; Edwards, K.L.; Grove, J.L.; Aithal, G.P.; Shenoy, K.T. Cohort profile: The Trivandrum non-alcoholic fatty liver disease (NAFLD) cohort. BMJ Open, 2019, 9(5), e027244.
[http://dx.doi.org/10.1136/bmjopen-2018-027244] [PMID: 31061050]
[17]
De, A.; Duseja, A. Nonalcoholic fatty liver disease: Indian perspective. Clin. Liver Dis. (Hoboken), 2021, 18(3), 158-163.
[http://dx.doi.org/10.1002/cld.1141] [PMID: 34691404]
[18]
A community based study to determine the prevalence of nonalcoholic fatty liver disease (NAFLD) and its metabolic risk factors in urban and rural communities of north India.Gastroenterology and Hepatology; Mahajan, R.; Duseja, A.; Kumar, R.; Chakraborti, A.; Lakshmi, P., Eds.; Wiley: USA, 2019.
[19]
Murag, S.; Ahmed, A.; Kim, D. Recent epidemiology of nonalcoholic fatty liver disease. Gut Liver, 2021, 15(2), 206-216.
[http://dx.doi.org/10.5009/gnl20127] [PMID: 32921636]
[20]
Heeringa, M.; Hastings, A.; Yamazaki, S.; de Koning, P. Serum biomarkers in nonalcoholic steatohepatitis: Value for assessing drug effects? Biomarkers Med., 2012, 6(6), 743-757.
[http://dx.doi.org/10.2217/bmm.12.87] [PMID: 23227839]
[21]
Nagaratnam, N.; Nagaratnam, K.; Cheuk, G. Geriatric diseases: Evaluation and management; Springer: Switzerland, 2018.
[http://dx.doi.org/10.1007/978-3-319-33434-9]
[22]
Balp, M.M.; Krieger, N.; Przybysz, R.; Way, N.; Cai, J.; Zappe, D.; McKenna, S.J.; Wall, G.; Janssens, N.; Tapper, E. The burden of non-alcoholic steatohepatitis (NASH) among patients from Europe: A real-world patient-reported outcomes study. JHEP Reports, 2019, 1(3), 154-161.
[http://dx.doi.org/10.1016/j.jhepr.2019.05.009] [PMID: 32039365]
[23]
Gariani, K.; Jornayvaz, F.R. Pathophysiology of NASH in endocrine diseases. Endocr. Connect., 2021, 10(2), R52-R65.
[http://dx.doi.org/10.1530/EC-20-0490] [PMID: 33449917]
[24]
Marra, F.; Lotersztajn, S. Pathophysiology of NASH: Perspectives for a targeted treatment. Curr. Pharm. Des., 2013, 19(29), 5250-5269.
[http://dx.doi.org/10.2174/13816128113199990344] [PMID: 23394092]
[25]
Koo, B.K.; Joo, S.K.; Kim, D.; Bae, J.M.; Park, J.H.; Kim, J.H.; Kim, W. Additive effects of PNPLA3 and TM6SF2 on the histological severity of non-alcoholic fatty liver disease. J. Gastroenterol. Hepatol., 2018, 33(6), 1277-1285.
[http://dx.doi.org/10.1111/jgh.14056] [PMID: 29193269]
[26]
Akuta, N.; Kawamura, Y.; Arase, Y.; Suzuki, F.; Sezaki, H.; Hosaka, T.; Kobayashi, M.; Kobayashi, M.; Saitoh, S.; Suzuki, Y.; Ikeda, K.; Kumada, H. Relationships between genetic variations of PNPLA3, TM6SF2 and histological features of nonalcoholic fatty liver disease in Japan. Gut Liver, 2016, 10(3), 437-445.
[http://dx.doi.org/10.5009/gnl15163] [PMID: 26610348]
[27]
Luo, F.; Oldoni, F.; Das, A. TM6SF2: A novel genetic player in nonalcoholic fatty liver and cardiovascular disease. Hepatol. Commun., 2022, 6(3), 448-460.
[http://dx.doi.org/10.1002/hep4.1822] [PMID: 34532996]
[28]
Meroni, M.; Longo, M.; Fracanzani, A.L.; Dongiovanni, P. MBOAT7 down-regulation by genetic and environmental factors predisposes to MAFLD. EBioMedicine, 2020, 57, 102866.
[http://dx.doi.org/10.1016/j.ebiom.2020.102866] [PMID: 32629394]
[29]
The genetics of nonalcoholic fatty liver disease: Spotlight on PNPLA3 and TM6SF2. Seminars in liver disease; Anstee, Q.M.; Day, C.P., Eds.; Thieme Medical Publishers: Stuttgart, 2015.
[30]
Macias, J.; Parra-Membrives, P.; Sosa-Moreno, F.; Rincon, P.; Martinez-Baena, D.; Fernandez-Fuertes, M.; Lorente-Herce, J.M.; Martinez, R.C.; Jimenez-Riera, G.; Corma-Gomez, A.; Gonzalez-Serna, A.; Pineda, J.A.; Real, L.M. Controlled attenuation parameter-insulin resistance (CIR) score to predict non-alcoholic steatohepatitis. Sci. Rep., 2022, 12(1), 21897.
[http://dx.doi.org/10.1038/s41598-022-25931-7] [PMID: 36536019]
[31]
Abdel-Rahman, R. Non-alcoholic fatty liver disease: Epidemiology, pathophysiology and an update on the therapeutic approaches. Asian Pac. J. Trop. Biomed., 2022, 12(3), 99.
[http://dx.doi.org/10.4103/2221-1691.338919]
[32]
Turnbaugh, PJ; Ley, RE; Mahowald, MA; Magrini, V; Mardis, ER; Gordon, JI An obesity-associated gut microbiome with increased capacity for energy harvest. Nature, 2006, 444(7122), 1027-31.
[33]
Chen, J.; Deng, X.; Liu, Y.; Tan, Q.; Huang, G.; Che, Q.; Guo, J.; Su, Z. Kupffer cells in non-alcoholic fatty liver disease: Friend or foe? Int. J. Biol. Sci., 2020, 16(13), 2367-2378.
[http://dx.doi.org/10.7150/ijbs.47143] [PMID: 32760204]
[34]
Baranova, A.; Younossi, Z.M. The future is around the corner: Noninvasive diagnosis of progressive nonalcoholic steatohepatitis; Wiley Online Library: Hoboken, 2008, pp. 373-375.
[35]
Poynard, T.; Ratziu, V.; Naveau, S.; Thabut, D.; Charlotte, F.; Messous, D.; Capron, D.; Abella, A.; Massard, J.; Ngo, Y.; Munteanu, M.; Mercadier, A.; Manns, M.; Albrecht, J. The diagnostic value of biomarkers (SteatoTest) for the prediction of liver steatosis. Comp. Hepatol., 2005, 4(1), 10.
[http://dx.doi.org/10.1186/1476-5926-4-10] [PMID: 16375767]
[36]
Bedogni, G.; Bellentani, S.; Miglioli, L.; Masutti, F.; Passalacqua, M.; Castiglione, A.; Tiribelli, C. The Fatty Liver Index: A simple and accurate predictor of hepatic steatosis in the general population. BMC Gastroenterol., 2006, 6(1), 33.
[http://dx.doi.org/10.1186/1471-230X-6-33] [PMID: 17081293]
[37]
Kotronen, A.; Peltonen, M.; Hakkarainen, A.; Sevastianova, K.; Bergholm, R.; Johansson, L.M.; Lundbom, N.; Rissanen, A.; Ridderstråle, M.; Groop, L.; Orho-Melander, M.; Yki-Järvinen, H. Prediction of non-alcoholic fatty liver disease and liver fat using metabolic and genetic factors. Gastroenterology, 2009, 137(3), 865-872.
[http://dx.doi.org/10.1053/j.gastro.2009.06.005] [PMID: 19524579]
[38]
Kwok, R.; Tse, Y.K.; Wong, G.L.H.; Ha, Y.; Lee, A.U.; Ngu, M.C.; Chan, H.L.Y.; Wong, V.W.S. Systematic review with meta-analysis: Non-invasive assessment of non-alcoholic fatty liver disease - the role of transient elastography and plasma cytokeratin-18 fragments. Aliment. Pharmacol. Ther., 2014, 39(3), 254-269.
[http://dx.doi.org/10.1111/apt.12569] [PMID: 24308774]
[39]
Ajmera, V.; Perito, E.R.; Bass, N.M.; Terrault, N.A.; Yates, K.P.; Gill, R.; Loomba, R.; Diehl, A.M.; Aouizerat, B.E. Novel plasma biomarkers associated with liver disease severity in adults with nonalcoholic fatty liver disease. Hepatology, 2017, 65(1), 65-77.
[http://dx.doi.org/10.1002/hep.28776] [PMID: 27532276]
[40]
Jarrar, M.H.; Baranova, A.; Collantes, R.; Ranard, B.; Stepanova, M.; Bennett, C.; Fang, Y.; Elariny, H.; Goodman, Z.; Chandhoke, V.; Younossi, Z.M. Adipokines and cytokines in non-alcoholic fatty liver disease. Aliment. Pharmacol. Ther., 2008, 27(5), 412-421.
[http://dx.doi.org/10.1111/j.1365-2036.2007.03586.x] [PMID: 18081738]
[41]
Alkhouri, N.; Berk, M.; Yerian, L.; Lopez, R.; Chung, Y.M.; Zhang, R.; McIntyre, T.M.; Feldstein, A.E.; Hazen, S.L. OxNASH score correlates with histologic features and severity of nonalcoholic fatty liver disease. Dig. Dis. Sci., 2014, 59(7), 1617-1624.
[http://dx.doi.org/10.1007/s10620-014-3031-8] [PMID: 24464211]
[42]
Newsome, P.N.; Sasso, M.; Deeks, J.J.; Paredes, A.; Boursier, J.; Chan, W.K.; Yilmaz, Y.; Czernichow, S.; Zheng, M.H.; Wong, V.W.S.; Allison, M.; Tsochatzis, E.; Anstee, Q.M.; Sheridan, D.A.; Eddowes, P.J.; Guha, I.N.; Cobbold, J.F.; Paradis, V.; Bedossa, P.; Miette, V.; Fournier-Poizat, C.; Sandrin, L.; Harrison, S.A. FibroScan-AST (FAST) score for the non-invasive identification of patients with non-alcoholic steatohepatitis with significant activity and fibrosis: A prospective derivation and global validation study. Lancet Gastroenterol. Hepatol., 2020, 5(4), 362-373.
[http://dx.doi.org/10.1016/S2468-1253(19)30383-8] [PMID: 32027858]
[43]
Younossi, ZM; Felix, S; Jeffers, T; Younossi, E; Nader, F; Pham, H Performance of the enhanced liver fibrosis test to estimate advanced fibrosis among patients with nonalcoholic fatty liver disease. JAMA, 2021, 4(9), e2123923.
[http://dx.doi.org/10.1001/jamanetworkopen.2021.23923]
[44]
Tang, A.; Dzyubak, B.; Yin, M.; Schlein, A.; Henderson, W.C.; Hooker, J.C.; Delgado, T.I.; Middleton, M.S.; Zheng, L.; Wolfson, T.; Gamst, A.; Loomba, R.; Ehman, R.L.; Sirlin, C.B. MR elastography in nonalcoholic fatty liver disease: Inter-center and inter-analysis-method measurement reproducibility and accuracy at 3T. Eur. Radiol., 2022, 32(5), 2937-2948.
[http://dx.doi.org/10.1007/s00330-021-08381-z] [PMID: 34928415]
[45]
Pu, K.; Wang, Y.; Bai, S.; Wei, H.; Zhou, Y.; Fan, J.; Qiao, L. Diagnostic accuracy of controlled attenuation parameter (CAP) as a non-invasive test for steatosis in suspected non-alcoholic fatty liver disease: A systematic review and meta-analysis. BMC Gastroenterol., 2019, 19(1), 51.
[http://dx.doi.org/10.1186/s12876-019-0961-9] [PMID: 30961539]
[46]
Altaf, B.; Rehman, A.; Jawed, S.; Raouf, A. Association of liver biomarkers and cytokeratin-18 in Nonalcoholic fatty liver disease patients. Pak. J. Med. Sci., 2020, 36(3), 387-390.
[http://dx.doi.org/10.12669/pjms.36.3.1674] [PMID: 32292439]
[47]
Wagner, J.; Kumar, Y.; Lautenbach, A.; von Kroge, P.; Wolter, S.; Mann, O.; Izbicki, J.; Gagliani, N.; Duprée, A. Fatty acid-binding protein-4 (FABP4) and matrix metalloproteinase-9 (MMP9) as predictive values for nonalcoholic steatohepatitis (NASH). Lipids Health Dis., 2023, 22(1), 1.
[http://dx.doi.org/10.1186/s12944-022-01764-1] [PMID: 36609276]
[48]
Jang, S.Y.; Tak, W.Y.; Park, S.Y.; Kweon, Y.O.; Lee, Y.R.; Kim, G.; Hur, K.; Han, M.H.; Lee, W.K. Diagnostic efficacy of serum Mac-2 binding protein glycosylation isomer and other markers for liver fibrosis in non-alcoholic fatty liver diseases. Ann. Lab. Med., 2021, 41(3), 302-309.
[http://dx.doi.org/10.3343/alm.2021.41.3.302] [PMID: 33303715]
[49]
Hannah, W.N., Jr; Harrison, S.A. Lifestyle and dietary interventions in the management of nonalcoholic fatty liver disease. Dig. Dis. Sci., 2016, 61(5), 1365-1374.
[http://dx.doi.org/10.1007/s10620-016-4153-y] [PMID: 27052013]
[50]
Jump, D.B.; Lytle, K.A.; Depner, C.M.; Tripathy, S. Omega-3 polyunsaturated fatty acids as a treatment strategy for nonalcoholic fatty liver disease. Pharmacol. Ther., 2018, 181, 108-125.
[http://dx.doi.org/10.1016/j.pharmthera.2017.07.007] [PMID: 28723414]
[51]
Luyckx, F.H.; Desaive, C.; Thiry, A.; Dewé, W.; Scheen, A.J.; Gielen, J.E.; Lefèbvre, P.J. Liver abnormalities in severely obese subjects: Effect of drastic weight loss after gastroplasty. Int. J. Obes., 1998, 22(3), 222-226.
[http://dx.doi.org/10.1038/sj.ijo.0800571] [PMID: 9539189]
[52]
Armstrong, M.J.; Gaunt, P.; Aithal, G.P.; Barton, D.; Hull, D.; Parker, R.; Hazlehurst, J.M.; Guo, K.; Abouda, G.; Aldersley, M.A.; Stocken, D.; Gough, S.C.; Tomlinson, J.W.; Brown, R.M.; Hübscher, S.G.; Newsome, P.N. Liraglutide safety and efficacy in patients with non-alcoholic steatohepatitis (LEAN): A multicentre, double-blind, randomised, placebo-controlled phase 2 study. Lancet, 2016, 387(10019), 679-690.
[http://dx.doi.org/10.1016/S0140-6736(15)00803-X] [PMID: 26608256]
[53]
Newsome, P.N.; Buchholtz, K.; Cusi, K.; Linder, M.; Okanoue, T.; Ratziu, V.; Sanyal, A.J.; Sejling, A.S.; Harrison, S.A. A placebo-controlled trial of subcutaneous semaglutide in nonalcoholic steatohepatitis. N. Engl. J. Med., 2021, 384(12), 1113-1124.
[http://dx.doi.org/10.1056/NEJMoa2028395] [PMID: 33185364]
[54]
Belfort, R.; Harrison, S.A.; Brown, K.; Darland, C.; Finch, J.; Hardies, J.; Balas, B.; Gastaldelli, A.; Tio, F.; Pulcini, J.; Berria, R.; Ma, J.Z.; Dwivedi, S.; Havranek, R.; Fincke, C.; DeFronzo, R.; Bannayan, G.A.; Schenker, S.; Cusi, K. A placebo-controlled trial of pioglitazone in subjects with nonalcoholic steatohepatitis. N. Engl. J. Med., 2006, 355(22), 2297-2307.
[http://dx.doi.org/10.1056/NEJMoa060326] [PMID: 17135584]
[55]
Filipovic, B.; Lukic, S.; Mijac, D.; Marjanovic-Haljilji, M.; Vojnovic, M.; Bogdanovic, J.; Glisic, T.; Filipovic, N.; Al Kiswani, J.; Djokovic, A.; Kapor, S.; Kapor, S.; Bukumiric, Z.; Starcevic, A. The new therapeutic approaches in the treatment of non-alcoholic fatty liver disease. Int. J. Mol. Sci., 2021, 22(24), 13219.
[http://dx.doi.org/10.3390/ijms222413219] [PMID: 34948020]
[56]
Cusi, K.; Bril, F.; Barb, D.; Polidori, D.; Sha, S.; Ghosh, A.; Farrell, K.; Sunny, N.E.; Kalavalapalli, S.; Pettus, J.; Ciaraldi, T.P.; Mudaliar, S.; Henry, R.R. Effect of canagliflozin treatment on hepatic triglyceride content and glucose metabolism in patients with type 2 diabetes. Diabetes Obes. Metab., 2019, 21(4), 812-821.
[http://dx.doi.org/10.1111/dom.13584] [PMID: 30447037]
[57]
Kahl, S.; Gancheva, S.; Straßburger, K.; Herder, C.; Machann, J.; Katsuyama, H.; Kabisch, S.; Henkel, E.; Kopf, S.; Lagerpusch, M.; Kantartzis, K.; Kupriyanova, Y.; Markgraf, D.; van Gemert, T.; Knebel, B.; Wolkersdorfer, M.F.; Kuss, O.; Hwang, J.H.; Bornstein, S.R.; Kasperk, C.; Stefan, N.; Pfeiffer, A.; Birkenfeld, A.L.; Roden, M. Empagliflozin effectively lowers liver fat content in well-controlled type 2 diabetes: A randomized, double-blind, phase 4, placebo-controlled trial. Diabetes Care, 2020, 43(2), 298-305.
[http://dx.doi.org/10.2337/dc19-0641] [PMID: 31540903]
[58]
Latva-Rasku, A.; Honka, M.J.; Kullberg, J.; Mononen, N.; Lehtimäki, T.; Saltevo, J.; Kirjavainen, A.K.; Saunavaara, V.; Iozzo, P.; Johansson, L.; Oscarsson, J.; Hannukainen, J.C.; Nuutila, P. The SGLT2 inhibitor dapagliflozin reduces liver fat but does not affect tissue insulin sensitivity: A randomized, double-blind, placebo-controlled study with 8-week treatment in type 2 diabetes patients. Diabetes Care, 2019, 42(5), 931-937.
[http://dx.doi.org/10.2337/dc18-1569] [PMID: 30885955]
[59]
Kuchay, M.S.; Krishan, S.; Mishra, S.K.; Farooqui, K.J.; Singh, M.K.; Wasir, J.S.; Bansal, B.; Kaur, P.; Jevalikar, G.; Gill, H.K.; Choudhary, N.S.; Mithal, A. Effect of empagliflozin on liver fat in patients with type 2 diabetes and nonalcoholic fatty liver disease: A randomized controlled trial (E-LIFT Trial). Diabetes Care, 2018, 41(8), 1801-1808.
[http://dx.doi.org/10.2337/dc18-0165] [PMID: 29895557]
[60]
Younossi, Z.M.; Ratziu, V.; Loomba, R.; Rinella, M.; Anstee, Q.M.; Goodman, Z.; Bedossa, P.; Geier, A.; Beckebaum, S.; Newsome, P.N.; Sheridan, D.; Sheikh, M.Y.; Trotter, J.; Knapple, W.; Lawitz, E.; Abdelmalek, M.F.; Kowdley, K.V.; Montano-Loza, A.J.; Boursier, J.; Mathurin, P.; Bugianesi, E.; Mazzella, G.; Olveira, A.; Cortez-Pinto, H.; Graupera, I.; Orr, D.; Gluud, L.L.; Dufour, J.F.; Shapiro, D.; Campagna, J.; Zaru, L.; MacConell, L.; Shringarpure, R.; Harrison, S.; Sanyal, A.J.; Abdelmalek, M.; Abrams, G.; Aguilar, H.; Ahmed, A.; Aigner, E.; Aithal, G.; Ala, A.; Alazawi, W.; Albillos, A.; Allison, M.; Al-Shamma, S.; Andrade, R.; Andreone, P.; Angelico, M.; Ankoma-Sey, V.; Anstee, Q.; Anty, R.; Araya, V.; Arenas Ruiz, J.I.; Arkkila, P.; Arora, M.; Asselah, T.; Au, J.; Ayonrinde, O.; Bailey, R.J.; Balakrishnan, M.; Bambha, K.; Bansal, M.; Barritt, S.; Bate, J.; Beato, J.; Beckebaum, S.; Behari, J.; Bellot, P.; Ben Ari, Z.; Bennett, M.; Berenguer, M.; Beretta-Piccoli, B.T.; Berg, T.; Bonacini, M.; Bonet, L.; Borg, B.; Bourliere, M.; Boursier, J.; Bowman, W.; Bradley, D.; Brankovic, M.; Braun, M.; Bronowicki, J-P.; Bruno, S.; Bugianesi, E.; Cai, C.; Calderon, A.; Calleja Panero, J.L.; Carey, E.; Carmiel, M.; Carrión, J.A.; Cave, M.; Chagas, C.; Chami, T.; Chang, A.; Coates, A.; Cobbold, J.; Costentin, C.; Corey, K.; Corless, L.; Cortez-Pinto, H.; Crespo, J.; Cruz Pereira, O.; de Ledinghen, V.; deLemos, A.; Diago, M.; Dong, M.; Dufour, J-F.; Dugalic, P.; Dunn, W.; Elkhashab, M.; Epstein, M.; Escudero-Garcia, M.D.; Etzion, O.; Evans, L.; Falcone, R.; Fernandez, C.; Ferreira, J.; Fink, S.; Finnegan, K.; Firpi-Morell, R.; Floreani, A.; Fontanges, T.; Ford, R.; Forrest, E.; Fowell, A.; Fracanzani, A.L.; Francque, S.; Freilich, B.; Frias, J.; Fuchs, M.; Fuentes, J.; Galambos, M.; Gallegos, J.; Geerts, A.; Geier, A.; George, J.; Ghali, M.; Ghalib, R.; Gholam, P.; Gines, P.; Gitlin, N.; Gluud, L.L.; Goeser, T.; Goff, J.; Gordon, S.; Gordon, F.; Goria, O.; Greer, S.; Grigorian, A.; Gronbaek, H.; Guillaume, M.; Gunaratnam, N.; Halegoua-De Marzio, D.; Hameed, B.; Hametner, S.; Hamilton, J.; Harrison, S.; Hartleb, M.; Hassanein, T.; Häussinger, D.; Hellstern, P.; Herring, R.; Heurich, E.; Hezode, C.; Hinrichsen, H.; Holland Fischer, P.; Horsmans, Y.; Huang, J.; Hussaini, H.; Jakiche, A.; Jeffers, L.; Jones, B.; Jorge, R.; Jorquera, F.; Joshi, S.; Kahraman, A.; Kaita, K.; Karyotakis, N.; Kayali, Z.; Kechagias, S.; Kepczyk, T.; Khalili, M.; Khallafi, H.; Kluwe, J.; Knapple, W.; Kohli, A.; Korenblat, K.; Kowdley, K.; Krag, A.; Krause, R.; Kremer, A.; Krok, K.; Krstic, M.; Kugelmas, M.; Kumar, S.; Kuwada, S.; Labarriere, D.; Lai, M.; Laleman, W.; Lampertico, P.; Lawitz, E.; Lee, A.; Leroy, V.; Lidofsky, S.; Lim, T.H.; Lim, J.; Lipkis, D.; Little, E.; Lonardo, A.; Long, M.; Loomba, R.; Luketic, V.A.C.; Lurie, Y.; Macedo, G.; Magalhaes, J.; Makara, M.; Maliakkal, B.; Manns, M.; Manousou, P.; Mantry, P.; Marchesini, G.; Marinho, C.; Marotta, P.; Marschall, H-U.; Martinez, L.; Mathurin, P.; Mayo, M.; Mazzella, G.; McCullen, M.; McLaughlin, W.; Merle, U.; Merriman, R.; Modi, A.; Molina, E.; Montano-Loza, A.; Monteverde, C.; Morales Cardona, A.; Moreea, S.; Moreno, C.; Morisco, F.; Mubarak, A.; Muellhaupt, B.; Mukherjee, S.; Müller, T.; Nagorni, A.; Naik, J.; Neff, G.; Nevah, M.; Newsome, P.; Nguyen-Khac, E.; Noureddin, M.; Oben, J.; Olveira, A.; Orlent, H.; Orr, D.; Orr, J.; Ortiz-Lasanta, G.; Ozenne, V.; Pandya, P.; Paredes, A.; Park, J.; Patel, J.; Patel, K.; Paul, S.; Patton, H.; Peck-Radosavljevic, M.; Petta, S.; Pianko, S.; Piekarska, A.; Pimstone, N.; Pisegna, J.; Pockros, P.; Pol, S.; Porayko, M.; Poulos, J.; Pound, D.; Pouzar, J.; Presa Ramos, J.; Pyrsopoulos, N.; Rafiq, N.; Muller, K.; Ramji, A.; Ratziu, V.; Ravinuthala, R.; Reddy, C.; Reddy K G, G.; Reddy K R, K.R.; Regenstein, F.; Reindollar, R.; Reynolds, J.; Riera, A.; Rinella, M.; Rivera Acosta, J.; Robaeys, G.; Roberts, S.; Rodriguez-Perez, F.; Romero, S.; Romero-Gomez, M.; Rubin, R.; Rumi, M.; Rushbrook, S.; Rust, C.; Ryan, M.; Safadi, R.; Said, A.; Salminen, K.; Samuel, D.; Santoro, J.; Sanyal, A.; Sarkar, S.; Schaeffer, C.; Schattenberg, J.; Schiefke, I.; Schiff, E.; Schmidt, W.; Schneider, J.; Schouten, J.; Schultz, M.; Sebastiani, G.; Semela, D.; Sepe, T.; Sheikh, A.; Sheikh, M.; Sheridan, D.; Sherman, K.; Shibolet, O.; Shiffman, M.; Siddique, A.; Sieberhagen, C.; Sigal, S.; Sikorska, K.; Simon, K.; Sinclair, M.; Skoien, R.; Solis, J.; Sood, S.; Souder, B.; Spivey, J.; Stal, P.; Stinton, L.; Strasser, S.; Svorcan, P.; Szabo, G.; Talal, A.; Tam, E.; Tetri, B.; Thuluvath, P.; Tobias, H.; Tomasiewicz, K.; Torres, D.; Tran, A.; Trauner, M.; Trautwein, C.; Trotter, J.; Tsochatzis, E.; Unitt, E.; Vargas, V.; Varkonyi, I.; Veitsman, E.; Vespasiani Gentilucci, U.; Victor, D.; Vierling, J.; Vincent, C.; Vincze, A.; von der Ohe, M.; Von Roenn, N.; Vuppalanchi, R.; Waters, M.; Watt, K.; Wattacheril, J.; Weltman, M.; Wieland, A.; Wiener, G.; Williams A, A.; Williams J, J.; Wilson, J.; Yataco, M.; Yoshida, E.; Younes, Z.; Yuan, L.; Zivony, A.; Zogg, D.; Zoller, H.; Zoulim, F.; Zuckerman, E.; Zuin, M. Obeticholic acid for the treatment of non-alcoholic steatohepatitis: Interim analysis from a multicentre, randomised, placebo-controlled phase 3 trial. Lancet, 2019, 394(10215), 2184-2196.
[http://dx.doi.org/10.1016/S0140-6736(19)33041-7] [PMID: 31813633]
[61]
Ratziu, V.; Sanyal, A.J.; Loomba, R.; Rinella, M.; Harrison, S.; Anstee, Q.M.; Goodman, Z.; Bedossa, P.; MacConell, L.; Shringarpure, R.; Shah, A.; Younossi, Z. REGENERATE: Design of a pivotal, randomised, phase 3 study evaluating the safety and efficacy of obeticholic acid in patients with fibrosis due to nonalcoholic steatohepatitis. Contemp. Clin. Trials, 2019, 84, 105803.
[http://dx.doi.org/10.1016/j.cct.2019.06.017] [PMID: 31260793]
[62]
Stofan, M.; Guo, G.L. Bile acids and FXR: Novel targets for liver diseases. Front. Med., 2020, 7, 544.
[http://dx.doi.org/10.3389/fmed.2020.00544] [PMID: 33015098]
[63]
Patel, K.; Harrison, S.A.; Elkhashab, M.; Trotter, J.F.; Herring, R.; Rojter, S.E.; Kayali, Z.; Wong, V.W.S.; Greenbloom, S.; Jayakumar, S.; Shiffman, M.L.; Freilich, B.; Lawitz, E.J.; Gane, E.J.; Harting, E.; Xu, J.; Billin, A.N.; Chung, C.; Djedjos, C.S.; Subramanian, G.M.; Myers, R.P.; Middleton, M.S.; Rinella, M.; Noureddin, M. Cilofexor, a nonsteroidal FXR agonist, in patients with noncirrhotic NASH: A phase 2 randomized controlled trial. Hepatology, 2020, 72(1), 58-71.
[http://dx.doi.org/10.1002/hep.31205] [PMID: 32115759]
[64]
Harrison, S.A.; Bashir, M.R.; Guy, C.D.; Zhou, R.; Moylan, C.A.; Frias, J.P.; Alkhouri, N.; Bansal, M.B.; Baum, S.; Neuschwander-Tetri, B.A.; Taub, R.; Moussa, S.E. Resmetirom (MGL-3196) for the treatment of non-alcoholic steatohepatitis: A multicentre, randomised, double-blind, placebo-controlled, phase 2 trial. Lancet, 2019, 394(10213), 2012-2024.
[http://dx.doi.org/10.1016/S0140-6736(19)32517-6] [PMID: 31727409]
[65]
Harrison, S.A.; Bashir, M.; Moussa, S.E.; McCarty, K.; Pablo Frias, J.; Taub, R.; Alkhouri, N. Effects of Resmetirom on noninvasive endpoints in a 36-week phase 2 active treatment extension study in patients with NASH. Hepatol. Commun., 2021, 5(4), 573-588.
[http://dx.doi.org/10.1002/hep4.1657] [PMID: 33860116]
[66]
Zhou, J.; Waskowicz, L.R.; Lim, A.; Liao, X.H.; Lian, B.; Masamune, H.; Refetoff, S.; Tran, B.; Koeberl, D.D.; Yen, P.M. A liver-specific thyromimetic, VK2809, decreases hepatosteatosis in glycogen storage disease type Ia. Thyroid, 2019, 29(8), 1158-1167.
[http://dx.doi.org/10.1089/thy.2019.0007] [PMID: 31337282]
[67]
Loomba, R.; Neutel, J.; Mohseni, R.; Bernard, D.; Severance, R.; Dao, M.; Saini, S.; Margaritescu, C.; Homer, K.; Tran, B.; Mancini, M.; Masamune, H.; Lian, B. LBP-20-VK2809, a novel liver-directed thyroid receptor beta agonist, significantly reduces liver fat with both low and high doses in patients with non-alcoholic fatty liver disease: A phase 2 randomized, placebo-controlled trial. J. Hepatol., 2019, 70(1), e150-e151.
[http://dx.doi.org/10.1016/S0618-8278(19)30266-X]
[68]
Ratziu, V.; Sanyal, A.; Harrison, S.A.; Wong, V.W.S.; Francque, S.; Goodman, Z.; Aithal, G.P.; Kowdley, K.V.; Seyedkazemi, S.; Fischer, L.; Loomba, R.; Abdelmalek, M.F.; Tacke, F. Cenicriviroc treatment for adults with nonalcoholic steatohepatitis and fibrosis: Final analysis of the phase 2b CENTAUR study. Hepatology, 2020, 72(3), 892-905.
[http://dx.doi.org/10.1002/hep.31108] [PMID: 31943293]
[69]
Sanyal, A.J.; Chalasani, N.; Kowdley, K.V.; McCullough, A.; Diehl, A.M.; Bass, N.M.; Neuschwander-Tetri, B.A.; Lavine, J.E.; Tonascia, J.; Unalp, A.; Van Natta, M.; Clark, J.; Brunt, E.M.; Kleiner, D.E.; Hoofnagle, J.H.; Robuck, P.R. Pioglitazone, vitamin E, or placebo for nonalcoholic steatohepatitis. N. Engl. J. Med., 2010, 362(18), 1675-1685.
[http://dx.doi.org/10.1056/NEJMoa0907929] [PMID: 20427778]
[70]
Safadi, R; Konikoff, FM; Mahamid, M; Zelber-Sagi, S; Halpern, M; Gilat, T The fatty acid–bile acid conjugate aramchol reduces liver fat content in patients with nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol, 2014, 12(12), 2085-91.
[http://dx.doi.org/10.1016/j.cgh.2014.04.038]
[71]
Kim, C-W; Addy, C; Kusunoki, J; Anderson, NN; Deja, S; Fu, X Acetyl CoA carboxylase inhibition reduces hepatic steatosis but elevates plasma triglycerides in mice and humans: A bedside to bench investigation. Cell Metabolism, 2017, 26(2), 394-406.
[72]
Harriman, G.; Greenwood, J.; Bhat, S.; Huang, X.; Wang, R.; Paul, D.; Tong, L.; Saha, A.K.; Westlin, W.F.; Kapeller, R.; Harwood, H.J., Jr Acetyl-CoA carboxylase inhibition by ND-630 reduces hepatic steatosis, improves insulin sensitivity, and modulates dyslipidemia in rats. Proc. Natl. Acad. Sci. USA, 2016, 113(13), E1796-E1805.
[http://dx.doi.org/10.1073/pnas.1520686113] [PMID: 26976583]
[73]
Loomba, R; Kayali, Z; Noureddin, M; Ruane, P; Lawitz, EJ; Bennett, M GS-0976 reduces hepatic steatosis and fibrosis markers in patients with nonalcoholic fatty liver disease. Gastroenterology, 2018, 155(5), 1463-73.
[74]
Dongiovanni, P.; Petta, S.; Mannisto, V.; Mancina, R.M.; Pipitone, R.; Karja, V.; Maggioni, M.; Kakela, P.; Wiklund, O.; Mozzi, E.; Grimaudo, S.; Kaminska, D.; Rametta, R.; Craxi, A.; Fargion, S.; Nobili, V.; Romeo, S.; Pihlajamaki, J.; Valenti, L. Statin use and non-alcoholic steatohepatitis in at risk individuals. J. Hepatol., 2015, 63(3), 705-712.
[http://dx.doi.org/10.1016/j.jhep.2015.05.006] [PMID: 25980762]
[75]
Harrison, S.A.; Alkhouri, N.; Davison, B.A.; Sanyal, A.; Edwards, C.; Colca, J.R.; Lee, B.H.; Loomba, R.; Cusi, K.; Kolterman, O.; Cotter, G.; Dittrich, H.C. Insulin sensitizer MSDC-0602K in non-alcoholic steatohepatitis: A randomized, double-blind, placebo-controlled phase IIb study. J. Hepatol., 2020, 72(4), 613-626.
[http://dx.doi.org/10.1016/j.jhep.2019.10.023] [PMID: 31697972]
[76]
Loomba, R.; Noureddin, M.; Kowdley, K.V.; Kohli, A.; Sheikh, A.; Neff, G.; Bhandari, B.R.; Gunn, N.; Caldwell, S.H.; Goodman, Z.; Wapinski, I.; Resnick, M.; Beck, A.H.; Ding, D.; Jia, C.; Chuang, J.C.; Huss, R.S.; Chung, C.; Subramanian, G.M.; Myers, R.P.; Patel, K.; Borg, B.B.; Ghalib, R.; Kabler, H.; Poulos, J.; Younes, Z.; Elkhashab, M.; Hassanein, T.; Iyer, R.; Ruane, P.; Shiffman, M.L.; Strasser, S.; Wong, V.W.S.; Alkhouri, N. Combination therapies including cilofexor and firsocostat for bridging fibrosis and cirrhosis attributable to NASH. Hepatology, 2021, 73(2), 625-643.
[http://dx.doi.org/10.1002/hep.31622] [PMID: 33169409]
[77]
Dufour, J.F.; Caussy, C.; Loomba, R. Combination therapy for non-alcoholic steatohepatitis: Rationale, opportunities and challenges. Gut, 2020, 69(10), 1877-1884.
[http://dx.doi.org/10.1136/gutjnl-2019-319104] [PMID: 32381514]
[78]
Alkhouri, N.; Herring, R.; Kabler, H.; Kayali, Z.; Hassanein, T.; Kohli, A.; Huss, R.S.; Zhu, Y.; Billin, A.N.; Damgaard, L.H.; Buchholtz, K.; Kjær, M.S.; Balendran, C.; Myers, R.P.; Loomba, R.; Noureddin, M. Safety and efficacy of combination therapy with semaglutide, cilofexor and firsocostat in patients with non-alcoholic steatohepatitis: A randomised, open-label phase II trial. J. Hepatol., 2022, 77(3), 607-618.
[http://dx.doi.org/10.1016/j.jhep.2022.04.003] [PMID: 35439567]
[79]
Pedrosa, M.; Seyedkazemi, S.; Francque, S.; Sanyal, A.; Rinella, M.; Charlton, M.; Loomba, R.; Ratziu, V.; Kochuparampil, J.; Fischer, L.; Vaidyanathan, S.; Anstee, Q.M. A randomized, double-blind, multicenter, phase 2b study to evaluate the safety and efficacy of a combination of tropifexor and cenicriviroc in patients with nonalcoholic steatohepatitis and liver fibrosis: Study design of the TANDEM trial. Contemp. Clin. Trials, 2020, 88, 105889.
[http://dx.doi.org/10.1016/j.cct.2019.105889] [PMID: 31731005]
[80]
Johansson, L.; Hockings, P.D.; Johnsson, E.; Dronamraju, N.; Maaske, J.; Garcia-Sanchez, R.; Wilding, J.P.H. Dapagliflozin plus saxagliptin add-on to metformin reduces liver fat and adipose tissue volume in patients with type 2 diabetes. Diabetes Obes. Metab., 2020, 22(7), 1094-1101.
[http://dx.doi.org/10.1111/dom.14004] [PMID: 32072735]
[81]
Bril, F.; Biernacki, D.M.; Kalavalapalli, S.; Lomonaco, R.; Subbarayan, S.K.; Lai, J.; Tio, F.; Suman, A.; Orsak, B.K.; Hecht, J.; Cusi, K. Role of vitamin E for nonalcoholic steatohepatitis in patients with type 2 diabetes: A randomized controlled trial. Diabetes Care, 2019, 42(8), 1481-1488.
[http://dx.doi.org/10.2337/dc19-0167] [PMID: 31332029]
[82]
Ćulafić, M.; Vezmar-Kovačević, S.; Dopsaj, V.; Oluić, B.; Bidžić, N.; Miljković, B.; Ćulafić, Đ. Pentoxifylline with metformin treatment improves biochemical parameters in patients with nonalcoholic steatohepatitis. J. Med. Biochem., 2020, 39(3), 290-298.
[PMID: 33269017]
[83]
Cheng, J.; Liu, C.; Hu, K.; Greenberg, A.; Wu, D.; Ausman, L.M.; McBurney, M.W.; Wang, X.D. Ablation of systemic SIRT1 activity promotes nonalcoholic fatty liver disease by affecting liver-mesenteric adipose tissue fatty acid mobilization. Biochim. Biophys. Acta Mol. Basis Dis., 2017, 1863(11), 2783-2790.
[http://dx.doi.org/10.1016/j.bbadis.2017.08.004] [PMID: 28789977]
[84]
Colak, Y.; Ozturk, O.; Senates, E.; Tuncer, I.; Yorulmaz, E.; Adali, G.; Doganay, L.; Enc, F.Y. SIRT1 as a potential therapeutic target for treatment of nonalcoholic fatty liver disease. Med. Sci. Monit., 2011, 17(5), HY5-HY9.
[http://dx.doi.org/10.12659/MSM.881749] [PMID: 21525818]
[85]
Colak, Y.; Yesil, A.; Mutlu, H.H.; Caklili, O.T.; Ulasoglu, C.; Senates, E.; Takir, M.; Kostek, O.; Yilmaz, Y.; Enc, F.Y.; Tasan, G.; Tuncer, I. A potential treatment of non-alcoholic fatty liver disease with SIRT1 activators. J. Gastrointestin. Liver Dis., 2014, 23(3), 311-319.
[http://dx.doi.org/10.15403/jgld.2014.1121.233.yck] [PMID: 25267960]
[86]
de Gregorio, E.; Colell, A.; Morales, A.; Marí, M. Relevance of SIRT1-NF-κB axis as therapeutic target to ameliorate inflammation in liver disease. Int. J. Mol. Sci., 2020, 21(11), 3858.
[http://dx.doi.org/10.3390/ijms21113858] [PMID: 32485811]
[87]
Zhou, R.; Yi, L.; Ye, X.; Zeng, X.; Liu, K.; Qin, Y.; Zhang, Q.; Mi, M. Resveratrol ameliorates lipid droplet accumulation in liver through a SIRT1/ATF6-dependent mechanism. Cell. Physiol. Biochem., 2018, 51(5), 2397-2420.
[http://dx.doi.org/10.1159/000495898] [PMID: 30537742]
[88]
Venkatasubramanian, S.; Noh, R.M.; Daga, S.; Langrish, J.P.; Joshi, N.V.; Mills, N.L.; Hoffmann, E.; Jacobson, E.W.; Vlasuk, G.P.; Waterhouse, B.R.; Lang, N.N.; Newby, D.E. Cardiovascular effects of a novel SIRT1 activator, SRT2104, in otherwise healthy cigarette smokers. J. Am. Heart Assoc., 2013, 2(3), e000042.
[http://dx.doi.org/10.1161/JAHA.113.000042] [PMID: 23770971]
[89]
Chachay, VS; Macdonald, GA; Martin, JH; Whitehead, JP; O'Moore–Sullivan, TM; Lee, P Resveratrol does not benefit patients with nonalcoholic fatty liver disease. Clinical Gastroenterology and Hepatology, 2014, 12(12), 2092-103.
[http://dx.doi.org/10.1016/j.cgh.2014.02.024]
[90]
Faghihzadeh, F.; Adibi, P.; Rafiei, R.; Hekmatdoost, A. Resveratrol supplementation improves inflammatory biomarkers in patients with nonalcoholic fatty liver disease. Nutr. Res., 2014, 34(10), 837-843.
[http://dx.doi.org/10.1016/j.nutres.2014.09.005] [PMID: 25311610]
[91]
Kozumi, K.; Kodama, T.; Murai, H.; Sakane, S.; Govaere, O.; Cockell, S.; Motooka, D.; Kakita, N.; Yamada, Y.; Kondo, Y.; Tahata, Y.; Yamada, R.; Hikita, H.; Sakamori, R.; Kamada, Y.; Daly, A.K.; Anstee, Q.M.; Tatsumi, T.; Morii, E.; Takehara, T. Transcriptomics identify thrombospondin-2 as a biomarker for NASH and advanced liver fibrosis. Hepatology, 2021, 74(5), 2452-2466.
[http://dx.doi.org/10.1002/hep.31995] [PMID: 34105780]
[92]
Wang, Z.Y.; Keogh, A.; Waldt, A.; Cuttat, R.; Neri, M.; Zhu, S.; Schuierer, S.; Ruchti, A.; Crochemore, C.; Knehr, J.; Bastien, J.; Ksiazek, I.; Sánchez-Taltavull, D.; Ge, H.; Wu, J.; Roma, G.; Helliwell, S.B.; Stroka, D.; Nigsch, F. Single-cell and bulk transcriptomics of the liver reveals potential targets of NASH with fibrosis. Sci. Rep., 2021, 11(1), 19396.
[http://dx.doi.org/10.1038/s41598-021-98806-y] [PMID: 34588551]
[93]
Ilan, Y. Review article: Novel methods for the treatment of non-alcoholic steatohepatitis - targeting the gut immune system to decrease the systemic inflammatory response without immune suppression. Aliment. Pharmacol. Ther., 2016, 44(11-12), 1168-1182.
[http://dx.doi.org/10.1111/apt.13833] [PMID: 27778363]
[94]
Du Plessis, J; Van Pelt, J; Korf, H; Mathieu, C; Van der Schueren, B; Lannoo, M Association of adipose tissue inflammation with histologic severity of nonalcoholic fatty liver disease. Gastroenterology, 2015, 149(3), 635-48.
[http://dx.doi.org/10.1053/j.gastro.2015.05.044]
[95]
Ilan, Y.; Maron, R.; Tukpah, A.M.; Maioli, T.U.; Murugaiyan, G.; Yang, K.; Wu, H.Y.; Weiner, H.L. Induction of regulatory T cells decreases adipose inflammation and alleviates insulin resistance in ob/ob mice. Proc. Natl. Acad. Sci. USA, 2010, 107(21), 9765-9770.
[http://dx.doi.org/10.1073/pnas.0908771107] [PMID: 20445103]
[96]
Lalazar, G.; Mizrahi, M.; Turgeman, I.; Adar, T.; Ben Ya’acov, A.; Shabat, Y.; Nimer, A.; Hemed, N.; Zolotarovya, L.; Lichtenstein, Y.; Lisovoder, N.; Samira, S.; Shalit, I.; Ellis, R.; Ilan, Y. Oral administration of OKT3 MAb to patients with NASH, promotes regulatory T-cell induction, and alleviates insulin resistance: Results of a phase IIa blinded placebo-controlled trial. J. Clin. Immunol., 2015, 35(4), 399-407.
[http://dx.doi.org/10.1007/s10875-015-0160-6] [PMID: 25876706]
[97]
Kuhn, C.; Weiner, H.L. Therapeutic anti-CD3 monoclonal antibodies: From bench to bedside. Immunotherapy, 2016, 8(8), 889-906.
[http://dx.doi.org/10.2217/imt-2016-0049] [PMID: 27161438]
[98]
Bartel, DP icroRNAs: Genomics, biogenesis, mechanism, and function. Cell, 2004, 116(2), 281-97.
[99]
Sud, N.; Taher, J.; Su, Q. MicroRNAs and noncoding RNAs in hepatic lipid and lipoprotein metabolism: Potential therapeutic targets of metabolic disorders. Drug Dev. Res., 2015, 76(6), 318-327.
[http://dx.doi.org/10.1002/ddr.21269] [PMID: 26286650]
[100]
Su, Q.; Kumar, V.; Sud, N.; Mahato, R.I. MicroRNAs in the pathogenesis and treatment of progressive liver injury in NAFLD and liver fibrosis. Adv. Drug Deliv. Rev., 2018, 129, 54-63.
[http://dx.doi.org/10.1016/j.addr.2018.01.009] [PMID: 29391222]
[101]
Latorre, J.; Moreno-Navarrete, J.M.; Mercader, J.M.; Sabater, M.; Rovira, Ò.; Gironès, J.; Ricart, W.; Fernández-Real, J.M.; Ortega, F.J. Decreased lipid metabolism but increased FA biosynthesis are coupled with changes in liver microRNAs in obese subjects with NAFLD. Int. J. Obes., 2017, 41(4), 620-630.
[http://dx.doi.org/10.1038/ijo.2017.21] [PMID: 28119530]
[102]
Ardekani, A.M.; Naeini, M.M. The role of microRNAs in human diseases. Avicenna J. Med. Biotechnol., 2010, 2(4), 161-179.
[PMID: 23407304]
[103]
Miyao, M.; Kotani, H.; Ishida, T.; Kawai, C.; Manabe, S.; Abiru, H.; Tamaki, K. Pivotal role of liver sinusoidal endothelial cells in NAFLD/NASH progression. Lab. Invest., 2015, 95(10), 1130-1144.
[http://dx.doi.org/10.1038/labinvest.2015.95] [PMID: 26214582]
[104]
Rupaimoole, R.; Slack, F.J. MicroRNA therapeutics: Towards a new era for the management of cancer and other diseases. Nat. Rev. Drug Discov., 2017, 16(3), 203-222.
[http://dx.doi.org/10.1038/nrd.2016.246] [PMID: 28209991]
[105]
Hallsworth, K.; Adams, L.A. Lifestyle modification in NAFLD/NASH: Facts and figures. JHEP Reports, 2019, 1(6), 468-479.
[http://dx.doi.org/10.1016/j.jhepr.2019.10.008] [PMID: 32039399]
[106]
Negi, C.K.; Babica, P.; Bajard, L.; Bienertova-Vasku, J.; Tarantino, G. Insights into the molecular targets and emerging pharmacotherapeutic interventions for nonalcoholic fatty liver disease. Metabolism, 2022, 126, 154925.
[http://dx.doi.org/10.1016/j.metabol.2021.154925] [PMID: 34740573]
[107]
Ratziu, V; Harrison, SA; Francque, S; Bedossa, P; Lehert, P; Serfaty, L Elafibranor, an agonist of the peroxisome proliferator− activated receptor− α and− δ, induces resolution of nonalcoholic steatohepatitis without fibrosis worsening. Gastroenterology, 2016, 150(5), 1147-59.
[108]
Liss, K.H.H.; Finck, B.N. PPARs and nonalcoholic fatty liver disease. Biochimie, 2017, 136, 65-74.
[http://dx.doi.org/10.1016/j.biochi.2016.11.009] [PMID: 27916647]
[109]
Neuschwander-Tetri, BA Therapeutic landscape for NAFLD in 2020. Gastroenterology, 2020, 158(7), 1984-98.
[110]
Kumar, D.P.; Caffrey, R.; Marioneaux, J.; Santhekadur, P.K.; Bhat, M.; Alonso, C.; Koduru, S.V.; Philip, B.; Jain, M.R.; Giri, S.R.; Bedossa, P.; Sanyal, A.J. The PPAR α/γ agonist saroglitazar improves insulin resistance and steatohepatitis in a diet induced animal model of nonalcoholic fatty liver disease. Sci. Rep., 2020, 10(1), 9330.
[http://dx.doi.org/10.1038/s41598-020-66458-z] [PMID: 32518275]
[111]
Reilly, S.M.; Lee, C.H. PPARδ as a therapeutic target in metabolic disease. FEBS Lett., 2008, 582(1), 26-31.
[http://dx.doi.org/10.1016/j.febslet.2007.11.040] [PMID: 18036566]
[112]
Adorini, L.; Pruzanski, M.; Shapiro, D. Farnesoid X receptor targeting to treat nonalcoholic steatohepatitis. Drug Discov. Today, 2012, 17(17-18), 988-997.
[http://dx.doi.org/10.1016/j.drudis.2012.05.012] [PMID: 22652341]
[113]
Daly, C.; Rollins, B.J. Monocyte chemoattractant protein-1 (CCL2) in inflammatory disease and adaptive immunity: Therapeutic opportunities and controversies. Microcirculation, 2003, 10(3-4), 247-257.
[http://dx.doi.org/10.1080/mic.10.3-4.247.257] [PMID: 12851642]
[114]
Smalling, R.V.; Delker, D.A.; Zhang, Y.; Nieto, N.; Mcguiness, M.S.; Liu, S.; Friedman, S.L.; Hagedorn, C.H.; Wang, L. Genome-wide transcriptome analysis identifies novel gene signatures implicated in human chronic liver disease. Am. J. Physiol. Gastrointest. Liver Physiol., 2013, 305(5), G364-G374.
[http://dx.doi.org/10.1152/ajpgi.00077.2013] [PMID: 23812039]
[115]
Cipriani, S.; Mencarelli, A.; Palladino, G.; Fiorucci, S. FXR activation reverses insulin resistance and lipid abnormalities and protects against liver steatosis in Zucker (fa/fa) obese rats. J. Lipid Res., 2010, 51(4), 771-784.
[http://dx.doi.org/10.1194/jlr.M001602] [PMID: 19783811]
[116]
Liu, Y.; Wei, R.; Hong, T-P. Potential roles of glucagon-like peptide-1-based therapies in treating non-alcoholic fatty liver disease. World J. Gastroenterol., 2014, 20(27), 9090-9097.
[PMID: 25083081]
[117]
Gao, H.; Zeng, Z.; Zhang, H.; Zhou, X.; Guan, L.; Deng, W.; Xu, L. The glucagon-like peptide-1 analogue liraglutide inhibits oxidative stress and inflammatory response in the liver of rats with diet-induced non-alcoholic fatty liver disease. Biol. Pharm. Bull., 2015, 38(5), 694-702.
[http://dx.doi.org/10.1248/bpb.b14-00505] [PMID: 25947915]
[118]
Yang, Y.; Zhao, Y.; Li, W.; Wu, Y.; Wang, X.; Wang, Y.; Liu, T.; Ye, T.; Xie, Y.; Cheng, Z.; He, J.; Bai, P.; Zhang, Y.; Ouyang, L. Emerging targets and potential therapeutic agents in non-alcoholic fatty liver disease treatment. Eur. J. Med. Chem., 2020, 197, 112311.
[http://dx.doi.org/10.1016/j.ejmech.2020.112311] [PMID: 32339855]
[119]
Noureddin, M.; Muthiah, M.D.; Sanyal, A.J. Drug discovery and treatment paradigms in nonalcoholic steatohepatitis. Endocrinol. Diabetes Metab., 2019, 3(4), e00105.
[PMID: 33102791]
[120]
Lefere, S; Tacke, F Macrophages in obesity and non-alcoholic fatty liver disease: Crosstalk with metabolism. JHEP reports, 2019, 1(1), 30-43.
[121]
Baeck, C.; Wehr, A.; Karlmark, K.R.; Heymann, F.; Vucur, M.; Gassler, N.; Huss, S.; Klussmann, S.; Eulberg, D.; Luedde, T.; Trautwein, C.; Tacke, F. Pharmacological inhibition of the chemokine CCL2 (MCP-1) diminishes liver macrophage infiltration and steatohepatitis in chronic hepatic injury. Gut, 2012, 61(3), 416-426.
[http://dx.doi.org/10.1136/gutjnl-2011-300304] [PMID: 21813474]
[122]
Kumari, S.; Sobhia M, E. Computer-aided molecular design of CCR2 - CCR5 dual antagonists for the treatment of NASH. J Bioinform Syst Bio, 2022, 5(1), 63-77.
[http://dx.doi.org/10.26502/jbsb.5107035]
[123]
Kannt, A.; Wohlfart, P.; Madsen, A.N.; Veidal, S.S.; Feigh, M.; Schmoll, D. Activation of thyroid hormone receptor-β improved disease activity and metabolism independent of body weight in a mouse model of non-alcoholic steatohepatitis and fibrosis. Br. J. Pharmacol., 2021, 178(12), 2412-2423.
[http://dx.doi.org/10.1111/bph.15427] [PMID: 33655500]
[124]
Dushay, J.; Chui, P.C.; Gopalakrishnan, G.S.; Varela-Rey, M.; Crawley, M.; Fisher, F.M.; Badman, M.K.; Martinez-Chantar, M.L.; Maratos-Flier, E. Increased fibroblast growth factor 21 in obesity and nonalcoholic fatty liver disease. Gastroenterology, 2010, 139(2), 456-463.
[http://dx.doi.org/10.1053/j.gastro.2010.04.054] [PMID: 20451522]
[125]
Mosca, A.; Crudele, A.; Smeriglio, A.; Braghini, M.R.; Panera, N.; Comparcola, D.; Alterio, A.; Sartorelli, M.R.; Tozzi, G.; Raponi, M.; Trombetta, D.; Alisi, A. Antioxidant activity of Hydroxytyrosol and Vitamin E reduces systemic inflammation in children with paediatric NAFLD. Dig. Liver Dis., 2021, 53(9), 1154-1158.
[http://dx.doi.org/10.1016/j.dld.2020.09.021] [PMID: 33060043]
[126]
Sumida, Y.; Yoneda, M. Current and future pharmacological therapies for NAFLD/NASH. J. Gastroenterol., 2018, 53(3), 362-376.
[http://dx.doi.org/10.1007/s00535-017-1415-1] [PMID: 29247356]
[127]
Traber, P.G.; Zomer, E. Therapy of experimental NASH and fibrosis with galectin inhibitors. PLoS One, 2013, 8(12), e83481.
[http://dx.doi.org/10.1371/journal.pone.0083481] [PMID: 24367597]
[128]
Kurikawa, N.; Takagi, T.; Wakimoto, S.; Uto, Y.; Terashima, H.; Kono, K.; Ogata, T.; Ohsumi, J. A novel inhibitor of stearoyl-CoA desaturase-1 attenuates hepatic lipid accumulation, liver injury and inflammation in model of nonalcoholic steatohepatitis. Biol. Pharm. Bull., 2013, 36(2), 259-267.
[http://dx.doi.org/10.1248/bpb.b12-00702] [PMID: 23370355]
[129]
Honda, Y.; Imajo, K.; Kato, T.; Kessoku, T.; Ogawa, Y.; Tomeno, W.; Kato, S.; Mawatari, H.; Fujita, K.; Yoneda, M.; Saito, S.; Nakajima, A. The selective SGLT2 inhibitor ipragliflozin has a therapeutic effect on nonalcoholic steatohepatitis in mice. PLoS One, 2016, 11(1), e0146337.
[http://dx.doi.org/10.1371/journal.pone.0146337] [PMID: 26731267]
[130]
Farrell, G.C.; Larter, C.Z. Nonalcoholic fatty liver disease: From steatosis to cirrhosis. Hepatology, 2006, 43(S1)(Suppl. 1), S99-S112.
[http://dx.doi.org/10.1002/hep.20973] [PMID: 16447287]
[131]
Sakai, Y.; Chen, G.; Ni, Y.; Zhuge, F.; Xu, L.; Nagata, N.; Kaneko, S.; Ota, T.; Nagashimada, M. DPP-4 inhibition with anagliptin reduces lipotoxicity-induced insulin resistance and steatohepatitis in male mice. Endocrinology, 2020, 161(10), bqaa139.
[http://dx.doi.org/10.1210/endocr/bqaa139] [PMID: 32790863]
[132]
Loomba, R.; Lawitz, E.; Mantry, P.S.; Jayakumar, S.; Caldwell, S.H.; Arnold, H.; Diehl, A.M.; Djedjos, C.S.; Han, L.; Myers, R.P.; Subramanian, G.M.; McHutchison, J.G.; Goodman, Z.D.; Afdhal, N.H.; Charlton, M.R. The ASK1 inhibitor selonsertib in patients with nonalcoholic steatohepatitis: A randomized, phase 2 trial. Hepatology, 2018, 67(2), 549-559.
[http://dx.doi.org/10.1002/hep.29514] [PMID: 28892558]
[133]
Wang, P.X.; Ji, Y.X.; Zhang, X.J.; Zhao, L.P.; Yan, Z.Z.; Zhang, P.; Shen, L.J.; Yang, X.; Fang, J.; Tian, S.; Zhu, X.Y.; Gong, J.; Zhang, X.; Wei, Q.F.; Wang, Y.; Li, J.; Wan, L.; Xie, Q.; She, Z.G.; Wang, Z.; Huang, Z.; Li, H. Targeting CASP8 and FADD-like apoptosis regulator ameliorates nonalcoholic steatohepatitis in mice and nonhuman primates. Nat. Med., 2017, 23(4), 439-449.
[http://dx.doi.org/10.1038/nm.4290] [PMID: 28218919]
[134]
Budas, G.; Karnik, S.; Jonnson, T.; Shafizadeh, T.; Watkins, S.; Breckenridge, D.; Tumas, D. Reduction of liver steatosis and fibrosis with an Ask1 inhibitor in a murine model of nash is accompanied by improvements in cholesterol, bile acid and lipid metabolism. J. Hepatol., 2016, 64(2), S170.
[http://dx.doi.org/10.1016/S0168-8278(16)01686-X]
[135]
Carotti, S.; Aquilano, K.; Valentini, F.; Ruggiero, S.; Alletto, F.; Morini, S.; Picardi, A.; Antonelli-Incalzi, R.; Lettieri-Barbato, D.; Vespasiani-Gentilucci, U. An overview of deregulated lipid metabolism in nonalcoholic fatty liver disease with special focus on lysosomal acid lipase. Am. J. Physiol. Gastrointest. Liver Physiol., 2020, 319(4), G469-G480.
[http://dx.doi.org/10.1152/ajpgi.00049.2020] [PMID: 32812776]
[136]
Gapp, B.; Jourdain, M.; Bringer, P.; Kueng, B.; Weber, D.; Osmont, A.; Zurbruegg, S.; Knehr, J.; Falchetto, R.; Roma, G.; Dietrich, W.; Valdez, R.; Beckmann, N.; Nigsch, F.; Sanyal, A.J.; Ksiazek, I. Farnesoid X Receptor Agonism, Acetyl-Coenzyme A Carboxylase Inhibition, and Back Translation of Clinically Observed Endpoints of De Novo Lipogenesis in a Murine NASH Model. Hepatol. Commun., 2020, 4(1), 109-125.
[http://dx.doi.org/10.1002/hep4.1443] [PMID: 31909359]
[137]
Goedeke, L.; Bates, J.; Vatner, D.F.; Perry, R.J.; Wang, T.; Ramirez, R.; Li, L.; Ellis, M.W.; Zhang, D.; Wong, K.E.; Beysen, C.; Cline, G.W.; Ray, A.S.; Shulman, G.I. Acetyl-CoA carboxylase inhibition reverses nafld and hepatic insulin resistance but promotes hypertriglyceridemia in rodents. Hepatology, 2018, 68(6), 2197-2211.
[http://dx.doi.org/10.1002/hep.30097] [PMID: 29790582]
[138]
Sobhia, M.E.; Ghosh, K.; Kumar, G.S.; Sivangula, S.; Laddha, K.; Kumari, S.; Kumar, H. The role of water network chemistry in proteins: A structural bioinformatics perspective in drug discovery and development. Curr. Top. Med. Chem., 2022, 22(20), 1636-1653.
[http://dx.doi.org/10.2174/1568026622666220726114407] [PMID: 35894474]
[139]
Sabarinathan, R.; Aishwarya, K.; Sarani, R.; Vaishnavi, M.K.; Sekar, K. Water-mediated ionic interactions in protein structures. J. Biosci., 2011, 36(2), 253-263.
[http://dx.doi.org/10.1007/s12038-011-9067-4] [PMID: 21654080]
[140]
Seber, S.; Ucak, S.; Basat, O.; Altuntas, Y. The effect of dual PPAR α/γ stimulation with combination of rosiglitazone and fenofibrate on metabolic parameters in type 2 diabetic patients. Diabetes Res. Clin. Pract., 2006, 71(1), 52-58.
[http://dx.doi.org/10.1016/j.diabres.2005.05.009] [PMID: 16009445]
[141]
Jain, M.R.; Giri, S.R.; Bhoi, B.; Trivedi, C.; Rath, A.; Rathod, R.; Ranvir, R.; Kadam, S.; Patel, H.; Swain, P.; Roy, S.S.; Das, N.; Karmakar, E.; Wahli, W.; Patel, P.R. Dual PPARα/γ agonist saroglitazar improves liver histopathology and biochemistry in experimental NASH models. Liver Int., 2018, 38(6), 1084-1094.
[http://dx.doi.org/10.1111/liv.13634] [PMID: 29164820]
[142]
Caffrey, R.; Marioneaux, J.; Santhekadur, P.; Bedossa, P.; Philip, B.; Giri, S.; Jain, M.; Sanyal, A. Saroglitazar treatment prevents NASH, eliminates hepatocyte ballooning, and significantly improves serum LFTs, lipids and insulin resistance in DIAMOND(tm) mice compared to pioglitazone benchmark. J. Hepatol., 2018, 68, S578-S579.
[http://dx.doi.org/10.1016/S0168-8278(18)31416-8]
[143]
Kumar, K; Kulkarni, A; Jagdish, RK Saroglitazar for treatment of NAFLD and NASH. Hepatology, 2021, 2021
[144]
Sharma, M.; Premkumar, M.; Kulkarni, A.V.; Kumar, P.; Reddy, D.N.; Rao, N.P. Drugs for non-alcoholic steatohepatitis (NASH): Quest for the Holy Grail. J. Clin. Transl. Hepatol., 2021, 9(1), 40-50.
[PMID: 33604254]
[145]
Ocker, M. Challenges and opportunities in drug development for nonalcoholic steatohepatitis. Eur. J. Pharmacol., 2020, 870, 172913.
[http://dx.doi.org/10.1016/j.ejphar.2020.172913] [PMID: 31926994]
[146]
Drenth, J.P.H.; Schattenberg, J.M. The nonalcoholic steatohepatitis (NASH) drug development graveyard: Established hurdles and planning for future success. Expert Opin. Investig. Drugs, 2020, 29(12), 1365-1375.
[http://dx.doi.org/10.1080/13543784.2020.1839888] [PMID: 33074035]
[147]
Cengiz, M.; Ozenirler, S.; Elbeg, S. Role of serum toll-like receptors 2 and 4 in non-alcoholic steatohepatitis and liver fibrosis. J. Gastroenterol. Hepatol., 2015, 30(7), 1190-1196.
[http://dx.doi.org/10.1111/jgh.12924] [PMID: 25684563]
[148]
Labenz, C.; Huber, Y.; Michel, M.; Nagel, M.; Galle, P.R.; Kostev, K.; Schattenberg, J.M. Impact of NAFLD on the incidence of cardiovascular diseases in a primary care population in Germany. Dig. Dis. Sci., 2020, 65(7), 2112-2119.
[http://dx.doi.org/10.1007/s10620-019-05986-9] [PMID: 31797186]
[149]
Haedrich, M.; Dufour, J.F. UDCA for NASH: End of the story? J. Hepatol., 2011, 54(5), 856-858.
[http://dx.doi.org/10.1016/j.jhep.2010.10.009] [PMID: 21145815]
[150]
Hannah, W.N., Jr; Torres, D.M.; Harrison, S.A. Nonalcoholic steatohepatitis and endpoints in clinical trials. Gastroenterol. Hepatol., 2016, 12(12), 756-763.
[PMID: 28035202]
[151]
Sanyal, A.J.; Brunt, E.M.; Kleiner, D.E.; Kowdley, K.V.; Chalasani, N.; Lavine, J.E. Endpoints and clinical trial design for nonalcoholic steatohepatitis; Wiley Online Library: Hoboken, 2011.
[http://dx.doi.org/10.1002/hep.24376]
[152]
Ekstedt, M.; Nasr, P.; Kechagias, S. Natural History of NAFLD/NASH. Curr. Hepatol. Rep., 2017, 16(4), 391-397.
[http://dx.doi.org/10.1007/s11901-017-0378-2] [PMID: 29984130]
[153]
Schattenberg, J.M. Prof Jörn Schattenberg sheds light on key treatment and diagnostic approaches to nonalcoholic steatohepatitis (NASH). Expert Opin. Investig. Drugs, 2020, 29(2), 111-113.
[http://dx.doi.org/10.1080/13543784.2020.1721150] [PMID: 31985310]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy