Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Recent Insights into Osimertinib Analogues against EGFR Positive Non-small Cell Lung Cancer

Author(s): Jatin Chhabra, Priyanka Kashyap, Rakesh Pahwa*, Rakesh Narang*, Harish Dureja, Sukhbir Lal and Sangeeta Verma

Volume 23, Issue 21, 2023

Published on: 15 June, 2023

Page: [2001 - 2026] Pages: 26

DOI: 10.2174/1568026623666230602143605

Price: $65

Abstract

Background: Lung cancer is a highly lethal malignancy with a poor prognosis and the leading cause of mortality worldwide. The development of mutations makes lung cancer treatment more challenging and expensive. Successful identification of epidermal growth factor receptor (EGFR) mutations led to the discovery of various third-generation tyrosine kinase inhibitors. Osimertinib is one of the promising and efficacious third-generation EGFR inhibitors and is mainly employed in the treatment of non-small cell lung cancer. Despite the initial effective response, osimertinib causes resistance in most of the patients after around 10 months of therapy, resulting in disease progression. To mitigate the effect of developed resistance, different osimertinib derivatives have been synthesized and evaluated by numerous research groups across the globe.

Methods: Present article illustrates recent research advancements for the utilization of osimertinib and its derivatives in non-small cell lung cancer (NSCLC). Last seven years literature search has been conducted from PubMed, ScienceDirect, and Google Scholar databases, etc.

Result: The present review emphasizes the recent advancements of osimertinib analogues that lead to enhanced antitumor potential and safety profile against non-small cell lung cancer. This manuscript also summarizes the different synthetic schemes involved in the synthesis of osimertinib analogues against EGFR reported by different research groups.

Conclusion: Anticancer mechanistic insights, analytical prospects, drug interactions, pharmacokinetic considerations, and resistance profile of osimertinib are highlighted in the current manuscript.

Next »
Graphical Abstract

[1]
World Health Organisation. Available from: https://www.who.int/news-room/fact-sheets/detail/cancer (Accessed on: June 11, 2022).
[2]
American Cancer Society. Cancer. Org 1.800.227.2345, Available from: https://www.cancer.org/
[3]
McIntyre, A.; Ganti, A.K. Lung cancer-A global perspective. J. Surg. Oncol., 2017, 115(5), 550-554.
[http://dx.doi.org/10.1002/jso.24532] [PMID: 28418583]
[4]
Herbst, R.S.; Morgensztern, D.; Boshoff, C. The biology and management of non-small cell lung cancer. Nature, 2018, 553(7689), 446-454.
[http://dx.doi.org/10.1038/nature25183] [PMID: 29364287]
[5]
Thai, A.A.; Solomon, B.J.; Sequist, L.V.; Gainor, J.F.; Heist, R.S. Lung cancer. Lancet, 2021, 398(10299), 535-554.
[http://dx.doi.org/10.1016/S0140-6736(21)00312-3] [PMID: 34273294]
[6]
Akhurst, T. Staging of non–small-cell lung cancer. PET Clin., 2018, 13(1), 1-10.
[http://dx.doi.org/10.1016/j.cpet.2017.09.004] [PMID: 29157380]
[7]
Aoki, M.N.; Amarante, M.K.; de Oliveira, C.E.C.; Watanabe, M.A.E. Biomarkers in non-small cell lung cancer: Perspectives of individualized targeted therapy. Anticancer. Agents Med. Chem., 2019, 18(15), 2070-2077.
[http://dx.doi.org/10.2174/1871520618666180827102101] [PMID: 30147015]
[8]
Pérez-Ramírez, C.; Cañadas-Garre, M.; Jiménez-Varo, E.; Faus-Dáder, M.J.; Calleja-Hernández, M.Á. MET: A new promising biomarker in non-small-cell lung carcinoma. Pharmacogenomics, 2015, 16(6), 631-647.
[http://dx.doi.org/10.2217/pgs.15.11] [PMID: 25893986]
[9]
Li, J.; Kwok, H. Current strategies for treating NSCLC: From biological mechanisms to clinical treatment. Cancers, 2020, 12(6), 1587.
[http://dx.doi.org/10.3390/cancers12061587] [PMID: 32549388]
[10]
Takeda, M.; Nakagawa, K. First-and second-generation EGFR-TKIs are all replaced to osimertinib in chemo-naive EGFR mutation-positive non-small cell lung cancer? Int. J. Mol. Sci., 2019, 20(1), 146.
[http://dx.doi.org/10.3390/ijms20010146] [PMID: 30609789]
[11]
Remon, J.; Steuer, C.E.; Ramalingam, S.S.; Felip, E. Osimertinib and other third-generation EGFR TKI in EGFR-mutant NSCLC patients. Ann. Oncol., 2018, 29(S1), i20-i27.
[http://dx.doi.org/10.1093/annonc/mdx704] [PMID: 29462255]
[12]
Scott, L.J. Osimertinib as first-line therapy in advanced NSCLC: A profile of its use. Drugs Ther. Perspect., 2018, 34(8), 351-357.
[http://dx.doi.org/10.1007/s40267-018-0536-9] [PMID: 30631243]
[13]
Butterworth, S.; Cross, D.A.E.; Finlay, M.R.V.; Ward, R.A.; Waring, M.J. The structure-guided discovery of osimertinib: the first U.S. FDA approved mutant selective inhibitor of EGFR T790M. Med. Chem. Comm., 2017, 8(5), 820-822.
[http://dx.doi.org/10.1039/C7MD90012K] [PMID: 30108799]
[14]
Rydén, A.; Blackhall, F.; Kim, H.R.; Pillai, R.N.; Braam, L.; Martin, M.L.; Walding, A. patient experience of symptoms and side effects when treated with osimertinib for advanced non-small-cell lung cancer: A qualitative interview sub study. Patient, 2017, 10(5), 593-603.
[http://dx.doi.org/10.1007/s40271-017-0229-9] [PMID: 28353220]
[15]
Tharappel, A.M.; Samrat, S.K.; Li, Z.; Li, H. Targeting crucial host factors of SARS-CoV-2. ACS Infect. Dis., 2020, 6(11), 2844-2865.
[http://dx.doi.org/10.1021/acsinfecdis.0c00456] [PMID: 33112126]
[16]
Chen, C.Z.; Xu, M.; Pradhan, M.; Gorshkov, K.; Petersen, J.D.; Straus, M.R.; Zhu, W.; Shinn, P.; Guo, H.; Shen, M.; Klumpp-Thomas, C.; Michael, S.G.; Zimmerberg, J.; Zheng, W.; Whittaker, G.R. Identifying SARS-CoV-2 entry inhibitors through drug repurposing screens of SARS-S and MERS-S pseudotyped particles. ACS Pharmacol. Transl. Sci., 2020, 3(6), 1165-1175.
[http://dx.doi.org/10.1021/acsptsci.0c00112] [PMID: 33330839]
[17]
National Cancer Institute at the National Institutes of Health. Available from: https://www.cancer.gov (Accessed on: June 11, 2022).
[18]
Patel, H.; Pawara, R.; Ansari, A.; Surana, S. Recent updates on third generation EGFR inhibitors and emergence of fourth generation EGFR inhibitors to combat C797S resistance. Eur. J. Med. Chem., 2017, 142, 32-47.
[http://dx.doi.org/10.1016/j.ejmech.2017.05.027] [PMID: 28526474]
[19]
Goss, G.; Tsai, C.M.; Shepherd, F.A.; Ahn, M.J.; Bazhenova, L.; Crinò, L.; de Marinis, F.; Felip, E.; Morabito, A.; Hodge, R.; Cantarini, M.; Johnson, M.; Mitsudomi, T.; Jänne, P.A.; Yang, J.C.H. CNS response to osimertinib in patients with T790M-positive advanced NSCLC: pooled data from two phase II trials. Ann. Oncol., 2018, 29(3), 687-693.
[http://dx.doi.org/10.1093/annonc/mdx820] [PMID: 29293889]
[20]
Cheng, H.; Nair, S.K.; Murray, B.W. Recent progress on third generation covalent EGFR inhibitors. Bioorg. Med. Chem. Lett., 2016, 26(8), 1861-1868.
[http://dx.doi.org/10.1016/j.bmcl.2016.02.067] [PMID: 26968253]
[21]
Soejima, K.; Yasuda, H.; Hirano, T. Osimertinib for EGFR T790M mutation-positive non-small cell lung cancer. Expert Rev. Clin. Pharmacol., 2017, 10(1), 31-38.
[http://dx.doi.org/10.1080/17512433.2017.1265446] [PMID: 27885838]
[22]
Díaz-Serrano, A.; Gella, P.; Jiménez, E.; Zugazagoitia, J.; Paz-Ares Rodríguez, L. Targeting EGFR in lung cancer: Current standards and developments. Drugs, 2018, 78(9), 893-911.
[http://dx.doi.org/10.1007/s40265-018-0916-4] [PMID: 29915896]
[23]
Malapelle, U.; Ricciuti, B.; Baglivo, S.; Pepe, F.; Pisapia, P.; Anastasi, P.; Tazza, M.; Sidoni, A.; Liberati, A.M.; Bellezza, G.; Chiari, R.; Metro, G. Osimertinib. Rec. Results Cancer Res., 2018, 211, 257-276.
[http://dx.doi.org/10.1007/978-3-319-91442-8_18] [PMID: 30069773]
[24]
Al-Quteimat, O.M.; Amer, A.M. A review of Osimertinib in NSCLC and pharmacist role in NSCLC patient care. J. Oncol. Pharm. Pract., 2020, 26(6), 1452-1460.
[http://dx.doi.org/10.1177/1078155220930285] [PMID: 32525442]
[25]
Lazzari, C.; Gregorc, V.; Karachaliou, N.; Rosell, R.; Santarpia, M. Mechanisms of resistance to osimertinib. J. Thorac. Dis., 2019, 12(5), 1-8.
[http://dx.doi.org/10.21037/jtd.2019.08.30] [PMID: 32642198]
[26]
Leonetti, A.; Sharma, S.; Minari, R.; Perego, P.; Giovannetti, E.; Tiseo, M. Resistance mechanisms to osimertinib in EGFR-mutated non-small cell lung cancer. Br. J. Cancer, 2019, 121(9), 725-737.
[http://dx.doi.org/10.1038/s41416-019-0573-8] [PMID: 31564718]
[27]
Oxnard, G.R.; Hu, Y.; Mileham, K.F.; Husain, H.; Costa, D.B.; Tracy, P.; Feeney, N.; Sholl, L.M.; Dahlberg, S.E.; Redig, A.J.; Kwiatkowski, D.J.; Rabin, M.S.; Paweletz, C.P.; Thress, K.S.; Jänne, P.A. Assessment of resistance mechanisms and clinical implications in patients with EGFR T790M-positive lung cancer and acquired resistance to osimertinib. JAMA Oncol., 2018, 4(11), 1527-1534.
[http://dx.doi.org/10.1001/jamaoncol.2018.2969] [PMID: 30073261]
[28]
Menon, R.; Müller, J.; Schneider, P.; Lakis, S.; Thress, K.; Wolf, J.; Heukamp, L.; Heuckmann, J.M.; Griesinger, F. A novel EGFRC797 variant detected in a pleural biopsy specimen from an osimertinib-treated patient using a comprehensive hybrid capture-based next-generation sequencing assay. J. Thorac. Oncol., 2016, 11(9), e105-e107.
[http://dx.doi.org/10.1016/j.jtho.2016.04.005] [PMID: 27086175]
[29]
Zhang, Q.; Zhang, X.C.; Yang, J.J.; Yang, Z.F.; Bai, Y.; Su, J.; Wang, Z.; Zhang, Z.; Shao, Y.; Zhou, Q.; Kang, J.; Ke, E-E.; Zhang, Y.C.; Dong, Z.Y.; Chen, Z.H.; Tu, H.Y.; Zhong, W.Z.; Yang, X.N.; Wu, Y.L. EGFR L792H and G796R: Two novel mutations mediating resistance to the third-generation EGFR tyrosine kinase inhibitor osimertinib. J. Thorac. Oncol., 2018, 13(9), 1415-1421.
[http://dx.doi.org/10.1016/j.jtho.2018.05.024] [PMID: 29857056]
[30]
Huang, L.; Fu, L. Mechanisms of resistance to EGFR tyrosine kinase inhibitors. Acta Pharm. Sin. B, 2015, 5(5), 390-401.
[http://dx.doi.org/10.1016/j.apsb.2015.07.001] [PMID: 26579470]
[31]
Reita, D.; Pabst, L.; Pencreach, E.; Guérin, E.; Dano, L.; Rimelen, V.; Voegeli, A.C.; Vallat, L.; Mascaux, C.; Beau-Faller, M. Molecular mechanism of EGFR-TKI resistance in EGFR-mutated non-small cell lung cancer: Application to biological diagnostic and monitoring. Cancers, 2021, 13(19), 4926.
[http://dx.doi.org/10.3390/cancers13194926] [PMID: 34638411]
[32]
Schmid, S.; Li, J.J.N.; Leighl, N.B. Mechanisms of osimertinib resistance and emerging treatment options. Lung Cancer, 2020, 147, 123-129.
[http://dx.doi.org/10.1016/j.lungcan.2020.07.014] [PMID: 32693293]
[33]
Mok, T.S.; Wu, Y.L.; Ahn, M.J.; Garassino, M.C.; Kim, H.R.; Ramalingam, S.S.; Shepherd, F.A.; He, Y.; Akamatsu, H.; Theelen, W.S.M.E.; Lee, C.K.; Sebastian, M.; Templeton, A.; Mann, H.; Marotti, M.; Ghiorghiu, S.; Papadimitrakopoulou, V.A. Osimertinib or platinum–pemetrexed in EGFR T790M-positive lung cancer. N. Engl. J. Med., 2016, 376, 629-640.
[http://dx.doi.org/10.1056/NEJMoa1612674] [PMID: 27959700]
[34]
Enrico, D.; Tsou, F.; Catani, G.; Pupareli, C.; Girotti, M.R.; Ulloa Alvarez, D.E.; Waisberg, F.; Rodríguez, A.; Reyes, R.; Chacón, M.; Reguart, N.; Martín, C. Overcoming resistance to osimertinib by T790M loss and C797S acquisition using gefitinib in a patient with EGFR-mutant NSCLC: A case report. JTO Clinical and Research Reports, 2023, 4(2), 100456.
[http://dx.doi.org/10.1016/j.jtocrr.2022.100456] [PMID: 36798785]
[35]
Zhang, H.; Wu, W.; Feng, C.; Liu, Z.; Bai, E.; Wang, X.; Lei, M.; Cheng, H.; Feng, H.; Shi, J.; Wang, J.; Zhang, Z.; Jin, T.; Chen, S.; Hu, S.; Zhu, Y. Design, synthesis, SAR discussion, in vitro and in vivo evaluation of novel selective EGFR modulator to inhibit L858R/T790M double mutants. Eur. J. Med. Chem., 2017, 135, 12-23.
[http://dx.doi.org/10.1016/j.ejmech.2017.04.036] [PMID: 28426996]
[36]
Fassunke, J.; Müller, F.; Keul, M.; Michels, S.; Dammert, M.A.; Schmitt, A.; Plenker, D.; Lategahn, J.; Heydt, C.; Brägelmann, J.; Tumbrink, H.L.; Alber, Y.; Klein, S.; Heimsoeth, A.; Dahmen, I.; Fischer, R.N.; Scheffler, M.; Ihle, M.A.; Priesner, V.; Scheel, A.H.; Wagener, S.; Kron, A.; Frank, K.; Garbert, K.; Persigehl, T.; Püsken, M.; Haneder, S.; Schaaf, B.; Rodermann, E.; Engel-Riedel, W.; Felip, E.; Smit, E.F.; Merkelbach-Bruse, S.; Reinhardt, H.C.; Kast, S.M.; Wolf, J.; Rauh, D.; Büttner, R.; Sos, M.L. Overcoming EGFRG724S-mediated osimertinib resistance through unique binding characteristics of second-generation EGFR inhibitors. Nat. Commun., 2018, 9(1), 4655.
[http://dx.doi.org/10.1038/s41467-018-07078-0] [PMID: 30405134]
[37]
Fairclough, S.R.; Kiedrowski, L.A.; Lin, J.J.; Zelichov, O.; Tarcic, G.; Stinchcombe, T.E.; Odegaard, J.I.; Lanman, R.B.; Shaw, A.T.; Nagy, R.J. Identification of osimertinib-resistant EGFR L792 mutations by cfDNA sequencing: Oncogenic activity assessment and prevalence in large cfDNA cohort. Exp. Hematol. Oncol., 2019, 8(1), 24.
[http://dx.doi.org/10.1186/s40164-019-0148-7] [PMID: 31632838]
[38]
Dong, R.F.; Zhu, M.L.; Liu, M.M.; Xu, Y.T.; Yuan, L.L.; Bian, J.; Xia, Y.Z.; Kong, L.Y. EGFR mutation mediates resistance to EGFR tyrosine kinase inhibitors in NSCLC: From molecular mechanisms to clinical research. Pharmacol. Res., 2021, 167, 105583.
[http://dx.doi.org/10.1016/j.phrs.2021.105583] [PMID: 33775864]
[39]
Klempner, S.; Mehta, P.; Schrock, A.; Ali, S.; Ou, S.H.I. Cis-oriented solvent-front EGFR G796S mutation in tissue and ctDNA in a patient progressing on osimertinib: A case report and review of the literature. Lung Cancer, 2017, 8, 241-247.
[http://dx.doi.org/10.2147/LCTT.S147129] [PMID: 29255376]
[40]
Ríos-Hoyo, A.; Moliner, L.; Arriola, E. Acquired mechanisms of resistance to osimertinib-the next challenge. Cancers, 2022, 14, 1-20.
[http://dx.doi.org/10.3390/cancers14081931]
[41]
Coleman, N.; Hong, L.; Zhang, J.; Heymach, J.; Hong, D.; Le, X. Beyond epidermal growth factor receptor: MET amplification as a general resistance driver to targeted therapy in oncogene-driven non-small-cell lung cancer. ESMO Open, 2021, 6(6), 100319.
[http://dx.doi.org/10.1016/j.esmoop.2021.100319] [PMID: 34837746]
[42]
Wang, Q.; Yang, S.; Wang, K.; Sun, S.Y. MET inhibitors for targeted therapy of EGFR TKI-resistant lung cancer. J. Hematol. Oncol., 2019, 12(1), 63.
[http://dx.doi.org/10.1186/s13045-019-0759-9] [PMID: 31227004]
[43]
Bean, J.; Brennan, C.; Shih, J.Y.; Riely, G.; Viale, A.; Wang, L.; Chitale, D.; Motoi, N.; Szoke, J.; Broderick, S.; Balak, M.; Chang, W.C.; Yu, C.J.; Gazdar, A.; Pass, H.; Rusch, V.; Gerald, W.; Huang, S.F.; Yang, P.C.; Miller, V.; Ladanyi, M.; Yang, C.H.; Pao, W. MET amplification occurs with or without T790M mutations in EGFR mutant lung tumors with acquired resistance to gefitinib or erlotinib. Proc. Natl. Acad. Sci., 2007, 104(52), 20932-20937.
[http://dx.doi.org/10.1073/pnas.0710370104] [PMID: 18093943]
[44]
Iqbal, N.; Iqbal, N. Human epidermal growth factor receptor 2 (HER2) in cancers: Overexpression and therapeutic implications. Mol. Biol. Int., 2014, 2014, 1-9.
[http://dx.doi.org/10.1155/2014/852748] [PMID: 25276427]
[45]
Hsu, C.C.; Liao, B.C.; Liao, W.Y.; Markovets, A.; Stetson, D.; Thress, K.; Yang, J.C.H. Exon 16-skipping HER2 as a novel mechanism of osimertinib resistance in EGFR L858R/T790M-positive non-small cell lung cancer. J. Thorac. Oncol., 2020, 15(1), 50-61.
[http://dx.doi.org/10.1016/j.jtho.2019.09.006] [PMID: 31557536]
[46]
Fruman, D.A.; Chiu, H.; Hopkins, B.D.; Bagrodia, S.; Cantley, L.C.; Abraham, R.T. The PI3K pathway in human disease. Cell, 2017, 170(4), 605-635.
[http://dx.doi.org/10.1016/j.cell.2017.07.029] [PMID: 28802037]
[47]
Ma, Q.; Wang, J.; Ren, Y.; Meng, F.; Zeng, L. Pathological mechanistic studies of osimertinib resistance in non-small-cell lung cancer using an integrative metabolomics-proteomics analysis. J. Oncol., 2020, 2020, 1-12.
[http://dx.doi.org/10.1155/2020/6249829] [PMID: 32256584]
[48]
Chmielecki, J.; Gray, J.E.; Cheng, Y.; Ohe, Y.; Imamura, F.; Cho, B.C.; Lin, M.C.; Majem, M.; Shah, R.; Rukazenkov, Y.; Todd, A.; Markovets, A.; Barrett, J.C.; Hartmaier, R.J.; Ramalingam, S.S. Candidate mechanisms of acquired resistance to first-line osimertinib in EGFR-mutated advanced non-small cell lung cancer. Nat. Commun., 2023, 14(1), 1070.
[http://dx.doi.org/10.1038/s41467-023-35961-y] [PMID: 36849494]
[49]
Åman, P.; Dolatabadi, S.; Svec, D.; Jonasson, E.; Safavi, S.; Andersson, D.; Grundevik, P.; Thomsen, C.; Ståhlberg, A. Regulatory mechanisms, expression levels and proliferation effects of the FUS-DDIT3 fusion oncogene in liposarcoma. J. Pathol., 2016, 238(5), 689-699.
[http://dx.doi.org/10.1002/path.4700] [PMID: 26865464]
[50]
Enrico, D.; Lacroix, L.; Chen, J.; Rouleau, E.; Scoazec, J.Y.; Loriot, Y.; Tselikas, L.; Jovelet, C.; Planchard, D.; Gazzah, A.; Mezquita, L.; Ngo-Camus, M.; Michiels, S.; Massard, C.; Recondo, G.; Facchinetti, F.; Remon, J.; Soria, J.C.; André, F.; Vassal, G.; Friboulet, L.; Besse, B. Oncogenic fusions may be frequently present at resistance of EGFR tyrosine kinase inhibitors in patients with NSCLC: A brief report. JTO Clin Res Rep., 2020, 1(2), 1-6.
[http://dx.doi.org/10.1016/j.jtocrr.2020.100023]
[51]
Urbanska, E.M.; Sørensen, J.B.; Melchior, L.C.; Costa, J.C.; Santoni-Rugiu, E. Durable response to combined osimertinib and pralsetinib treatment for osimertinib resistance due to novel intergenic ANK3-RET fusion in EGFR-mutated non-small-cell lung cancer. ASCO, 2022, 6, 1-6.
[http://dx.doi.org/10.1200/PO.22.00040]
[52]
Uchibori, K.; Inase, N.; Araki, M.; Kamada, M.; Sato, S.; Okuno, Y.; Fujita, N.; Katayama, R. Brigatinib combined with anti-EGFR antibody overcomes osimertinib resistance in EGFR-mutated non-small-cell lung cancer. Nat. Commun., 2017, 8(1), 14768.
[http://dx.doi.org/10.1038/ncomms14768] [PMID: 28287083]
[53]
Zang, H.; Qian, G.; Zong, D.; Fan, S.; Owonikoko, T.K.; Ramalingam, S.S.; Sun, S.Y. Overcoming acquired resistance of epidermal growth factor receptor‐mutant non–small cell lung cancer cells to osimertinib by combining osimertinib with the histone deacetylase inhibitor panobinostat (LBH589). Cancer, 2020, 126(9), 2024-2033.
[http://dx.doi.org/10.1002/cncr.32744] [PMID: 31999837]
[54]
Hayakawa, D.; Takahashi, F.; Mitsuishi, Y.; Tajima, K.; Hidayat, M.; Winardi, W.; Ihara, H.; Kanamori, K.; Matsumoto, N.; Asao, T.; Ko, R.; Shukuya, T.; Takamochi, K.; Hayashi, T.; Suehara, Y.; Takeda Nakamura, I.; Ueno, T.; Kohsaka, S.; Mano, H.; Takahashi, K. Activation of insulin‐like growth factor‐1 receptor confers acquired resistance to osimertinib in non‐small cell lung cancer with EGFR T790M mutation. Thorac. Cancer, 2020, 11(1), 140-149.
[http://dx.doi.org/10.1111/1759-7714.13255] [PMID: 31758670]
[55]
Chen, W.; Yu, D.; Sun, S.Y.; Li, F. Nanoparticles for co-delivery of osimertinib and selumetinib to overcome osimertinib-acquired resistance in non-small cell lung cancer. Acta Biomater., 2021, 129, 258-268.
[http://dx.doi.org/10.1016/j.actbio.2021.05.018] [PMID: 34048974]
[56]
Lai, L.; Shen, Q.; Wang, Y.; Chen, L.; Lai, J.; Wu, Z.; Jiang, H. Polyphyllin I reverses the resistance of osimertinib in non-small cell lung cancer cell through regulation of PI3K/Akt signaling. Toxicol. Appl. Pharmacol., 2021, 419, 115518.
[http://dx.doi.org/10.1016/j.taap.2021.115518] [PMID: 33812963]
[57]
Dong, H.; Yin, H.; Zhao, C.; Cao, J.; Xu, W.; Zhang, Y. Design, synthesis and biological evaluation of novel osimertinib-based HDAC and EGFR dual inhibitors. Molecules, 2019, 24(13), 2407.
[http://dx.doi.org/10.3390/molecules24132407] [PMID: 31261881]
[58]
Li, J.; An, B.; Song, X.; Zhang, Q.; Chen, C.; Wei, S.; Fan, R.; Li, X.; Zou, Y. Design, synthesis and biological evaluation of novel 2,4-diaryl pyrimidine derivatives as selective EGFRL858R/T790M inhibitors. Eur. J. Med. Chem., 2021, 212, 113019.
[http://dx.doi.org/10.1016/j.ejmech.2020.113019] [PMID: 33429247]
[59]
Chen, T.; Wei, Y.; Zhu, G.; Zhao, H.; Zhang, X. Design, synthesis and structure-activity relationship studies of 4-indole-2-arylamino pyrimidine derivatives as anti-inflammatory agents for acute lung injury. Eur. J. Med. Chem., 2021, 225, 113766.
[http://dx.doi.org/10.1016/j.ejmech.2021.113766] [PMID: 34425313]
[60]
An, B.; Pan, T.; Hu, J.; Pang, Y.; Huang, L.; Chan, A.S.C.; Li, X.; Yan, J. The discovery of a potent and selective third-generation EGFR kinase inhibitor as a therapy for EGFR L858R/T790M double mutant non-small cell lung cancer. Eur. J. Med. Chem., 2019, 183, 111709.
[http://dx.doi.org/10.1016/j.ejmech.2019.111709] [PMID: 31581004]
[61]
Ahmed, N.M.; Youns, M.M.; Soltan, M.K.; Said, A.M. Design, synthesis, molecular modeling and antitumor evaluation of novel indolyl-pyrimidine derivatives with EGFR inhibitory activity. Molecules, 2021, 26(7), 1838.
[http://dx.doi.org/10.3390/molecules26071838] [PMID: 33805918]
[62]
Zhao, B.; Zhao, C.; Hu, X.; Xu, S.; Lan, Z.; Guo, Y.; Yang, Z.; Zhu, W.; Zheng, P. Design, synthesis and 3D-QSAR analysis of novel thiopyranopyrimidine derivatives as potential antitumor agents inhibiting A549 and Hela cancer cells. Eur. J. Med. Chem., 2020, 185, 111809.
[http://dx.doi.org/10.1016/j.ejmech.2019.111809] [PMID: 31683104]
[63]
Su, Z.; Yang, T.; Wang, J.; Lai, M.; Tong, L.; Wumaier, G.; Chen, Z.; Li, S.; Li, H.; Xie, H.; Zhao, Z. Design, synthesis and biological evaluation of potent EGFR kinase inhibitors against 19D/T790M/] C797S mutation. Bioorg. Med. Chem. Lett., 2020, 30(16), 127327.
[http://dx.doi.org/10.1016/j.bmcl.2020.127327] [PMID: 32631532]
[64]
Chen, D.; Guo, D.; Yan, Z.; Zhao, Y. Allenamide as a bioisostere of acrylamide in the design and synthesis of targeted covalent inhibitors. Med. Chem. Comm., 2018, 9(2), 244-253.
[http://dx.doi.org/10.1039/C7MD00571G] [PMID: 30108918]
[65]
Zhao, B.; Xiao, Z.; Qi, J.; Luo, R.; Lan, Z.; Zhang, Y.; Hu, X.; Tang, Q.; Zheng, P.; Xu, S.; Zhu, W. Design, synthesis and biological evaluation of AZD9291 derivatives as selective and potent EGFRL858R/T790M inhibitors. Eur. J. Med. Chem., 2019, 163, 367-380.
[http://dx.doi.org/10.1016/j.ejmech.2018.11.069] [PMID: 30530173]
[66]
Zhou, P.; Chen, G.; Gao, M.; Wu, J. Design, synthesis and evaluation of the osimertinib analogue (C-005) as potent EGFR inhibitor against NSCLC. Bioorg. Med. Chem., 2018, 26(23-24), 6135-6145.
[http://dx.doi.org/10.1016/j.bmc.2018.10.018] [PMID: 30442506]
[67]
He, K.; Zhang, Z.; Wang, W.; Zheng, X.; Wang, X.; Zhang, X. Discovery and biological evaluation of proteolysis targeting chimeras (PROTACs) as an EGFR degraders based on osimertinib and lenalidomide. Bioorg. Med. Chem. Lett., 2020, 30(12), 127167.
[http://dx.doi.org/10.1016/j.bmcl.2020.127167] [PMID: 32317208]
[68]
Li, Y.; Chang, Y.; Fu, J.; Ding, R.; Zhang, L.; Liang, T.; Liu, Y.; Liu, Y.; Hu, J. Design, synthesis and biological evaluation of aminopyrimidine derivatives bearing a 4,5,6,7-tetrahydrothieno [3,2-c]pyridine as potent EGFR inhibitors. Eur. J. Med. Chem., 2021, 226, 113845.
[http://dx.doi.org/10.1016/j.ejmech.2021.113845] [PMID: 34534838]
[69]
Song, Z.; Jin, Y.; Ge, Y.; Wang, C.; Zhang, J.; Tang, Z.; Peng, J.; Liu, K.; Li, Y.; Ma, X. Synthesis and biological evaluation of azole-diphenylpyrimidine derivatives (AzDPPYs) as potent T790M mutant form of epidermal growth factor receptor inhibitors. Bioorg. Med. Chem., 2016, 24(21), 5505-5512.
[http://dx.doi.org/10.1016/j.bmc.2016.09.001] [PMID: 27634676]
[70]
Shao, J.; Liu, S.; Liu, X.; Pan, Y.; Chen, W. Design, synthesis and SAR study of 2-aminopyrimidines with diverse Michael addition acceptors for chemically tuning the potency against EGFRL858R/T790M. Bioorg. Med. Chem., 2020, 28(19), 115680.
[http://dx.doi.org/10.1016/j.bmc.2020.115680] [PMID: 32912431]
[71]
Liu, Q.; Luo, Y.; Li, Z.; Chen, C.; Fang, L. Structural modifications on indole and pyrimidine rings of osimertinib lead to high selectivity towards L858R/T790M double mutant enzyme and potent antitumor activity. Bioorg. Med. Chem., 2021, 36, 116094.
[http://dx.doi.org/10.1016/j.bmc.2021.116094] [PMID: 33667898]
[72]
Yan, Q.; Chen, Y.; Tang, B.; Xiao, Q.; Qu, R.; Tong, L.; Liu, J.; Ding, J.; Chen, Y.; Ding, N.; Tan, W.; Xie, H.; Li, Y. Discovery of novel 2,4-diarylaminopyrimidine derivatives as potent and selective epidermal growth factor receptor (EGFR) inhibitors against L858R/T790M resistance mutation. Eur. J. Med. Chem., 2018, 152, 298-306.
[http://dx.doi.org/10.1016/j.ejmech.2018.04.052] [PMID: 29730192]
[73]
Gao, H.; Yang, Z.; Yang, X.; Rao, Y. Synthesis and evaluation of osimertinib derivatives as potent EGFR inhibitors. Bioorg. Med. Chem., 2017, 25(17), 4553-4559.
[http://dx.doi.org/10.1016/j.bmc.2017.06.004] [PMID: 28716641]
[74]
Yang, H.; Yan, R.; Jiang, Y.; Yang, Z.; Zhang, X.; Zhou, M.; Wu, X.; Zhang, T.; Zhang, J. Design, synthesis and biological evaluation of 2-amino-4-(1,2,4-triazol)pyridine derivatives as potent EGFR inhibitors to overcome TKI-resistance. Eur. J. Med. Chem., 2020, 187, 111966.
[http://dx.doi.org/10.1016/j.ejmech.2019.111966] [PMID: 31869655]
[75]
Sato, M.; Fuchida, H.; Shindo, N.; Kuwata, K.; Tokunaga, K.; Xiao-Lin, G.; Inamori, R.; Hosokawa, K.; Watari, K.; Shibata, T.; Matsunaga, N.; Koyanagi, S.; Ohdo, S.; Ono, M.; Ojida, A. Selective covalent targeting of mutated EGFR(T790M) with chlorofluoroacetamide-pyrimidines. ACS Med. Chem. Lett., 2020, 11(6), 1137-1144.
[http://dx.doi.org/10.1021/acsmedchemlett.9b00574] [PMID: 32550993]
[76]
Li, Y.; Song, Z.; Jin, Y.; Tang, Z.; Kang, J.; Ma, X. Novel selective and potent EGFR inhibitor that overcomes T790M-mediated resistance in non-small cell lung cancer. Molecules, 2016, 21(11), 1462.
[http://dx.doi.org/10.3390/molecules21111462] [PMID: 27827863]
[77]
Mishiro, K.; Nishii, R.; Sawazaki, I.; Sofuku, T.; Fuchigami, T.; Sudo, H.; Effendi, N.; Makino, A.; Kiyono, Y.; Shiba, K.; Taki, J.; Kinuya, S.; Ogawa, K. Development of radiohalogenatedosimertinib derivatives as imaging probes for companion diagnostics of osimertinib. J. Med. Chem., 2022, 65(3), 1835-1847.
[http://dx.doi.org/10.1021/acs.jmedchem.1c01211] [PMID: 35015529]
[78]
Jang, J.; Son, J.B.; To, C.; Bahcall, M.; Kim, S.Y.; Kang, S.Y.; Mushajiang, M.; Lee, Y.; Jänne, P.A.; Choi, H.G.; Gray, N.S. Discovery of a potent dual ALK and EGFR T790M inhibitor. Eur. J. Med. Chem., 2017, 136, 497-510.
[http://dx.doi.org/10.1016/j.ejmech.2017.04.079] [PMID: 28528303]
[79]
Patel, H.; Ahmad, I.; Jadhav, H.; Pawara, R.; Lokwani, D.; Surana, S. Investigating the impact of different acrylamide (Electrophilic Warhead) on osimertinib’s pharmacological spectrum by molecular mechanic and quantum mechanic approach. Comb. Chem. High Throughput Screen., 2021, 25(1), 149-166.
[http://dx.doi.org/10.2174/1386207323666201204125524] [PMID: 33280593]
[80]
Nussbaumer, S.; Bonnabry, P.; Veuthey, J.L.; Fleury-Souverain, S. Analysis of anticancer drugs: A review. Talanta, 2011, 85(5), 2265-2289.
[http://dx.doi.org/10.1016/j.talanta.2011.08.034] [PMID: 21962644]
[81]
Siddiqui, M.R.; AlOthman, Z.A.; Rahman, N. Analytical techniques in pharmaceutical analysis: A review. Arab. J. Chem., 2017, 10, S1409-S1421.
[http://dx.doi.org/10.1016/j.arabjc.2013.04.016]
[82]
Safaei, M.; Shishehbore, M.R. A review on analytical methods with special reference to electroanalytical methods for the determination of some anticancer drugs in pharmaceutical and biological samples. Talanta, 2021, 229, 122247.
[http://dx.doi.org/10.1016/j.talanta.2021.122247] [PMID: 33838767]
[83]
Wong, A.; Xiang, X.; Ong, P.; Mitchell, E.; Syn, N.; Wee, I.; Kumar, A.; Yong, W.; Sethi, G.; Goh, B.; Ho, P.; Wang, L. A review on liquid chromatography-tandem mass spectrometry methods for rapid quantification of oncology drugs. Pharmaceutics, 2018, 10(4), 221.
[http://dx.doi.org/10.3390/pharmaceutics10040221] [PMID: 30413076]
[84]
Stokvis, E.; Rosing, H.; Beijnen, J.H. Liquid chromatography-mass spectrometry for the quantitative bioanalysis of anticancer drugs. Mass Spectrom. Rev., 2005, 24(6), 887-917.
[http://dx.doi.org/10.1002/mas.20046] [PMID: 15599948]
[85]
Zhou, P.; Li, L.; Wu, L.; Gu, C. Determination of osimertinib mesylate by HPLC. Zhongguo Yaoke Daxue Xuebao, 2017, 48, 322-327.
[http://dx.doi.org/10.11665/j.issn.1000-5048.20170312]
[86]
Vishwanathan, K.; So, K.; Thomas, K.; Bramley, A.; English, S.; Collier, J. Absolute bioavailability of osimertinib in healthy Adults. Clin. Pharmacol. Drug Dev., 2019, 8(2), 198-207.
[http://dx.doi.org/10.1002/cpdd.467] [PMID: 29683562]
[87]
Veelen, A.; Geel, R.; Beer, Y.; Dingemans, A.M.; Stolk, L.; Heine, R.; Vries, F.; Croes, S. Validation of an analytical method using HPLC–MS/MS to quantify osimertinib in human plasma and supplementary stability results. Biomed. Chromatogr., 2020, 34(4), e4771.
[http://dx.doi.org/10.1002/bmc.4771] [PMID: 31808583]
[88]
Saple, S.R.; Bhutnar, A.D.; Vaidya, V.V.; Lohakare, S.S. Separation and identification of oxidative degradation products of osimertinib tablets by using HPLC, UPLC-QTOF-MS/MS and evaluation of their in-silico safety assessment. World J. Res. Rev., 2020, 11(3)
[http://dx.doi.org/10.31871/WJRR.11.3.13]
[89]
Veerman, G.D.M.; Lam, M.H.; Mathijssen, R.H.J.; Koolen, S.L.W.; de Bruijn, P. Quantification of afatinib, alectinib, crizotinib and osimertinib in human plasma by liquid chromatography/triple-quadrupole mass spectrometry; focusing on the stability of osimertinib. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2019, 1113, 37-44.
[http://dx.doi.org/10.1016/j.jchromb.2019.03.011] [PMID: 30889498]
[90]
Zheng, X.; Wang, W.; Zhang, Y.; Ma, Y.; Zhao, H.; Hu, P.; Jiang, J. Development and validation of a UPLC-MS/MS method for quantification of osimertinib (AZD9291) and its metabolite AZ5104 in human plasma. Biomed. Chromatogr., 2018, 32(12), e4365.
[http://dx.doi.org/10.1002/bmc.4365] [PMID: 30119142]
[91]
Ezzeldin, E.; Iqbal, M.; Herqash, R.N.; ElNahhas, T. Simultaneous quantitative determination of seven novel tyrosine kinase inhibitors in plasma by a validated UPLC-MS/MS method and its application to human microsomal metabolic stability study. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2020, 1136, 121851.
[http://dx.doi.org/10.1016/j.jchromb.2019.121851] [PMID: 31812004]
[92]
Dong, S.T.; Li, Y.; Yang, H.T.; Wu, Y.; Li, Y.J.; Ding, C.Y.; Meng, L.; Dong, Z.J.; Zhang, Y. An accurate and effective method for measuring osimertinib by UPLC-TOF-MS and its pharmacokinetic study in rats. Molecules, 2018, 23(11), 2894.
[http://dx.doi.org/10.3390/molecules23112894] [PMID: 30404182]
[93]
Ma, Z.; Lu, S.; Zhou, H.; Zhang, S.; Wang, Y.; Lin, N. Determination of intracellular anlotinib, osimertinib, afatinib and gefitinib accumulations in human brain microvascular endothelial cells by liquid chromatography/tandem mass spectrometry. Rapid Commun. Mass Spectrom., 2021, 35(1), e8955.
[http://dx.doi.org/10.1002/rcm.8955] [PMID: 32990383]
[94]
Aghai, F.; Zimmermann, S.; Kurlbaum, M.; Jung, P.; Pelzer, T.; Klinker, H.; Isberner, N.; Scherf-Clavel, O. Development and validation of a sensitive liquid chromatography tandem mass spectrometry assay for the simultaneous determination of ten kinase inhibitors in human serum and plasma. Anal. Bioanal. Chem., 2021, 413(2), 599-612.
[http://dx.doi.org/10.1007/s00216-020-03031-7] [PMID: 33155133]
[95]
Reis, R.; Labat, L.; Allard, M.; Boudou-Rouquette, P.; Chapron, J.; Bellesoeur, A.; Thomas-Schoemann, A.; Arrondeau, J.; Giraud, F.; Alexandre, J.; Vidal, M.; Goldwasser, F.; Blanchet, B. Liquid chromatography-tandem mass spectrometric assay for therapeutic drug monitoring of the EGFR inhibitors afatinib, erlotinib and osimertinib, the ALK inhibitor crizotinib and the VEGFR inhibitor nintedanib in human plasma from non-small cell lung cancer patients. J. Pharm. Biomed. Anal., 2018, 158, 174-183.
[http://dx.doi.org/10.1016/j.jpba.2018.05.052] [PMID: 29883880]
[96]
Rood, J.J.M.; van Bussel, M.T.J.; Schellens, J.H.M.; Beijnen, J.H.; Sparidans, R.W. Liquid chromatography–tandem mass spectrometric assay for the T790M mutant EGFR inhibitor osimertinib (AZD9291) in human plasma. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2016, 1031, 80-85.
[http://dx.doi.org/10.1016/j.jchromb.2016.07.037] [PMID: 27469903]
[97]
Rood, J.J.M.; van Haren, M.J.; Beijnen, J.H.; Sparidans, R.W. Bioanalysis of EGFRm inhibitor osimertinib, and its glutathione cycle- and desmethyl metabolites by liquid chromatography-tandem mass spectrometry. J. Pharm. Biomed. Anal., 2020, 177, 112871.
[http://dx.doi.org/10.1016/j.jpba.2019.112871] [PMID: 31539712]
[98]
Xiong, S.; Deng, Z.; Sun, P.; Mu, Y.; Xue, M. Development and validation of a rapid and sensitive LC-MS/MS method for the pharmacokinetic study of osimertinib in rats. J. AOAC Int., 2017, 100(6), 1771-1775.
[http://dx.doi.org/10.5740/jaoacint.16-0362] [PMID: 28534470]
[99]
Janssen, J.M.; de Vries, N.; Venekamp, N.; Rosing, H.; Huitema, A.D.R.; Beijnen, J.H. Development and validation of a liquid chromatography-tandem mass spectrometry assay for nine oral anticancer drugs in human plasma. J. Pharm. Biomed. Anal., 2019, 174, 561-566.
[http://dx.doi.org/10.1016/j.jpba.2019.06.034] [PMID: 31255856]
[100]
Mitchell, R.; Bailey, C.; Ewles, M.; Swan, G.; Turpin, P. Determination of osimertinib in human plasma, urine and cerebrospinal fluid. Bioanalysis, 2019, 11(10), 987-1001.
[http://dx.doi.org/10.4155/bio-2018-0262] [PMID: 31218898]
[101]
MacLeod, A.K.; Lin, D.; Huang, J.T.J.; McLaughlin, L.A.; Henderson, C.J.; Wolf, C.R. Identification of novel pathways of osimertinib disposition and potential implications for the outcome of lung cancer therapy. Clin. Cancer Res., 2018, 24(9), 2138-2147.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-3555] [PMID: 29437786]
[102]
Fresnais, M.; Roth, A.; Foerster, K.I.; Jäger, D.; Pfister, S.M.; Haefeli, W.E.; Burhenne, J.; Longuespée, R. Rapid and sensitive quantification of osimertinib in human plasma using a fully validated MALDI–IM–MS/MS assay. Cancers, 2020, 12(7), 1897.
[http://dx.doi.org/10.3390/cancers12071897] [PMID: 32674434]
[103]
Varrone, A.; Varnäs, K.; Jucaite, A.; Cselényi, Z.; Johnström, P.; Schou, M.; Vazquez-Romero, A.; Moein, M.M.; Halldin, C.; Brown, A.P.; Vishwanathan, K.; Farde, L. A PET study in healthy subjects of brain exposure of 11 C-labelled osimertinib – A drug intended for treatment of brain metastases in non-small cell lung cancer. J. Cereb. Blood Flow Metab., 2020, 40(4), 799-807.
[http://dx.doi.org/10.1177/0271678X19843776] [PMID: 31006308]
[104]
Erlichman, C.; Donehower, R.C.; Chabner, B.A. The practical benefits of pharmacokinetics in the use of antineoplastic agents. Cancer Chemother. Pharmacol., 1980, 4(3), 139-145.
[http://dx.doi.org/10.1007/BF00254011] [PMID: 6994913]
[105]
Zhang, H. Osimertinib making a breakthrough in lung cancer targeted therapy. OncoTargets Ther., 2016, 9, 5489-5493.
[http://dx.doi.org/10.2147/OTT.S114722] [PMID: 27660466]
[106]
Planchard, D.; Brown, K.H.; Kim, D.W.; Kim, S.W.; Ohe, Y.; Felip, E.; Leese, P.; Cantarini, M.; Vishwanathan, K.; Jänne, P.A.; Ranson, M.; Dickinson, P.A. Osimertinib Western and Asian clinical pharmacokinetics in patients and healthy volunteers: Implications for formulation, dose, and dosing frequency in pivotal clinical studies. Cancer Chemother. Pharmacol., 2016, 77(4), 767-776.
[http://dx.doi.org/10.1007/s00280-016-2992-z] [PMID: 26902828]
[107]
Colclough, N.; Chen, K.; Johnström, P.; Fridén, M.; McGinnity, D.F. Building on the success of osimertinib: achieving CNS exposure in oncology drug discovery. Drug Discov. Today, 2019, 24(5), 1067-1073.
[http://dx.doi.org/10.1016/j.drudis.2019.01.015] [PMID: 30710641]
[108]
van Hoppe, S.; Jamalpoor, A.; Rood, J.J.M.; Wagenaar, E.; Sparidans, R.W.; Beijnen, J.H.; Schinkel, A.H. Brain accumulation of osimertinib and its active metabolite AZ5104 is restricted by ABCB1 (P-glycoprotein) and ABCG2 (breast cancer resistance protein). Pharmacol. Res., 2019, 146, 104297.
[http://dx.doi.org/10.1016/j.phrs.2019.104297] [PMID: 31175939]
[109]
Grande, E.; Harvey, R.D.; You, B.; Batlle, J.F.; Galbraith, H.; Sarantopoulos, J.; Ramalingam, S.S.; Mann, H.; So, K.; Johnson, M.; Vishwanathan, K. Pharmacokinetic study of osimertinib in cancer patients with mild or moderate hepatic impairment. J. Pharmacol. Exp. Ther., 2019, 369(2), 291-299.
[http://dx.doi.org/10.1124/jpet.118.255919] [PMID: 30872388]
[110]
Bollinger, M.K.; Agnew, A.S.; Mascara, G.P. Osimertinib: A third-generation tyrosine kinase inhibitor for treatment of epidermal growth factor receptor-mutated non-small cell lung cancer with the acquired Thr790Met mutation. J. Oncol. Pharm. Pract., 2018, 24(5), 379-388.
[http://dx.doi.org/10.1177/1078155217712401] [PMID: 28565936]
[111]
Dickinson, P.A.; Cantarini, M.V.; Collier, J.; Frewer, P.; Martin, S.; Pickup, K.; Ballard, P. Metabolic disposition of osimertinib in rats, dogs, and humans: Insights into a drug designed to bind covalently to a cysteine residue of epidermal growth factor receptor. Drug Metab. Dispos., 2016, 44(8), 1201-1212.
[http://dx.doi.org/10.1124/dmd.115.069203] [PMID: 27226351]
[112]
Solimando, D.A., Jr; Waddell, J.A. Drug monographs: Daratumumab and osimertinib. Hosp. Pharm., 2016, 51(4), 288-292.
[http://dx.doi.org/10.1310/hpj5104-288] [PMID: 27303075]
[113]
Rossi, A.; Muscarella, L.A.; Di Micco, C.; Carbonelli, C.; D’alessandro, V.; Notarangelo, S.; Palomba, G.; Sanpaolo, G.; Taurchini, M.; Graziano, P.; Maiello, E. Pharmacokinetic drug evaluation of osimertinib for the treatment of non-small cell lung cancer. Expert Opin. Drug Metab. Toxicol., 2017, 13(12), 1281-1288.
[http://dx.doi.org/10.1080/17425255.2017.1401064] [PMID: 29095090]
[114]
Vishwanathan, K.; Dickinson, P.A.; So, K.; Thomas, K.; Chen, Y.M.; De Castro Carpeño, J.; Dingemans, A.M.C.; Kim, H.R.; Kim, J.H.; Krebs, M.G.; Chih-Hsin Yang, J. Bui, K.; Weilert, D.; Harvey, R.D. The effect of itraconazole and rifampicin on the pharmacokinetics of osimertinib. Br. J. Clin. Pharmacol., 2018, 84(6), 1156-1169.
[http://dx.doi.org/10.1111/bcp.13534] [PMID: 29381826]
[115]
Harvey, R.D.; Aransay, N.R.; Isambert, N.; Lee, J.S.; Arkenau, T.; Vansteenkiste, J.; Dickinson, P.A.; Bui, K.; Weilert, D.; So, K.; Thomas, K.; Vishwanathan, K. Effect of multiple-dose osimertinib on the pharmacokinetics of simvastatin and rosuvastatin. Br. J. Clin. Pharmacol., 2018, 84(12), 2877-2888.
[http://dx.doi.org/10.1111/bcp.13753] [PMID: 30171779]
[116]
Vishwanathan, K.; Dickinson, P.A.; Bui, K.; Cassier, P.A.; Greystoke, A.; Lisbon, E.; Moreno, V.; So, K.; Thomas, K.; Weilert, D.; Yap, T.A.; Plummer, R. The effect of food or omeprazole on the pharmacokinetics of osimertinib in patients with non-small-cell lung cancer and in healthy volunteers. J. Clin. Pharmacol., 2018, 58(4), 474-484.
[http://dx.doi.org/10.1002/jcph.1035] [PMID: 29178442]
[117]
Occhipinti, M.; Brambilla, M.; Galli, G.; Manglaviti, S.; Giammaruco, M.; Prelaj, A.; Ferrara, R.; De Toma, A.; Proto, C.; Beninato, T.; Zattarin, E.; Lo Russo, G.; Gelibter, A.J.; Simmaco, M.; Preissner, R.; Garassino, M.C.; De Braud, F.; Marchetti, P. Evaluation of drug-drug interactions in EGFR-mutated non-small-cell lung cancer patients during treatment with tyrosine-kinase inhibitors. J. Pers. Med., 2021, 11(5), 424.
[http://dx.doi.org/10.3390/jpm11050424] [PMID: 34069851]
[118]
Fleisher, B.; Mody, H.; Werkman, C.; Ait-Oudhia, S. Chloroquine sensitizes MDA-MB-231 cells to osimertinib through autophagy–apoptosis crosstalk pathway. Breast Cancer, 2019, 11, 231-241.
[http://dx.doi.org/10.2147/BCTT.S211030] [PMID: 31839713]
[119]
Wu, Q.; Jiang, H.; Wang, S.; Dai, D.; Chen, F.; Meng, D.; Geng, P.; Tong, H.; Zhou, Y.; Pan, D.; Zhou, Q.; Wang, C. Effects of avitinib on the pharmacokinetics of osimertinib in vitro and in vivo in rats. Thorac. Cancer, 2020, 11(10), 2775-2781.
[http://dx.doi.org/10.1111/1759-7714.13587] [PMID: 32812378]
[120]
Liu, X.; Hong, L.; Nilsson, M.; Hubert, S.M.; Wu, S.; Rinsurongkawong, W.; Lewis, J.; Spelman, A.; Roth, J.; Swisher, S.; He, Y.; Jack Lee, J.; Fang, B.; Heymach, J.V.; Zhang, J.; Le, X. Concurrent use of aspirin with osimertinib is associated with improved survival in advanced EGFR-mutant non-small cell lung cancer. Lung Cancer, 2020, 149, 33-40.
[http://dx.doi.org/10.1016/j.lungcan.2020.08.023] [PMID: 32956986]
[121]
Liu, J.; Li, X.; Shao, Y.; Guo, X.; He, J. The efficacy and safety of osimertinib in treating nonsmall cell lung cancer. Medicine, 2020, 99(34), e21826.
[http://dx.doi.org/10.1097/MD.0000000000021826] [PMID: 32846826]
[122]
Chu, C.Y.; Choi, J.; Eaby-Sandy, B.; Langer, C.J.; Lacouture, M.E. Osimertinib: A novel dermatologic adverse event profile in patients with lung cancer. Oncologist, 2018, 23(8), 891-899.
[http://dx.doi.org/10.1634/theoncologist.2017-0582] [PMID: 29650685]
[123]
Schoenfeld, A.J.; Arbour, K.C.; Rizvi, H.; Iqbal, A.N.; Gadgeel, S.M.; Girshman, J.; Kris, M.G.; Riely, G.J.; Yu, H.A.; Hellmann, M.D. Severe immune-related adverse events are common with sequential PD-(L)1 blockade and osimertinib. Ann. Oncol., 2019, 30(5), 839-844.
[http://dx.doi.org/10.1093/annonc/mdz077] [PMID: 30847464]
[124]
Yang, J.C.H.; Shepherd, F.A.; Kim, D.W.; Lee, G.W.; Lee, J.S.; Chang, G.C.; Lee, S.S.; Wei, Y.F.; Lee, Y.G.; Laus, G.; Collins, B.; Pisetzky, F.; Horn, L. Osimertinib plus durvalumab versus osimertinib monotherapy in EGFR T790M–positive NSCLC following previous EGFR TKI therapy: CAURAL brief report. J. Thorac. Oncol., 2019, 14(5), 933-939.
[http://dx.doi.org/10.1016/j.jtho.2019.02.001] [PMID: 30763730]
[125]
Häntschel, M.; Niebling, J.; Häring, A.; Häring, M.F.; Groß, T.; Horger, M.; Riessen, R.; Haap, M.; Lewis, R.A.; Böckeler, M.; Hetzel, J. Life‐threatening pneumonitis after first‐line treatment with osimertinib for primary T790M mutated non‐small cell lung cancer. Thorac. Cancer, 2020, 11(7), 2044-2047.
[http://dx.doi.org/10.1111/1759-7714.13476] [PMID: 32374485]
[126]
Bian, S.; Tang, X.; Lei, W. A case of torsades de pointes induced by the third-generation EGFR-TKI, osimertinib combined with moxifloxacin. BMC Pulm. Med., 2020, 20(1), 181.
[http://dx.doi.org/10.1186/s12890-020-01217-4] [PMID: 32580784]
[127]
Lee, H.; Lee, H.Y.; Sun, J.M.; Lee, S.H.; Kim, Y.; Park, S.E.; Ahn, J.S.; Park, K.; Ahn, M.J. Transient asymptomatic pulmonary opacities during osimertinib treatment and its clinical implication. J. Thorac. Oncol., 2018, 13(8), 1106-1112.
[http://dx.doi.org/10.1016/j.jtho.2018.04.038] [PMID: 29775809]
[128]
Parafianowicz, P.; Krishan, R.; Beutler, B.D.; Islam, R.X.; Singh, T. Myositis – A common but underreported adverse effect of osimertinib: Case series and review of the literature. Cancer Treat. Res. Commun., 2020, 25, 100254.
[http://dx.doi.org/10.1016/j.ctarc.2020.100254] [PMID: 33276288]
[129]
Nie, K.; Zhang, Z.; Zhang, C.; Geng, C.; Zhang, L.; Xu, X.; Liu, S.; Wang, S.; Zhuang, X.; Lan, K.; Ji, Y. Osimertinib compared docetaxel-bevacizumab as third-line treatment in EGFR T790M mutated non-small-cell lung cancer. Lung Cancer, 2018, 121, 5-11.
[http://dx.doi.org/10.1016/j.lungcan.2018.04.012] [PMID: 29858027]
[130]
Greig, S.L. Osimertinib: First global approval. Drugs, 2016, 76(2), 263-273.
[http://dx.doi.org/10.1007/s40265-015-0533-4] [PMID: 26729184]
[131]
Wu, Y.L.; John, T.; Grohe, C.; Majem, M.; Goldman, J.W.; Kim, S.W.; Kato, T.; Laktionov, K.; Vu, H.V.; Wang, Z.; Lu, S.; Lee, K.Y.; Akewanlop, C.; Yu, C.J.; de Marinis, F.; Bonanno, L.; Domine, M.; Shepherd, F.A.; Zeng, L.; Atasoy, A.; Herbst, R.S.; Tsuboi, M. Postoperative chemotherapy use and outcomes from ADAURA: Osimertinib as adjuvant therapy for resected EGFR-mutated NSCLC. J. Thorac. Oncol., 2022, 17(3), 423-433.
[http://dx.doi.org/10.1016/j.jtho.2021.10.014] [PMID: 34740861]
[132]
Lorenzi, E.; Simonelli, M.; Persico, P.; Dipasquale, A.; Santoro, A. Risks of molecular targeted therapies to fertility and safety during pregnancy: A review of current knowledge and future needs. Expert Opin. Drug Saf., 2021, 20(5), 503-521.
[http://dx.doi.org/10.1080/14740338.2021.1893299] [PMID: 33600273]
[133]
A Phase II Study of osimertinib with on-study and post-progression biopsy in the first-Line treatment of EGFR inhibitor naïve advanced EGFR mutant lung cancer. NCT03586453, Available from: https://www.clinicaltrials.gov/ct2/show/NCT03586453
[134]
To evaluate the efficacy and safety of high-dose almonertinib versus osimertinib in the second-line treatment of patients with EGFR mutations in advanced NSCLC With brain metastases: a multicenter, randomized controlled, double-blind clinical trial. NCT 04870190, Available from: https://www.clinicaltrials.gov/ct2/show/NCT04870190
[135]
Safety and efficacy of osimertinib combined with anlotinib in EGFRm+, treatment-naïve IIIb/IV NSCLC patients: A prospective, single-arm, Phase Ib/IIa study. NCT04770688, Available from: https://www.clinicaltrials.gov/ct2/show/NCT04770688
[136]
A phase 1/2 study of osimertinib in combination with gefitinib in EGFR inhibitor native advanced EGFR mutant lung cancer. NCT03122717, Available from: https://www.clinicaltrials.gov/ct2/show/NCT03122717
[137]
A phase IIa clinical trial to evaluate the safety and efficacy of osimertinibin first-line patients with EGFR Mutation-positive locally advanced or metastatic non-small cell lung cancer and concomitant EGFR T790M mutation at time of diagnosis. NCT02841579, Available from: https://www.clinicaltrials.gov/ct2/show/NCT02841579
[138]
Phase 1 study of combination dacomitinib and osimertinibfor patients with metastatic EGFR mutant lung cancers. NCT03810807, Available from: https://www.clinicaltrials.gov/ct2/show/NCT03810807
[139]
A multicentre, open-label, single-arm, molecular profiling study of patients with EGFR mutation-positive Locally advanced or metastatic NSCLC treated with Osimertinib. NCT03239340, Available from: https://www.clinicaltrials.gov/ct2/show/NCT03239340
[140]
Phase II trial of AZD9291 in first line treatment of lung cancer harboring activating EGFR mutation from circulating tumor DNA and second line treatment after acquired resistance with T790M mutation detected from circulating tumor DNA. NCT02769286, Available from: https://www.clinicaltrials.gov/ct2/show/NCT02769286
[141]
A prospective, multicenter, Phase-IV clinical trial to assess safety of osimertinibin Indian adult patients with metastatic epidermal growth factor receptor (EGFR) T790M mutation-positive nonsmall cell lung cancer (NSCLC). NCT03853551, Available from: https://www.clinicaltrials.gov/ct2/show/NCT03853551
[142]
Pilot, phase 2 study assessing intracranial activity of AZD92919 (TAGRISSO) in advanced EGFRm(EGFR mutation) NSCLC patients with asymptomatic brain metastases. NCT02736513, Available from: https://www.clinicaltrials.gov/ct2/show/NCT02736513
[143]
An open-label, non-randomised, Phase I study to assess the effect of single and multiple oral doses of osimertinib (TAGRISSO) on the pharmacokinetics of a P-glycoprotein probe drug (Fexofenadine) in patients with advanced EGFRm NSCLC that have progressed on a prior EGFR-TKI regimen. NCT02908750, Available from: https://www.clinicaltrials.gov/ct2/show/NCT02908750
[144]
A Phase 1B study of AZD9291 in combination with navitoclax in EGFR-mutant non-small cell lung cancer following resistance to initial EGFR kinase inhibitor. NCT02520778, Available from: https://www.clinicaltrials.gov/ct2/show/NCT02520778
[145]
A Phase I, open-label, non-randomised, multicentre study to assess the effect of rifampicin (a CYP3A4 inducer) on the pharmacokinetics of AZD9291 in patients with EGFRm positive NSCLC whose disease has progressed on an EGFR TKI. NCT02197247, Available from: https://www.clinicaltrials.gov/ct2/show/NCT02197247
[146]
An open-label, randomized, Phase I, study to determine the effect of food on the pharmacokinetics of single oral doses of AZD9291 in patients with EGFRm positive NSCLC whose disease has progressed on an EGFR TKI. NCT02163733, Available from: https://www.clinicaltrials.gov/ct2/show/NCT02163733
[147]
A Phase I, open-label, single-center, sequential design study in healthy volunteers to determine the relative bioavailability of different oral formulations of AZD9291 and the effect of food. NCT01951599, Available from: https://www.clinicaltrials.gov/ct2/show/NCT01951599
[148]
A Phase I, open-label, multicentre study to assess the safety, tolerability, pharmacokinetics and preliminary anti-tumour activity of AZD3759 or AZD9291 in patients With EGFR mutation-positive advanced stage non-small cell lung cancer (NSCLC). NCT 02228369, Available from: https://www.clinicaltrials.gov/ct2/show/NCT02228369
[149]
A Phase III, double-blind, randomised study to assess the safety and efficacy of AZD9291 versus a standard of care epidermal growth factor receptor tyrosine kinase inhibitor as first line treatment in patients with epidermal growth factor receptor mutation positive, locally advanced or metastatic non-small cell lung cancer. NCT02296125, Available from: https://www.clinicaltrials.gov/ct2/show/NCT02296125
[150]
An open-label, non-randomised, multicentre, comparative, Phase I study to determine the pharmacokinetics, safety and tolerability of AZD9291 following a single oral dose to patients with advanced solid tumours and normal hepatic function or mild or moderate hepatic impairment. NCT02161770, Available from: https://www.clinicaltrials.gov/ct2/show/NCT02161770
[151]
Safety, tolerability, pharmacokinetics and anti-tumour activity of AZD9291 in patients with advanced non-small cell lung cancer who progressed on prior therapy with an epidermal growth factor receptor tyrosine kinase inhibitor agent. NCT01802632, Available from: https://www.clinicaltrials.gov/ct2/show/NCT01802632
[152]
An open-label Phase 1/2 study of itacitinib in combination with osimertinibin subjects with locally advanced or metastatic nonsmall cell lung cancer. NCT02917993, Available from: https://www.clinicaltrials.gov/ct2/show/NCT02917993

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy