Generic placeholder image

Current Women`s Health Reviews

Editor-in-Chief

ISSN (Print): 1573-4048
ISSN (Online): 1875-6581

Review Article

Relevance of Infertility, Epigenetics, Nutrient, and Bioactive Components: A Review of the Literature

Author(s): Kadriye Erdogan, Nazli Tunca Sanlier and Nevin Sanlier*

Volume 20, Issue 5, 2024

Published on: 15 September, 2023

Article ID: e130723218684 Pages: 12

DOI: 10.2174/1573404820666230713104512

Price: $65

Abstract

Background: This review discusses epigenetic mechanisms and the relationship of infertility in men and women in relation to parameters pertaining to nutrition.

Methods: A review of the line of the literature was conducted prior to June 2021 through the selected websites, including MEDLINE, Embase, Web of Science, www.ClinicalTrials.gov, Cochrane Central, PubMed, Google Scholar, Science Direct, and the WHO.

Results: The prevalence of infertility worldwide is 8-12%, and one out of every 8 couples receives medical treatment. Epigenetic mechanisms, aging, environmental factors, dietary energy and nutrients and non-nutrient compounds; more or less energy intake, and methionine play a role in the onset of infertility. Furthermore, more factors that contribute to infertility include the vitamins B12, D, and B6, biotin, choline, selenium, zinc, folic acid, resveratrol, quercetin, and others.

Discussion: To understand the molecular mechanisms regulating the expression of genes that affect infertility, the environment, the role of genotype, age, health, nutrition, and changes in the individual's epigenotype must first be considered. This will pave the way for the identification of the unknown causes of infertility. Insufficient or excessive intake of energy and certain macro and micronutrients may contribute to the occurrence of infertility as well. In addition, it is reported that 5-10% of body weight loss, moderate physical activity and nutritional interventions for improvement in insulin sensitivity contribute to the development of fertility.

Conclusion: Epigenetic processes involve inherited changes but not encoded by the DNA sequence itself. Nutrition is thought to affect the epigenetic mechanisms that play a role in the pathogenesis of many diseases, including infertility. Epigenetic mechanisms of individuals with infertility are different from healthy individuals. Infertility is associated with epigenetic mechanisms, nutrients, bioactive components and numerous other factors.

Graphical Abstract

[1]
Karaca, A.; Ünsal, G. The effects of infertility on women’s mental health and the role of the psychiatric nurse. J. Psychiatr. Nurs., 2012, 3(2), 80-85.
[http://dx.doi.org/10.5505/phd.2012.02486]
[2]
Vander Borght, M.; Wyns, C. Fertility and infertility: Definition and epidemiology. Clin. Biochem., 2018, 62, 2-10.
[http://dx.doi.org/10.1016/j.clinbiochem.2018.03.012] [PMID: 29555319]
[3]
Hosseini, B.; Eslamian, G. Association of dietary factors with male and female infertility: Review of current evidence. Thrita, 2014, 3(3)
[http://dx.doi.org/10.5812/thrita.20953]
[4]
Omar, M.I.; Pal, R.P.; Kelly, B.D.; Bruins, H.M.; Yuan, Y.; Diemer, T.; Krausz, C.; Tournaye, H.; Kopa, Z.; Jungwirth, A.; Minhas, S. Benefits of empiric nutritional and medical therapy for semen parameters and pregnancy and live birth rates in couples with idiopathic infertility: A systematic review and meta-analysis. Eur. Urol., 2019, 75(4), 615-625.
[http://dx.doi.org/10.1016/j.eururo.2018.12.022] [PMID: 30630643]
[5]
Chen, M.; Heilbronn, L.K. The health outcomes of human offspring conceived by assisted reproductive technologies (ART). J. Dev. Orig. Health Dis., 2017, 8(4), 388-402.
[http://dx.doi.org/10.1017/S2040174417000228] [PMID: 28416029]
[6]
Ried, K. Chinese herbal medicine for female infertility: An updated meta-analysis. Complement. Ther. Med., 2015, 23(1), 116-128.
[http://dx.doi.org/10.1016/j.ctim.2014.12.004] [PMID: 25637159]
[7]
Bunkar, N.; Pathak, N.; Lohiya, N.K.; Mishra, P.K. Epigenetics: A key paradigm in reproductive health. Clin. Exp. Reprod. Med., 2016, 43(2), 59-81.
[http://dx.doi.org/10.5653/cerm.2016.43.2.59] [PMID: 27358824]
[8]
Practice Committee of the American Society for Reproductive Medicine. Smoking and infertility: A committee opinion. Fertil. Steril., 2012, 98(6), 1400-1406.
[http://dx.doi.org/10.1016/j.fertnstert.2012.07.1146] [PMID: 22959451]
[9]
Infertility Workup for the Women’s Health Specialist. Infertility workup for the women’s health specialist. Obstet.. Gynecol.,, 2019, 133(6), e377-e384.
[http://dx.doi.org/10.1097/AOG.0000000000003271] [PMID: 31135764]
[10]
Sharma, R.; Biedenharn, K.R.; Fedor, J.M.; Agarwal, A. Lifestyle factors and reproductive health: Taking control of your fertility. Reprod. Biol. Endocrinol., 2013, 11(1), 66.
[http://dx.doi.org/10.1186/1477-7827-11-66] [PMID: 23870423]
[11]
Varshini, J.; Srinag, B.S.; Kalthur, G.; Krishnamurthy, H.; Kumar, P.; Rao, S.B.S.; Adiga, S.K. Poor sperm quality and advancing age are associated with increased sperm DNA damage in infertile men. Andrologia, 2012, 44(S1), 642-649.
[http://dx.doi.org/10.1111/j.1439-0272.2011.01243.x] [PMID: 22040161]
[12]
Gunes, S.; Esteves, S.C. Role of genetics and epigenetics in male infertility. Andrologia, 2021, 53(1)e13586
[http://dx.doi.org/10.1111/and.13586] [PMID: 32314821]
[13]
Stotz, K. Extended evolutionary psychology: The importance of transgenerational developmental plasticity. Front. Psychol., 2014, 5, 908.
[http://dx.doi.org/10.3389/fpsyg.2014.00908] [PMID: 25191292]
[14]
Patra, S.K.; Parbin, S.; Pradhan, N.; Kausar, C.; Patra, S.K. Epigenetics of reproductive infertility. Front. Biosci. (Schol. Ed.), 2017, 9(4), 509-535.
[http://dx.doi.org/10.2741/s497] [PMID: 28410129]
[15]
Li, Y.; Sasaki, H. Genomic imprinting in mammals: Its life cycle, molecular mechanisms and reprogramming. Cell Res., 2011, 21(3), 466-473.
[http://dx.doi.org/10.1038/cr.2011.15] [PMID: 21283132]
[16]
Wasserzug-Pash, P.; Klutstein, M. Epigenetic changes in mammalian gametes throughout their lifetime: The four seasons metaphor. Chromosoma, 2019, 128(3), 423-441.
[http://dx.doi.org/10.1007/s00412-019-00704-w] [PMID: 31030260]
[17]
Zhu, Z.; Cao, F.; Li, X. Epigenetic programming and fetal metabolic programming. Front. Endocrinol., 2019, 10, 764.
[http://dx.doi.org/10.3389/fendo.2019.00764] [PMID: 31849831]
[18]
Eiras, M.C.; Pinheiro, D.P.; Romcy, K.A.M.; Ferriani, R.A.; Dos Reis, R.M.; Furtado, C.L.M. Polycystic ovary syndrome: The epigenetics behind the disease. Reprod. Sci., 2021, 29(3), 680-694.
[http://dx.doi.org/10.1007/s43032-021-00516-3] [PMID: 33826098]
[19]
McSwiggin, H.M.; O’Doherty, A.M. Epigenetic reprogramming during spermatogenesis and male factor infertility. Reproduction, 2018, 156(2), R9-R21.
[http://dx.doi.org/10.1530/REP-18-0009] [PMID: 29717022]
[20]
Giacone, F.; Cannarella, R.; Mongioì, L.M.; Alamo, A.; Condorelli, R.A.; Calogero, A.E.; La Vignera, S. Epigenetics of male fertility: Effects on assisted reproductive techniques. World J. Mens Health, 2019, 37(2), 148-156.
[http://dx.doi.org/10.5534/wjmh.180071] [PMID: 30588778]
[21]
Baranizadeh, K.; Bahmanzadeh, M.; Tavilani, H.; Ghiasvand, T.; Amiri, I.; Yavangi, M.; Shafiee, G. Evaluation of methylenetetrahydrofolate reductase and s-adenosyl-methionine level in male infertility: A case-control study. Int. J. Reprod. Biomed., 2022, 20(4), 299-306.
[http://dx.doi.org/10.18502/ijrm.v20i4.10902] [PMID: 35822186]
[22]
Rotondo, J.C.; Bosi, S.; Bazzan, E.; Di Domenico, M.; De Mattei, M.; Selvatici, R.; Patella, A.; Marci, R.; Tognon, M.; Martini, F. Methylenetetrahydrofolate reductase gene promoter hypermethylation in semen samples of infertile couples correlates with recurrent spontaneous abortion. Hum. Reprod., 2012, 27(12), 3632-3638.
[http://dx.doi.org/10.1093/humrep/des319] [PMID: 23010533]
[23]
Song, B.; Wang, C.; Chen, Y.; Li, G.; Gao, Y.; Zhu, F.; Wu, H.; Lv, M.; Zhou, P.; Wei, Z.; He, X.; Cao, Y. Sperm DNA integrity status is associated with DNA methylation signatures of imprinted genes and non-imprinted genes. J. Assist. Reprod. Genet., 2021, 38(8), 2041-2048.
[http://dx.doi.org/10.1007/s10815-021-02157-6] [PMID: 33786731]
[24]
Samadieh, Y.; Favaedi, R.; Ramezanali, F.; Afsharian, P.; Aflatoonian, R.; Shahhoseini, M. Epigenetic dynamics of HOXA10 gene in infertile women with endometriosis. Reprod. Sci., 2019, 26(1), 88-96.
[http://dx.doi.org/10.1177/1933719118766255] [PMID: 29592776]
[25]
Taylor, H.S.; Arici, A.; Olive, D.; Igarashi, P. HOXA10 is expressed in response to sex steroids at the time of implantation in the human endometrium. J. Clin. Invest., 1998, 101(7), 1379-1384.
[http://dx.doi.org/10.1172/JCI1597] [PMID: 9525980]
[26]
Gui, Y.; Zhang, J.; Yuan, L.; Lessey, B.A. Regulation of HOXA-10 and its expression in normal and abnormal endometrium. Mol. Hum. Reprod., 1999, 5(9), 866-873.
[http://dx.doi.org/10.1093/molehr/5.9.866] [PMID: 10460226]
[27]
Godbole, G.; Suman, P.; Malik, A.; Galvankar, M.; Joshi, N.; Fazleabas, A.; Gupta, S.K.; Modi, D. Decrease in expression of HOXA10 in the decidua after embryo implantation promotestrophoblast invasion. Endocrinology, 2017, 158(8), 2618-2633.
[http://dx.doi.org/10.1210/en.2017-00032] [PMID: 28520923]
[28]
Pisarska, M.D.; Chan, J.L.; Lawrenson, K.; Gonzalez, T.L.; Wang, E.T. Genetics and epigenetics of infertility and treatments on outcomes. J. Clin. Endocrinol. Metab., 2019, 104(6), 1871-1886.
[http://dx.doi.org/10.1210/jc.2018-01869] [PMID: 30561694]
[29]
Stener-Victorin, E.; Deng, Q. Epigenetic inheritance of polycystic ovary syndrome — challenges and opportunities for treatment. Nat. Rev. Endocrinol., 2021, 17(9), 521-533.
[http://dx.doi.org/10.1038/s41574-021-00517-x] [PMID: 34234312]
[30]
Eden, S.; Cedar, H. Role of DNA methylation in the regulation of transcription. Curr. Opin. Genet. Dev., 1994, 4(2), 255-259.
[http://dx.doi.org/10.1016/S0959-437X(05)80052-8] [PMID: 8032203]
[31]
Cheng, P.; Chen, H.; Zhang, R.P.; Liu, S.; Zhou-Cun, A. Polymorphism in DNMT1 may modify the susceptibility to oligospermia. Reprod. Biomed. Online, 2014, 28(5), 644-649.
[http://dx.doi.org/10.1016/j.rbmo.2014.01.003] [PMID: 24631383]
[32]
Rotondo, J.C.; Lanzillotti, C.; Mazziotta, C.; Tognon, M.; Martini, F. Epigenetics of male infertility: The role of DNA methylation. Front. Cell Dev. Biol., 2021.9689624
[http://dx.doi.org/10.3389/fcell.2021.689624] [PMID: 34368137]
[33]
Esteves, S.C.; Santi, D.; Simoni, M. An update on clinical and surgical interventions to reduce sperm DNA fragmentation in infertile men. Andrology, 2020, 8(1), 53-81.
[http://dx.doi.org/10.1111/andr.12724] [PMID: 31692293]
[34]
La Spina, F.A.; Romanato, M.; Brugo-Olmedo, S.; De Vincentiis, S.; Julianelli, V.; Rivera, R.M.; Buffone, M.G. Heterogeneous distribution of histone methylation in mature human sperm. J. Assist. Reprod. Genet., 2014, 31(1), 45-49.
[http://dx.doi.org/10.1007/s10815-013-0137-4] [PMID: 24221913]
[35]
Yuen, B.T.K.; Bush, K.M.; Barrilleaux, B.L.; Cotterman, R.; Knoepfler, P.S. Histone H3.3 regulates dynamic chromatin states during spermatogenesis. Development, 2014, 141(18), 3483-3494.
[http://dx.doi.org/10.1242/dev.106450] [PMID: 25142466]
[36]
Sadler-Riggleman, I.; Klukovich, R.; Nilsson, E.; Beck, D.; Xie, Y.; Yan, W.; Skinner, M.K. Epigenetic transgenerational inheritance of testis pathology and Sertoli cell epimutations: generational origins of male infertility. Environ. Epigenet., 2019, 5(3)dvz013
[http://dx.doi.org/10.1093/eep/dvz013] [PMID: 31528361]
[37]
Denomme, M.M.; Haywood, M.E.; McCallie, B.R.; Schoolcraft, W.B.; Katz-Jaffe, M.G. The prolonged disease state of infertility is associated with embryonic epigenetic dysregulation. Fertil. Steril., 2021, 116(2), 309-318.
[http://dx.doi.org/10.1016/j.fertnstert.2021.01.040] [PMID: 33745724]
[38]
Li, X.P.; Hao, C.L.; Wang, Q.; Yi, X.M.; Jiang, Z.S. H19 gene methylation status is associated with male infertility. Exp. Ther. Med., 2016, 12(1), 451-456.
[http://dx.doi.org/10.3892/etm.2016.3314] [PMID: 27347077]
[39]
Sunderam, S.; Kissin, D.M.; Crawford, S.B.; Folger, S.G.; Boulet, S.L.; Warner, L.; Barfield, W.D. Assisted reproductive technology surveillance United States, 2015. MMWR Surveill. Summ., 2018, 67(3), 1-28.
[http://dx.doi.org/10.15585/mmwr.ss6703a1] [PMID: 29447147]
[40]
Schulte, M.M.B.; Tsai, J.; Moley, K.H. Obesity and PCOS: The effect of metabolic derangements on endometrial receptivity at the time of implantation. Reprod. Sci., 2015, 22(1), 6-14.
[http://dx.doi.org/10.1177/1933719114561552] [PMID: 25488942]
[41]
Joshi, N.; Chan, J.L. Female genomics: Infertility and overall health. Semin. Reprod. Med., 2017, 35(3), 217-224.
[http://dx.doi.org/10.1055/s-0037-1603095]
[42]
Telenti, A.; Pierce, L.C.T.; Biggs, W.H.; di Iulio, J.; Wong, E.H.M.; Fabani, M.M.; Kirkness, E.F.; Moustafa, A.; Shah, N.; Xie, C.; Brewerton, S.C.; Bulsara, N.; Garner, C.; Metzker, G.; Sandoval, E.; Perkins, B.A.; Och, F.J.; Turpaz, Y.; Venter, J.C. Deep sequencing of 10,000 human genomes. Proc. Natl. Acad. Sci., 2016, 113(42), 11901-11906.
[http://dx.doi.org/10.1073/pnas.1613365113] [PMID: 27702888]
[43]
Grimstad, F.W.; Decherney, A. A review of the epigenetic contributions to endometriosis. Clin. Obstet. Gynecol., 2017, 60(3), 467-476.
[http://dx.doi.org/10.1097/GRF.0000000000000298] [PMID: 28742579]
[44]
Hammond, S.M. An overview of microRNAs. Adv. Drug Deliv. Rev., 2015, 87, 3-14.
[http://dx.doi.org/10.1016/j.addr.2015.05.001] [PMID: 25979468]
[45]
Rimoldi, S.F.; Sartori, C.; Rexhaj, E.; Bailey, D.M.; Marchi, S.F.; McEneny, J.; Arx, R.; Cerny, D.; Duplain, H.; Germond, M.; Allemann, Y.; Scherrer, U. Antioxidants improve vascular function in children conceived by assisted reproductive technologies: A randomized double-blind placebo-controlled trial. Eur. J. Prev. Cardiol., 2015, 22(11), 1399-1407.
[http://dx.doi.org/10.1177/2047487314535117] [PMID: 24817695]
[46]
Varlamov, O. Western-style diet, sex steroids and metabolism. Biochim. Biophys. Acta Mol. Basis Dis., 2017, 1863(5), 1147-1155.
[http://dx.doi.org/10.1016/j.bbadis.2016.05.025] [PMID: 27264336]
[47]
Danielewicz, A.; Przybyłowicz, K.; Przybyłowicz, M. Dietary patterns and poor semen quality risk in men: A cross-sectional study. Nutrients, 2018, 10(9), 1162.
[http://dx.doi.org/10.3390/nu10091162] [PMID: 30149588]
[48]
Salas-Huetos, A.; Bulló, M.; Salas-Salvadó, J. Dietary patterns, foods and nutrients in male fertility parameters and fecundability: A systematic review of observational studies. Hum. Reprod. Update, 2017, 23(4), 371-389.
[http://dx.doi.org/10.1093/humupd/dmx006] [PMID: 28333357]
[49]
Giahi, L.; Mohammadmoradi, S.; Javidan, A.; Sadeghi, M.R. Nutritional modifications in male infertility: A systematic review covering 2 decades. Nutr. Rev., 2016, 74(2), 118-130.
[http://dx.doi.org/10.1093/nutrit/nuv059] [PMID: 26705308]
[50]
Silvestris, E.; Lovero, D.; Palmirotta, R. Nutrition and female fertility: An interdependent correlation. Front. Endocrinol., 2019, 10, 346.
[http://dx.doi.org/10.3389/fendo.2019.00346] [PMID: 31231310]
[51]
Lambrot, R.; Xu, C.; Saint-Phar, S.; Chountalos, G.; Cohen, T.; Paquet, M.; Suderman, M.; Hallett, M.; Kimmins, S. Low paternal dietary folate alters the mouse sperm epigenome and is associated with negative pregnancy outcomes. Nat. Commun., 2013, 4(1), 2889.
[http://dx.doi.org/10.1038/ncomms3889] [PMID: 24326934]
[52]
Hoek, J.; Steegers-Theunissen, R.P.M.; Willemsen, S.P.; Schoenmakers, S. Paternal folate status and sperm quality, pregnancy outcomes, and epigenetics: A systematic review and meta‐analysis. Mol. Nutr. Food Res., 2020, 64(9)1900696
[http://dx.doi.org/10.1002/mnfr.201900696] [PMID: 32032459]
[53]
Shukla, K.K.; Chambial, S.; Dwivedi, S.; Misra, S.; Sharma, P. Recent scenario of obesity and male fertility. Andrology, 2014, 2(6), 809-818.
[http://dx.doi.org/10.1111/andr.270] [PMID: 25269421]
[54]
Tremellen, K.; Pearce, K. Eds.; Nutrition, Fertility, and Human Reproductive Function, 1st ed; CRC Press, 2015, p. 415.
[http://dx.doi.org/10.1201/b18190]
[55]
Sirotkin, A.V.; Harrath, A.H. Phytoestrogens and their effects. Eur. J. Pharmacol., 2014, 741, 230-236.
[http://dx.doi.org/10.1016/j.ejphar.2014.07.057] [PMID: 25160742]
[56]
Yanagihara, N; Zhang, H; Toyohira, Y; Takahashi, K; Ueno, S; Tsutsui, M New insights into the pharmacological potential of plant flavonoids in the catecholamine system. J. Pharmacol. Sci., 2014, 124(2), 123-128.
[http://dx.doi.org/10.1254/jphs.13R17CP]
[57]
Messina, M.; Messina, V. The role of soy in vegetarian diets. Nutrients, 2010, 2(8), 855-888.
[http://dx.doi.org/10.3390/nu2080855] [PMID: 22254060]
[58]
Desmawati, D.; Sulastri, D. Phytoestrogens and their health effect. Open Access Maced. J. Med. Sci., 2019, 7(3), 495-499.
[http://dx.doi.org/10.3889/oamjms.2019.086] [PMID: 30834024]
[59]
Cooper, A.R. To eat soy or to not eat soy: The ongoing look at phytoestrogens and fertility. Fertil. Steril., 2019, 112(5), 825-826.
[http://dx.doi.org/10.1016/j.fertnstert.2019.07.016] [PMID: 31585666]
[60]
Morin, K.H. Nutrition and Infertility. MCN Am. J. Matern. Child Nurs., 2010, 35(3), 172.
[http://dx.doi.org/10.1097/NMC.0b013e3181d77f0a] [PMID: 20453595]
[61]
Rossi, B.V.; Abusief, M.; Missmer, S.A. Modifiable risk factors and infertility: What are the connections? Am. J. Lifestyle Med., 2016, 10(4), 220-231.
[http://dx.doi.org/10.1177/1559827614558020] [PMID: 27594813]
[62]
Gaskins, A.J.; Chavarro, J.E. Diet and fertility: A review. Am. J. Obstet. Gynecol., 2018, 218(4), 379-389.
[http://dx.doi.org/10.1016/j.ajog.2017.08.010] [PMID: 28844822]
[63]
Gaskins, A.J.; Nassan, F.L.; Chiu, Y.H.; Arvizu, M.; Williams, P.L.; Keller, M.G.; Souter, I.; Hauser, R.; Chavarro, J.E. Dietary patterns and outcomes of assisted reproduction. Am. J. Obstet. Gynecol., 2019, 220(6), 567.e1-567.e18.
[http://dx.doi.org/10.1016/j.ajog.2019.02.004] [PMID: 30742825]
[64]
Showell, M.G.; Mackenzie-Proctor, R.; Brown, J.; Yazdani, A.; Stankiewicz, M.T.; Hart, R.J. Antioxidants for male subfertility. Cochrane Libr., 2014, (12)CD007411
[http://dx.doi.org/10.1002/14651858.CD007411.pub3] [PMID: 25504418]
[65]
Moslemi, M.K.; Zargar, S.A. Selenium–vitamin E supplementation in infertile men: effects on semen parameters and pregnancy rate. Int. J. Gen. Med., 2011, 4, 99-104.
[http://dx.doi.org/10.2147/IJGM.S16275] [PMID: 21403799]
[66]
Mistry, H.D.; Broughton Pipkin, F.; Redman, C.W.G.; Poston, L. Selenium in reproductive health. Am. J. Obstet. Gynecol., 2012, 206(1), 21-30.
[http://dx.doi.org/10.1016/j.ajog.2011.07.034] [PMID: 21963101]
[67]
Charkamyani, F.; Khedmat, L.; Hosseinkhani, A. Decreasing the main maternal and fetal complications in women undergoing in vitro fertilization (IVF) trained by nutrition and healthy eating practices during pregnancy. J. Matern. Fetal Neonatal Med., 2021, 34(12), 1855-1867.
[http://dx.doi.org/10.1080/14767058.2019.1651267] [PMID: 31429355]
[68]
Mills, J.N.; Yao, D.F. Male infertility: Lifestyle factors and holistic, complementary, and alternative therapies. Asian J. Androl., 2016, 18(3), 410-418.
[http://dx.doi.org/10.4103/1008-682X.175779] [PMID: 26952957]
[69]
Bibbins-Domingo, K.; Grossman, D.C.; Curry, S.J.; Davidson, K.W.; Epling, J.W., Jr; García, F.A.R.; Kemper, A.R.; Krist, A.H.; Kurth, A.E.; Landefeld, C.S.; Mangione, C.M.; Phillips, W.R.; Phipps, M.G.; Pignone, M.P.; Silverstein, M.; Tseng, C.W. Folic acid supplementation for the prevention of neural tube defects: US preventive services task force recommendation statement. JAMA, 2017, 317(2), 183-189.
[http://dx.doi.org/10.1001/jama.2016.19438] [PMID: 28097362]
[70]
Chiu, Y.H.; Chavarro, J.E.; Souter, I. Diet and female fertility: Doctor, what should I eat? Fertil. Steril., 2018, 110(4), 560-569.
[http://dx.doi.org/10.1016/j.fertnstert.2018.05.027] [PMID: 30196938]
[71]
Szymański, W.; Kazdepka-Ziemińska, A. Effect of homocysteine concentration in follicular fluid on a degree of oocyte maturity. Ginekol. Pol., 2003, 74(10), 1392-1396.
[PMID: 14669450]
[72]
Boxmeer, J.C.; Macklon, N.S.; Lindemans, J.; Beckers, N.G.M.; Eijkemans, M.J.C.; Laven, J.S.E.; Steegers, E.A.P.; Steegers-Theunissen, R.P.M. IVF outcomes are associated with biomarkers of the homocysteine pathway in monofollicular fluid. Hum. Reprod., 2009, 24(5), 1059-1066.
[http://dx.doi.org/10.1093/humrep/dep009] [PMID: 19221098]
[73]
N, S.; To, Y. The relationship between infertility and nutrition. J. Nutr. Health Sci., 2018, 5(2), 207.
[http://dx.doi.org/10.15744/2393-9060.5.207]
[74]
Cecchino, G.N.; Seli, E.; Alves da Motta, E.L.; García-Velasco, J.A. The role of mitochondrial activity in female fertility and assisted reproductive technologies: overview and current insights. Reprod. Biomed. Online, 2018, 36(6), 686-697.
[http://dx.doi.org/10.1016/j.rbmo.2018.02.007] [PMID: 29598846]
[75]
Menichini, D.; Forte, G.; Orrù, B.; Gullo, G.; Unfer, V.; Facchinetti, F. The role of vitamin D in metabolic and reproductive disturbances of polycystic ovary syndrome: A narrative mini-review. Int. J. Vitam. Nutr. Res., 2022, 92(2), 126-133.
[http://dx.doi.org/10.1024/0300-9831/a000691] [PMID: 33284035]
[76]
Chen, W.; Jiao, X.; Zhang, J.; Wang, L.; Yu, X. Vitamin D deficiency and high serum IL-6 concentration as risk factors for tubal factor infertility in Chinese women. Nutrition, 2018, 49, 24-31.
[http://dx.doi.org/10.1016/j.nut.2017.11.016] [PMID: 29571607]
[77]
Wang, X.M.; Ma, Z.Y.; Song, N. Inflammatory cytokines IL-6, IL-10, IL-13, TNF-α and peritoneal fluid flora were associated with infertility in patients with endometriosis. Eur. Rev. Med. Pharmacol. Sci., 2018, 22(9), 2513-2518.
[http://dx.doi.org/10.26355/eurrev_201805_14899] [PMID: 29771400]
[78]
Heyden, E.L.; Wimalawansa, S.J.; Vitamin, D.; Vitamin, D. Effects on human reproduction, pregnancy, and fetal well-being. J. Steroid Biochem. Mol. Biol., 2018, 180, 41-50.
[http://dx.doi.org/10.1016/j.jsbmb.2017.12.011] [PMID: 29262380]
[79]
Shapiro, A.J.; Darmon, S.K.; Barad, D.H.; Gleicher, N.; Kushnir, V.A. Vitamin D levels are not associated with ovarian reserve in a group of infertile women with a high prevalance of diminished ovarian reserve. Fertil. Steril., 2018, 110(4), 761-766.e1.
[http://dx.doi.org/10.1016/j.fertnstert.2018.05.005] [PMID: 30196974]
[80]
Buhling, K.J.; Grajecki, D. The effect of micronutrient supplements on female fertility. Curr. Opin. Obstet. Gynecol., 2013, 25(3), 173-180.
[http://dx.doi.org/10.1097/GCO.0b013e3283609138] [PMID: 23571830]
[81]
Skalnaya, M.G.; Tinkov, A.A.; Lobanova, Y.N.; Chang, J.S.; Skalny, A.V. Serum levels of copper, iron, and manganese in women with pregnancy, miscarriage, and primary infertility. J. Trace Elem. Med. Biol., 2019, 56, 124-130.
[http://dx.doi.org/10.1016/j.jtemb.2019.08.009] [PMID: 31466044]
[82]
Coldebella, D.; Buzzaccarini, G.; Ferrari, J.; Sleiman, Z.; D’Alterio, M.N.; Della Corte, L.; Cucinella, G.; Gullo, G. Inositols administration: further insights on their biological role. Ital. J. Gynaecol. Obstet., 2023, 35(1), 30-36.
[http://dx.doi.org/10.36129/jog.2022.40]
[83]
Milewska, E.M.; Czyzyk, A.; Meczekalski, B.; Genazzani, A.D. Inositol and human reproduction. From cellular metabolism to clinical use. Gynecol. Endocrinol., 2016, 32(9), 690-695.
[http://dx.doi.org/10.1080/09513590.2016.1188282] [PMID: 27595157]
[84]
Bizzarri, M.; Fuso, A.; Dinicola, S.; Cucina, A.; Bevilacqua, A. Pharmacodynamics and pharmacokinetics of inositol(s) in health and disease. Expert Opin. Drug Metab. Toxicol., 2016, 12(10), 1181-1196.
[http://dx.doi.org/10.1080/17425255.2016.1206887] [PMID: 27351907]
[85]
Prapas, Y.; Petousis, S.; Panagiotidis, Y.; Gullo, G.; Kasapi, L.; Papadeothodorou, A.; Prapas, N. Injection of embryo culture supernatant to the endometrial cavity does not affect outcomes in IVF/ICSI or oocyte donation cycles: A randomized clinical trial. Eur. J. Obstet. Gynecol. Reprod. Biol., 2012, 162(2), 169-173.
[http://dx.doi.org/10.1016/j.ejogrb.2012.03.003] [PMID: 22464209]
[86]
Bezerra Espinola, M.S.; Laganà, A.S.; Bilotta, G.; Gullo, G.; Aragona, C.; Unfer, V. D-chiro-inositol induces ovulation in nonpolycystic ovary syndrome (PCOS), non-insulin-resistant young women, likely by modulating aromatase expression: A report of 2 cases. Am. J. Case Rep., 2021, 22e932722.
[http://dx.doi.org/10.12659/AJCR.932722] [PMID: 34615846]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy