Generic placeholder image

Current Bioinformatics

Editor-in-Chief

ISSN (Print): 1574-8936
ISSN (Online): 2212-392X

Research Article

Visual Prediction of the Progression of Spinocerebellar Ataxia Type 3 Based on Machine Learning

Author(s): Danlei Ru, Jinchen Li, Linliu Peng, Hong Jiang and Rong Qiu*

Volume 18, Issue 10, 2023

Published on: 12 September, 2023

Page: [830 - 841] Pages: 12

DOI: 10.2174/1574893618666230710140505

Price: $65

Abstract

Background: Spinocerebellar ataxia type 3/Machado-Joseph disease (SCA3/MJD) is a clinically heterogeneous and progressive condition. Evaluation of its progression will contribute to clinical management and genetic counseling.

Objective: The objective of this study was to provide a visualized interpretable prediction of the progression of SCA3/MJD based on machine learning (ML) methods.

Methods: A total of 716 patients with SCA3/MJD were included in this study. The International Cooperative Ataxia Rating Scale (ICARS) and Scale for the Assessment and Rating of Ataxia (SARA) scores were used to quantitatively assess disease progression in the patients. Clinical and genotype information were collected as factors for predicting progression. Prediction models were constructed with ML algorithms, and the prediction results were then visualized to facilitate personalizing of clinical consultation.

Results: The CAG repeat length of ATXN3 and its product with age, the duration of disease, and age were identified as the 4 most important factors for predicting the severity and progression of SCA3/MJD. The SVM-based model achieved the best performance in predicting the total ICARS and SARA scores, with accuracy (10%) values of 0.7619 for the SARA and 0.7042 for the ICARS. To visualize the predictions, line charts were used to show the expected progression over the next decade, and radar charts were used to show the scores of each part of the ICARS and SARA separately.

Conclusion: We are the first group to apply ML algorithms to predict progression in SCA3/MJD and achieved desirable results. Visualization provided personalized predictions for each sample and can aid in developing clinical counseling regimens in the future.

Graphical Abstract

[1]
Ashizawa T, Öz G, Paulson HL. Spinocerebellar ataxias: prospects and challenges for therapy development. Nat Rev Neurol 2018; 14(10): 590-605.
[http://dx.doi.org/10.1038/s41582-018-0051-6] [PMID: 30131520]
[2]
Zeng L, Zhang D, McLoughlin HS, Zalon AJ, Aravind L, Paulson HL. Loss of the Spinocerebellar Ataxia type 3 disease protein ATXN3 alters transcription of multiple signal transduction pathways. PLoS One 2018; 13(9): e0204438.
[http://dx.doi.org/10.1371/journal.pone.0204438] [PMID: 30231063]
[3]
Hernández-Carralero E, Cabrera E, Rodríguez-Torres G, et al. ATXN3 controls DNA replication and transcription by regulating chromatin structure. Nucleic Acids Res 2023; gkad212.
[http://dx.doi.org/10.1093/nar/gkad212] [PMID: 36971114]
[4]
Maciel P, Gaspar C, DeStefano AL, et al. Correlation between CAG repeat length and clinical features in Machado-Joseph disease. Am J Hum Genet 1995; 57(1): 54-61.
[PMID: 7611296]
[5]
Tezenas du Montcel S, Durr A, Bauer P, et al. Modulation of the age at onset in spinocerebellar ataxia by CAG tracts in various genes. Brain 2014; 137(9): 2444-55.
[http://dx.doi.org/10.1093/brain/awu174] [PMID: 24972706]
[6]
van de Warrenburg BPC, Hendriks H, Dürr A, et al. Age at onset variance analysis in spinocerebellar ataxias: A study in a Dutch-French cohort. Ann Neurol 2005; 57(4): 505-12.
[http://dx.doi.org/10.1002/ana.20424] [PMID: 15747371]
[7]
Donis KC, Saute JAM, Krum-Santos AC, Furtado GV, Mattos EP, Saraiva-Pereira ML. Spinocerebellar ataxia type 3/Machado-Joseph disease starting before adolescence. neurogenetics 2016; 17(2): 107-3.
[8]
Jacobi H, Bauer P, Giunti P, et al. The natural history of spinocerebellar ataxia type 1, 2, 3, and 6: A 2-year follow-up study. Neurology 2011; 77(11): 1035-41.
[http://dx.doi.org/10.1212/WNL.0b013e31822e7ca0] [PMID: 21832228]
[9]
Jacobi H, du Montcel ST, Bauer P, et al. Long-term disease progression in spinocerebellar ataxia types 1, 2, 3, and 6: A longitudinal cohort study. Lancet Neurol 2015; 14(11): 1101-8.
[http://dx.doi.org/10.1016/S1474-4422(15)00202-1] [PMID: 26377379]
[10]
Leotti VB, Vries JJ, Oliveira CM, et al. CAG repeat size influences the progression rate of spinocerebellar ataxia type 3. Ann Neurol 2021; 89(1): 66-73.
[http://dx.doi.org/10.1002/ana.25919] [PMID: 32978817]
[11]
Monte TL, Reckziegel ER, Augustin MC, et al. The progression rate of spinocerebellar ataxia type 2 changes with stage of disease. Orphanet J Rare Dis 2018; 13(1): 20.
[http://dx.doi.org/10.1186/s13023-017-0725-y] [PMID: 29370806]
[12]
Peng L, Peng Y, Chen Z, et al. The progression rate of spinocerebellar ataxia type 3 varies with disease stage. J Transl Med 2022; 20(1): 226.
[http://dx.doi.org/10.1186/s12967-022-03428-1] [PMID: 35568848]
[13]
Gonzalez C, Gomes E, Kazachkova N, et al. Psychological well-being and family satisfaction levels five years after being confirmed as a carrier of the Machado-Joseph disease mutation. Genet Test Mol Biomarkers 2012; 16(12): 1363-8.
[http://dx.doi.org/10.1089/gtmb.2011.0370] [PMID: 23153003]
[14]
Lêdo S, Ramires A, Leite Â, Dinis MAP, Sequeiros J. Long-term predictors for psychological outcome of pre-symptomatic testing for late-onset neurological diseases. Eur J Med Genet 2018; 61(10): 575-80.
[http://dx.doi.org/10.1016/j.ejmg.2018.03.010] [PMID: 29581083]
[15]
Cecchin CR, Pires AP, Rieder CR, et al. Depressive symptoms in Machado-Joseph disease (SCA3) patients and their relatives. Community Genet 2007; 10(1): 19-26.
[PMID: 17167246]
[16]
Mendes Á, Paneque M, Clarke A, Sequeiros J. Choosing not to know: Accounts of non-engagement with pre-symptomatic testing for Machado-Joseph disease. Eur J Hum Genet 2019; 27(3): 353-9.
[http://dx.doi.org/10.1038/s41431-018-0308-y] [PMID: 30573801]
[17]
Trouillas P, Takayanagi T, Hallett M, et al. International Cooperative Ataxia Rating Scale for pharmacological assessment of the cerebellar syndrome. J Neurol Sci 1997; 145(2): 205-11.
[http://dx.doi.org/10.1016/S0022-510X(96)00231-6] [PMID: 9094050]
[18]
Schmitz-Hübsch T, du Montcel ST, Baliko L, et al. Scale for the assessment and rating of ataxia: Development of a new clinical scale. Neurology 2006; 66(11): 1717-20.
[http://dx.doi.org/10.1212/01.wnl.0000219042.60538.92] [PMID: 16769946]
[19]
Schmitz-Hübsch T, Tezenas du Montcel S, Baliko L, et al. Reliability and validity of the international cooperative ataxia rating scale: A study in 156 spinocerebellar ataxia patients. Mov Disord 2006; 21(5): 699-704.
[http://dx.doi.org/10.1002/mds.20781] [PMID: 16450347]
[20]
Weyer A, Abele M, Schmitz-Hübsch T, et al. Reliability and validity of the scale for the assessment and rating of ataxia: A study in 64 ataxia patients. Mov Disord 2007; 22(11): 1633-7.
[http://dx.doi.org/10.1002/mds.21544] [PMID: 17516493]
[21]
Yabe I, Matsushima M, Soma H, Basri R, Sasaki H. Usefulness of the scale for assessment and rating of ataxia (SARA). J Neurol Sci 2008; 266(1-2): 164-6.
[http://dx.doi.org/10.1016/j.jns.2007.09.021] [PMID: 17950753]
[22]
Zhou J, Lei L, Liao X, Wang J, Jiang H, Tang B. Related factors of ICARS and SARA scores on spinocerebellar ataxia type 3/Machado-Joseph disease. Zhong Nan Da Xue Xue Bao Yi Xue Ban 2011; 36(6): 498-503.
[23]
Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O. Scikit-learn: Machine learning in python. J Mach Learn Res 2011; 12: 2825-30.
[24]
Chen T, Guestrin C, Eds. Xgboost: A scalable tree boosting system. Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining. New York, NY, USA. 2016; pp. 785-94.
[http://dx.doi.org/10.1145/2939672.2939785]
[25]
Lundberg SM, Lee S-I. A unified approach to interpreting model predictions. Adv Neural Inf Process Syst 2017; 30.
[26]
Ashizawa T, Figueroa KP, Perlman SL, et al. Clinical characteristics of patients with spinocerebellar ataxias 1, 2, 3 and 6 in the US; a prospective observational study. Orphanet J Rare Dis 2013; 8(1): 177.
[http://dx.doi.org/10.1186/1750-1172-8-177] [PMID: 24225362]
[27]
Iannuzzelli K, Shi R, Carter R, et al. The association between educational attainment and SCA 3 age of onset and disease course. Parkinsonism Relat Disord 2022; 98: 99-102.
[http://dx.doi.org/10.1016/j.parkreldis.2022.02.025] [PMID: 35635856]
[28]
Moulaire P, Poulet PE, Petit E, Klockgether T, Durr A, Ashisawa T. Temporal dynamics of the scale for the assessment and rating of ataxia in spinocerebellar ataxias. Mov Disord 2022; 38(1): 35-44.
[PMID: 36273394]
[29]
Xu HL, Su QN, Shang XJ, et al. The influence of initial symptoms on phenotypes in spinocerebellar ataxia type 3. Mol Genet Genomic Med 2019; 7(7): e00719.
[http://dx.doi.org/10.1002/mgg3.719] [PMID: 31124318]
[30]
Luo L, Wang J, Lo RY, et al. The initial symptom and motor progression in spinocerebellar ataxias. Cerebellum 2017; 16(3): 615-22.
[http://dx.doi.org/10.1007/s12311-016-0836-3] [PMID: 27848087]
[31]
Diallo A, Jacobi H, Schmitz-Hübsch T, et al. Body mass index decline is related to spinocerebellar ataxia disease progression. Mov Disord Clin Pract 2017; 4(5): 689-97.
[http://dx.doi.org/10.1002/mdc3.12522] [PMID: 30363449]
[32]
Hengel H, Martus P, Faber J, et al. Characterization of lifestyle in spinocerebellar ataxia type 3 and association with disease severity. Mov Disord 2022; 37(2): 405-10.
[http://dx.doi.org/10.1002/mds.28844] [PMID: 34713931]
[33]
Gan SR, Figueroa KP, Xu HL, et al. The impact of ethnicity on the clinical presentations of spinocerebellar ataxia type 3. Parkinsonism Relat Disord 2020; 72: 37-43.
[http://dx.doi.org/10.1016/j.parkreldis.2020.02.004] [PMID: 32105964]
[34]
Lin YC, Lee YC, Hsu TY, Liao YC, Soong BW. Comparable progression of spinocerebellar ataxias between Caucasians and Chinese. Parkinsonism Relat Disord 2019; 62: 156-62.
[http://dx.doi.org/10.1016/j.parkreldis.2018.12.023] [PMID: 30591349]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy