Generic placeholder image

Current Bioinformatics

Editor-in-Chief

ISSN (Print): 1574-8936
ISSN (Online): 2212-392X

Research Article

Identification of Hub Genes in Neuropathic Pain-induced Depression

Author(s): Chun-Yan Cui, Ming-Han Liu, Jian Mou, Si-Jing Liao, Yan Liu, Qun Li, Hai Yang, Ying-Bo Ren, Yue Huang, Run Li, Ying Zhang* and Qing Liu

Volume 18, Issue 10, 2023

Published on: 19 September, 2023

Page: [817 - 829] Pages: 13

DOI: 10.2174/1574893618666230614093416

Price: $65

conference banner
Abstract

Introduction: Numerous clinical data and animal models demonstrate that many patients with neuropathic pain suffer from concomitant depressive symptoms.

Methods: Massive evidence from biological experiments has verified that the medial prefrontal cortex (mPFC), prefrontal cortex, hippocampus, and other brain regions play an influential role in the comorbidity of neuropathic pain and depression, but the mechanism by which neuropathic pain induces depression remains unclear.

Results: In this study, we mined existing publicly available databases of high-throughput sequencing data intending to identify the differentially expressed genes (DEGs) in the process of neuropathic paininduced depression.

Conclusion: This study provides a rudimentary exploration of the mechanism of neuropathic paininduced depression and provides credible evidence for its management and precaution.

[1]
Sheng J, Liu S, Wang Y, Cui R, Zhang X. The link between depression and chronic pain: Neural mechanisms in the brain. Neural Plast 2017; 2017: 9724371.
[http://dx.doi.org/10.1155/2017/9724371]
[2]
Williams LS, Jones WJ, Shen J, Robinson RL, Weinberger M, Kroenke K. Prevalence and impact of depression and pain in neurology outpatients. J Neurol Neurosurg Psychiat 2003; 74(11): 1587-9.
[http://dx.doi.org/10.1136/jnnp.74.11.1587]
[3]
Fishbain DA, Cutler R, Rosomoff HL, Rosomoff RS. Chronic pain-associated depression: Antecedent or consequence of chronic pain? A review. Clin J Pain 1997; 13(2): 116-37.
[http://dx.doi.org/10.1097/00002508-199706000-00006] [PMID: 9186019]
[4]
IsHak WW, Wen RY, Naghdechi L, et al. Pain and depression: A systematic review. Harv Rev Psychiatry 2018; 26(6): 352-63.
[http://dx.doi.org/10.1097/HRP.0000000000000198] [PMID: 30407234]
[5]
Piardi LN, Pagliusi M, Bonet IJM, et al. Social stress as a trigger for depressive-like behavior and persistent hyperalgesia in mice: Study of the comorbidity between depression and chronic pain. J Affect Disord 2020; 274: 759-67.
[http://dx.doi.org/10.1016/j.jad.2020.05.144] [PMID: 32664012]
[6]
Rusu AC, Gajsar H, Schlüter MC, Bremer YI. cognitive biases toward pain. Clin J Pain 2019; 35(3): 252-60.
[http://dx.doi.org/10.1097/AJP.0000000000000674] [PMID: 30499835]
[7]
Cipriani A, Furukawa TA, Salanti G, et al. Comparative efficacy and acceptability of 12 new-generation antidepressants: A multiple-treatments meta-analysis. Lancet 2009; 373(9665): 746-58.
[http://dx.doi.org/10.1016/S0140-6736(09)60046-5] [PMID: 19185342]
[8]
Haase J, Brown E. Integrating the monoamine, neurotrophin and cytokine hypotheses of depression — A central role for the serotonin transporter? Pharmacol Ther 2015; 147: 1-11.
[http://dx.doi.org/10.1016/j.pharmthera.2014.10.002] [PMID: 25444754]
[9]
Martikainen IK, Nuechterlein EB, Peciña M, Love TM, Cummiford CM, Green CR. Chronic back pain is associated with alterations in dopamine neurotransmission in the ventral striatum. J Neurosci 2015; 35(27): 9957-65.
[http://dx.doi.org/10.1523/JNEUROSCI.4605-14.2015]
[10]
Sagheddu C, Aroni S, De Felice M, et al. Enhanced serotonin and mesolimbic dopamine transmissions in a rat model of neuropathic pain. Neuropharmacology 2015; 97: 383-93.
[http://dx.doi.org/10.1016/j.neuropharm.2015.06.003] [PMID: 26113399]
[11]
Taylor AMW, Becker S, Schweinhardt P, Cahill C. Mesolimbic dopamine signaling in acute and chronic pain: Implications for motivation, analgesia, and addiction. Pain 2016; 157(6): 1194.
[http://dx.doi.org/10.1097/j.pain.0000000000000494]
[12]
Yin N, Yan E, Duan W, et al. The role of microglia in chronic pain and depression: Innocent bystander or culprit? Psychopharmacology 2021; 238(4): 949-58.
[http://dx.doi.org/10.1007/s00213-021-05780-4] [PMID: 33544194]
[13]
Meerwijk EL, Ford JM, Weiss SJ. Brain regions associated with psychological pain: Implications for a neural network and its relationship to physical pain. Brain Imaging Behav 2013; 7(1): 1-14.
[http://dx.doi.org/10.1007/s11682-012-9179-y] [PMID: 22660945]
[14]
Ong WY, Stohler CS, Herr DR. Role of the prefrontal cortex in pain processing. Mol Neurobiol 2019; 56(2): 1137-66.
[http://dx.doi.org/10.1007/s12035-018-1130-9]
[15]
Bär KJ, Wagner G, Koschke M, et al. Increased prefrontal activation during pain perception in major depression. Biol Psychiatry 2007; 62(11): 1281-7.
[http://dx.doi.org/10.1016/j.biopsych.2007.02.011] [PMID: 17570347]
[16]
Dai W, Huang S, Luo Y, Cheng X, Xia P, Yang M. Sex-specific transcriptomic signatures in brain regions critical for neuropathic pain-induced depression. Front Mol Neurosci 2022; 15: 886916.
[http://dx.doi.org/10.3389/fnmol.2022.886916]
[17]
Descalzi G, Mitsi V, Purushothaman I, Gaspari S, Avrampou K, Loh YE. Neuropathic pain promotes adaptive changes in gene expression in brain networks involved in stress and depression. Sci Signal 2017; 10(471): eaaj1549.
[http://dx.doi.org/10.1126/scisignal.aaj1549]
[18]
Zhao Y, Li MC, Konaté MM, Chen L, Das B, Karlovich C. TPM, FPKM, or normalized counts? a comparative study of quantification measures for the analysis of RNA-seq Data from the NCI patient-Derived models repository. J Transl Med 2021; 19(1): 269.
[http://dx.doi.org/10.1186/s12967-021-02936-w]
[19]
Langfelder P, Horvath S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinformat 2008; 9: 559.
[http://dx.doi.org/10.1186/1471-2105-9-559]
[20]
Broido AD, Clauset A. Scale-free networks are rare. Nat Commun 2019; 10(1): 1017.
[http://dx.doi.org/10.1038/s41467-019-08746-5]
[21]
Szklarczyk D, Gable AL, Nastou KC, Lyon D, Kirsch R, Pyysalo S. The STRING database in 2021: Customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res 2021; 49(D1): D605-12.
[http://dx.doi.org/10.1093/nar/gkaa1074]
[22]
GWAS to the people. Nat Med 2018; 24(10): 1483.
[http://dx.doi.org/10.1038/s41591-018-0231-3] [PMID: 30297896]
[23]
Visscher PM, Brown MA, McCarthy MI, Yang J. Five years of GWAS discovery. Am J Hum Genet 2012; 90(1): 7-24.
[http://dx.doi.org/10.1016/j.ajhg.2011.11.029]
[24]
Piñero J, Bravo À, Queralt-Rosinach N, Gutiérrez-Sacristán A, Deu-Pons J, Centeno E, et al. DisGeNET: A comprehensive platform integrating information on human disease-associated genes and variants. Nucleic Acids Res 2017; 45(D1): D833-9.
[http://dx.doi.org/10.1093/nar/gkw943]
[25]
Malfliet A, Coppieters I, Van Wilgen P, et al. Brain changes associated with cognitive and emotional factors in chronic pain: A systematic review. Eur J Pain 2017; 21(5): 769-86.
[http://dx.doi.org/10.1002/ejp.1003] [PMID: 28146315]
[26]
Kummer KK. Mitrić M, Kalpachidou T, Kress M. The medial prefrontal cortex as a central hub for mental comorbidities associated with chronic pain. Int J Mol Sci 2020; 21(10): 3440.
[http://dx.doi.org/10.3390/ijms21103440]
[27]
Malvestio RB, Medeiros P, Negrini-Ferrari SE, et al. Cannabidiol in the prelimbic cortex modulates the comorbid condition between the chronic neuropathic pain and depression-like behaviour in rats: The role of medial prefrontal cortex 5-HT1A and CB1 receptors. Brain Res Bull 2021; 174: 323-38.
[http://dx.doi.org/10.1016/j.brainresbull.2021.06.017] [PMID: 34192579]
[28]
Naylor B, Hesam-Shariati N, McAuley JH, Boag S, Newton-John T, Rae CD. Reduced glutamate in the medial prefrontal cortex is associated with emotional and cognitive dysregulation in people with chronic pain. Front Neurol 2019; 10: 1110.
[http://dx.doi.org/10.3389/fneur.2019.01110]
[29]
Palazzo E, Luongo L, Guida F, et al. d-Aspartate drinking solution alleviates pain and cognitive impairment in neuropathic mice. Amino Acids 2016; 48(7): 1553-67.
[http://dx.doi.org/10.1007/s00726-016-2205-4] [PMID: 27115160]
[30]
Hagman JR, Arends T, Laborda C, Knapp JR, Harmacek L, O'Connor BP. Chromodomain helicase DNA-binding 4 (CHD4) regulates early B cell identity and V(D)J recombination. Immunol Rev 2022; 305(1): 29-42.
[http://dx.doi.org/10.1111/imr.13054]
[31]
Novillo A, Fernández-Santander A, Gaibar M, Galán M, Romero-Lorca A, El Abdellaoui-Soussi F. Role of Chromodomain-Helicase-DNA-binding protein 4 (CHD4) in breast cancer. Front Oncol 2021; 11: 633233.
[http://dx.doi.org/10.3389/fonc.2021.633233]
[32]
Silva AP, Ryan DP, Galanty Y, Low JK, Vandevenne M, Jackson SP. The N-terminal region of chromodomain helicase DNA-binding Protein 4 (CHD4) is Essential for Activity and Contains a High Mobility Group (HMG) Box-like-domain That Can Bind Poly(ADP-ribose). J Biol Chem 2016; 291(2): 924-38.
[http://dx.doi.org/10.1074/jbc.M115.683227]
[33]
O'Shaughnessy A, Hendrich B. CHD4 in the DNA-damage response and cell cycle progression: Not so NuRDy now. Biochem Soc Trans 2013; 41(3): 777-82.
[http://dx.doi.org/10.1042/BST20130027]
[34]
Pan MR, Hsieh HJ, Dai H, Hung WC, Li K, Peng G, et al. Chromodomain helicase DNA-binding protein 4 (CHD4) regulates homologous recombination DNA repair, and its deficiency sensitizes cells to poly(ADP-ribose) polymerase (PARP) inhibitor treatment. J Biol Chem 2012; 287(9): 6764-72.
[http://dx.doi.org/10.1074/jbc.M111.287037]
[35]
Wang Y, Chen Y, Bao L, Zhang B, Wang JE, Kumar A. CHD4 Promotes breast cancer progression as a coactivator of hypoxia-inducible factors. Cancer Res 2020; 80(18): 3880-91.
[http://dx.doi.org/10.1158/0008-5472.CAN-20-1049]
[36]
Zhang J, Lv X, Wei B, Gong X, Chen L. CHD4 mediates SOX2 transcription through TRPS1 in luminal breast cancer. Cell Signal 2022; 100: 110464.
[http://dx.doi.org/10.1016/j.cellsig.2022.110464] [PMID: 36075559]
[37]
Chang CL, Huang CR, Chang SJ, Wu CC, Chen HH, Luo CW. CHD4 as an important mediator in regulating the malignant behaviors of colorectal cancer. Int J Biol Sci 2021; 17(7): 1660-70.
[http://dx.doi.org/10.7150/ijbs.56976]
[38]
Xia L, Huang W, Bellani M, Seidman MM, Wu K, Fan D. CHD4 has oncogenic functions in initiating and maintaining epigenetic suppression of multiple tumor suppressor genes. Cancer Cell 2017; 31(5): 653.e7-8.e7.
[http://dx.doi.org/10.1016/j.ccell.2017.04.005]
[39]
Weiss K, Terhal PA, Cohen L, Bruccoleri M, Irving M, Martinez AF. De novo mutations in CHD4, an ATP-dependent chromatin remodeler gene, cause an intellectual disability syndrome with distinctive dysmorphisms. Am J Hum Genet 2016; 99(4): 934-41.
[http://dx.doi.org/10.1016/j.ajhg.2016.08.001]
[40]
Zhu C, Kong Z, Wang B, Cheng W, Wu A, Meng X. ITGB3/CD61: A hub modulator and target in the tumor microenvironment. Am J Transl Res 2019; 11(12): 7195-208.
[41]
Gabriele S, Canali M, Lintas C, et al. Evidence that ITGB3 promoter variants increase serotonin blood levels by regulating platelet serotonin transporter trafficking. Hum Mol Genet 2019; 28(7): 1153-61.
[http://dx.doi.org/10.1093/hmg/ddy421] [PMID: 30535103]
[42]
Haghighi A, Borhany M, Ghazi A, Edwards N, Tabaksert A, Haghighi A. Glanzmann thrombasthenia in pakistan: Molecular analysis and identification of novel mutations. Clin Genet 2016; 89(2): 187-92.
[http://dx.doi.org/10.1111/cge.12622]
[43]
Nurden AT, Fiore M, Nurden P, Pillois X. Glanzmann thrombasthenia: A review of ITGA2B and ITGB3 defects with emphasis on variants, phenotypic variability, and mouse models. Blood 2011; 118(23): 5996-6005.
[http://dx.doi.org/10.1182/blood-2011-07-365635] [PMID: 21917754]
[44]
Nurden AT, Pillois X. ITGA2B and ITGB3 gene mutations associated with Glanzmann thrombasthenia. Platelets 2018; 29(1): 98-101.
[http://dx.doi.org/10.1080/09537104.2017.1371291] [PMID: 29125375]
[45]
Ross JE, Zhang BM, Lee K, Mohan S, Branchford BR, Bray P. Specifications of the variant curation guidelines for ITGA2B/ITGB3: Clingen platelet disorder variant curation panel. Blood Adv 2021; 5(2): 414-31.
[http://dx.doi.org/10.1182/bloodadvances.2020003712]
[46]
Wang MC, Wang D, Lu YH, Li ZH, Jing HY. Protective effect of MAPK signaling pathway mediated by ITGB3 gene silencing on myocardial ischemia-reperfusion injury in mice and its mechanism. Eur Rev Med Pharmacol Sci 2021; 25(2): 820-36.
[http://dx.doi.org/10.26355/eurrev_202101_24647] [PMID: 33577037]
[47]
Feng W, Huang W, Chen J, Qiao C, Liu D, Ji X. CXCL12-mediated HOXB5 overexpression facilitates colorectal cancer metastasis through transactivating CXCR4 and ITGB3. Theranostics 2021; 11(6): 2612-33.
[http://dx.doi.org/10.7150/thno.52199]
[48]
Fuentes P, Sesé M, Guijarro PJ, Emperador M, Sánchez-Redondo S, Peinado H. ITGB3-mediated uptake of small extracellular vesicles facilitates intercellular communication in breast cancer cells. Nat Commun 2020; 11(1): 4261.
[http://dx.doi.org/10.1038/s41467-020-18081-9]
[49]
Wen S, Hou Y, Fu L, et al. Cancer-associated fibroblast (CAF)-derived IL32 promotes breast cancer cell invasion and metastasis via integrin β3–p38 MAPK signalling. Cancer Lett 2019; 442: 320-32.
[http://dx.doi.org/10.1016/j.canlet.2018.10.015] [PMID: 30391782]
[50]
Li R, Wang F, Dang S, Yao M, Zhang W, Wang J. Integrated 16S rRNA gene sequencing and metabolomics analysis to investigate thec important role of osthole on gut microbiota and serum metabolites in neuropathic pain mie. Front Physiol 2022; 13: 813626.
[http://dx.doi.org/10.3389/fphys.2022.813626]
[51]
Oved K, Farberov L, Gilam A, Israel I, Haguel D, Gurwitz D, et al. MicroRNA-mediated regulation of ITGB3 and CHL1 is implicated in SSRI action. Front Mol Neurosci 2017; 10: 355.
[http://dx.doi.org/10.3389/fnmol.2017.00355]
[52]
Oved K, Morag A, Pasmanik-Chor M, Rehavi M, Shomron N, Gurwitz D. Genome-wide expression profiling of human lymphoblastoid cell lines implicates integrin beta-3 in the mode of action of antidepressants. Transl Psychiatry 2013; 3(10): e313.
[http://dx.doi.org/10.1038/tp.2013.86]
[53]
Stanić D, Oved K, Israel-Elgali I, et al. Synergy of oxytocin and citalopram in modulating Itgb3/Chl1 interplay: Relevance to sensitivity to SSRI therapy. Psychoneuroendocrinology 2021; 129: 105234.
[http://dx.doi.org/10.1016/j.psyneuen.2021.105234] [PMID: 33930757]
[54]
Bartova L, Dold M, Kautzky A, Fabbri C, Spies M, Serretti A. Results of the European group for the study of resistant depression (GSRD) - basis for further research and clinical practice. World J Biol Psychiatry 2019; 20(6): 427-48.
[http://dx.doi.org/10.1080/15622975.2019.1635270]
[55]
Fabbri C, Crisafulli C, Gurwitz D, et al. Neuronal cell adhesion genes and antidepressant response in three independent samples. Pharmacogenomics J 2015; 15(6): 538-48.
[http://dx.doi.org/10.1038/tpj.2015.15] [PMID: 25850031]
[56]
Diao Z, Ji Q, Wu Z, Zhang W, Cai Y, Wang Z, et al. SIRT3 consolidates heterochromatin and counteracts senescence. Nucleic Acids Res 2021; 49(8): 4203-19.
[http://dx.doi.org/10.1093/nar/gkab161]
[57]
Guo Y, Jia X, Cui Y, Song Y, Wang S, Geng Y, et al. Sirt3-mediated mitophagy regulates AGEs-induced BMSCs senescence and senile osteoporosis. Redox Biol 2021; 41: 101915.
[http://dx.doi.org/10.1016/j.redox.2021.101915]
[58]
Sun W, Liu C, Chen Q, Liu N, Yan Y, Liu B. SIRT3: A new regulator of cardiovascular diseases. Oxid Med Cell Longev 2018; 2018: 7293861.
[http://dx.doi.org/10.1155/2018/7293861]
[59]
Guan C, Huang X, Yue J, Xiang H, Shaheen S, Jiang Z, et al. SIRT3-mediated deacetylation of NLRC4 promotes inflammasome activation. Theranostics 2021; 11(8): 3981-95.
[http://dx.doi.org/10.7150/thno.55573]
[60]
Dikalova AE, Pandey A, Xiao L, Arslanbaeva L, Sidorova T, Lopez MG, et al. Mitochondrial deacetylase Sirt3 reduces vascular dysfunction and hypertension while Sirt3 depletion in essential hypertension is linked to vascular inflammation and oxidative stress. Circ Res 2020; 126(4): 439-52.
[http://dx.doi.org/10.1161/CIRCRESAHA.119.315767]
[61]
Ilari S, Giancotti LA, Lauro F, et al. Antioxidant modulation of sirtuin 3 during acute inflammatory pain: The ROS control. Pharmacol Res 2020; 157: 104851.
[http://dx.doi.org/10.1016/j.phrs.2020.104851] [PMID: 32423865]
[62]
Yan B, Liu Q, Ding X, Lin Y, Jiao X, Wu Y. SIRT3-Mediated CypD-K166 deacetylation alleviates neuropathic pain by improving mitochondrial dysfunction and inhibiting oxidative stress. Oxid Med Cell Longev 2022; 2022: 4722647.
[http://dx.doi.org/10.1155/2022/4722647]
[63]
Zhang Y, Lin C, Yang Q, Wang Y, Zhao W, Li L, et al. Spinal sirtuin 3 contributes to electroacupuncture analgesia in mice with chronic constriction injury-induced neuropathic pain. Neuromodulation 2022; 26(3): 563-76.
[http://dx.doi.org/10.1016/j.neurom.2022.07.009]
[64]
Santos SS, Moreira JB, Costa M, Rodrigues RS, Sebastião AM, Xapelli S, et al. The mitochondrial antioxidant sirtuin3 cooperates with lipid metabolism to safeguard neurogenesis in aging and depression. Cells 2021; 11(1): 90.
[http://dx.doi.org/10.3390/cells11010090]
[65]
Coll-SanMartin L, Davalos V, Piñeyro D, Rosselló-Tortella M, Bueno-Costa A, Setien F. Gene amplification-associated overexpression of the selenoprotein tRNA Enzyme TRIT1 confers sensitivity to arsenic trioxide in small-cell lung cancer. Cancers 2021; 13(8): 1869.
[http://dx.doi.org/10.3390/cancers13081869]
[66]
Khalique A, Mattijssen S, Haddad AF, Chaudhry S, Maraia RJ. Targeting mitochondrial and cytosolic substrates of TRIT1 isopentenyl transferase: Specificity determinants and tRNA-i6A37 profiles. PLoS Genet 2020; 16(4): e1008330.
[http://dx.doi.org/10.1371/journal.pgen.1008330]
[67]
Waller TJ, Read DF, Engelke DR, Smaldino PJ. The human tRNA-modifying protein, TRIT1, forms amyloid fibers in vitro. Gene 2017; 612: 19-24.
[http://dx.doi.org/10.1016/j.gene.2016.10.041] [PMID: 27984194]
[68]
Lamichhane TN, Mattijssen S, Maraia RJ. Human cells have a limited set of tRNA anticodon loop substrates of the tRNA isopentenyltransferase TRIT1 tumor suppressor. Mol Cell Biol 2013; 33(24): 4900-8.
[http://dx.doi.org/10.1128/MCB.01041-13]
[69]
Bai Y, Wang G, Fu W, et al. Circulating essential metals and lung cancer: Risk assessment and potential molecular effects. Environ Int 2019; 127: 685-93.
[http://dx.doi.org/10.1016/j.envint.2019.04.021] [PMID: 30991224]
[70]
Spinola M, Galvan A, Pignatiello C, et al. Identification and functional characterization of the candidate tumor suppressor gene TRIT1 in human lung cancer. Oncogene 2005; 24(35): 5502-9.
[http://dx.doi.org/10.1038/sj.onc.1208687] [PMID: 15870694]
[71]
Fradejas-Villar N, Bohleber S, Zhao W, Reuter U, Kotter A, Helm M, et al. The effect of tRNA[Ser]Sec isopentenylation on selenoprotein expression. Int J Mol Sci 2021; 22(21): 11454.
[http://dx.doi.org/10.3390/ijms222111454]
[72]
Yarham JW, Lamichhane TN, Pyle A, Mattijssen S, Baruffini E, Bruni F. Defective i6A37 modification of mitochondrial and cytosolic tRNAs results from pathogenic mutations in TRIT1 and its substrate tRNA. PLoS Genet 2014; 10(6): e1004424.
[http://dx.doi.org/10.1371/journal.pgen.1004424]
[73]
Cook JD, Skikne BS, Baynes RD. Serum transferrin receptor. Annu Rev Med 1993; 44(1): 63-74.
[http://dx.doi.org/10.1146/annurev.me.44.020193.000431] [PMID: 8476268]
[74]
Gammella E, Buratti P, Cairo G, Recalcati S. The transferrin receptor: The cellular iron gate. Metallomics 2017; 9(10): 1367-75.
[http://dx.doi.org/10.1039/C7MT00143F]
[75]
Kawabata H. Transferrin and transferrin receptors update. Free Radic Biol Med 2019; 133: 46-54.
[http://dx.doi.org/10.1016/j.freeradbiomed.2018.06.037] [PMID: 29969719]
[76]
Johnsen KB, Burkhart A, Thomsen LB, Andresen TL, Moos T. Targeting the transferrin receptor for brain drug delivery. Prog Neurobiol 2019; 181: 101665.
[http://dx.doi.org/10.1016/j.pneurobio.2019.101665] [PMID: 31376426]
[77]
Li H, Qian ZM. Transferrin/transferrin receptor-mediated drug delivery. Med Res Rev 2002; 22(3): 225-50.
[http://dx.doi.org/10.1002/med.10008] [PMID: 11933019]
[78]
Webster CI, Hatcher J, Burrell M, Thom G, Thornton P, Gurrell I, et al. Enhanced delivery of IL-1 receptor antagonist to the central nervous system as a novel anti-transferrin receptor-IL-1RA fusion reverses neuropathic mechanical hypersensitivity. Pain 2017; 158(4): 660-8.
[http://dx.doi.org/10.1097/j.pain.0000000000000810]
[79]
Ciobanu LG, Sachdev PS, Trollor JN, et al. Downregulated transferrin receptor in the blood predicts recurrent MDD in the elderly cohort: A fuzzy forests approach. J Affect Disord 2020; 267: 42-8.
[http://dx.doi.org/10.1016/j.jad.2020.02.001] [PMID: 32063571]
[80]
Maes M, Meltzer HY, Bosmans E, et al. Increased plasma concentrations of interleukin-6, soluble interleukin-6, soluble interleukin-2 and transferrin receptor in major depression. J Affect Disord 1995; 34(4): 301-9.
[http://dx.doi.org/10.1016/0165-0327(95)00028-L] [PMID: 8550956]
[81]
Maes M, Meltzer HY, Buckley P, Bosmans E. Plasma-soluble interleukin-2 and transferrin receptor in schizoprenia and major depression. Eur Arch Psychiat Clin Neurosci 1995; 244(6): 325-9.
[http://dx.doi.org/10.1007/BF02190412] [PMID: 7772617]
[82]
Lu J, Xu Y, Xie W, Tang Y, Zhang H, Wang B, et al. Long noncoding RNA DLGAP1-AS2 facilitates Wnt1 transcription through physically interacting with Six3 and drives the malignancy of gastric cancer. Cell Death Discov 2021; 7(1): 255.
[http://dx.doi.org/10.1038/s41420-021-00649-z]
[83]
Qu L, Chen Y, Zhang F, He L. The lncRNA DLGAP1-AS1/miR-149-5p/TGFB2 axis contributes to colorectal cancer progression and 5-FU resistance by regulating smad2 pathway. Mol Ther Oncolytics 2021; 20: 607-24.
[http://dx.doi.org/10.1016/j.omto.2021.01.003]
[84]
Li L, Lai Q, Zhang M, Jia J. Long non-coding RNA DLGAP1-AS1 promotes the progression of gastric cancer via miR-515-5p/MARK4 axis. Braz J Med Biol Res 2021; 54(8): e10062.
[85]
Liu L, Li X, Shi Y, Chen H. Long noncoding RNA DLGAP1-AS1 promotes the progression of glioma by regulating the miR-1297/EZH2 axis. Aging 2021; 13(8): 12129-42.
[http://dx.doi.org/10.18632/aging.202923]
[86]
Wang Z, Han Y, Li Q, Wang B, Ma J. LncRNA DLGAP1-AS1 accelerates glioblastoma cell proliferation through targeting miR-515-5p/ROCK1/NFE2L1 axis and activating Wnt signaling pathway. Brain Behav 2021; 11(10): e2321.
[http://dx.doi.org/10.1002/brb3.2321]
[87]
Mathias SR, Knowles EE, Kent JW Jr, McKay DR, Curran JE, de Almeida MA, et al. Recurrent major depression and right hippocampal volume: A bivariate linkage and association study. Hum Brain Mapp 2016; 37(1): 191-202.
[http://dx.doi.org/10.1002/hbm.23025]
[88]
Verma P, Shakya M. Transcriptomics and sequencing analysis of gene expression profiling for major depressive disorder. Indian J Psychiatry 2021; 63(6): 549-53.
[http://dx.doi.org/10.4103/psychiatry.IndianJPsychiatry_858_20]
[89]
Verma P, Shakya M. Machine learning model for predicting Major Depressive Disorder using RNA-Seq data: Optimization of classification approach. Cogn Neurodyn 2022; 16(2): 443-53.
[http://dx.doi.org/10.1007/s11571-021-09724-8]
[90]
Hulea L, Nepveu A. CUX1 transcription factors: From biochemical activities and cell-based assays to mouse models and human diseases. Gene 2012; 497(1): 18-26.
[http://dx.doi.org/10.1016/j.gene.2012.01.039] [PMID: 22306263]
[91]
Ramdzan ZM, Nepveu A. CUX1, a haploinsufficient tumour suppressor gene overexpressed in advanced cancers. Nat Rev Cancer 2014; 14(10): 673-82.
[http://dx.doi.org/10.1038/nrc3805] [PMID: 25190083]
[92]
Vadnais C, Davoudi S, Afshin M, Harada R, Dudley R, Clermont PL, et al. CUX1 transcription factor is required for optimal ATM/ATR-mediated responses to DNA damage. Nucleic Acids Res 2012; 40(10): 4483-95.
[http://dx.doi.org/10.1093/nar/gks041]
[93]
Li H, Yang F, Hu A, Wang X, Fang E, Chen Y, et al. Therapeutic targeting of circ-CUX1/EWSR1/MAZ axis inhibits glycolysis and neuroblastoma progression. EMBO Mol Med 2019; 11(12): e10835.
[http://dx.doi.org/10.15252/emmm.201910835]
[94]
Yang F, Hu A, Guo Y, Wang J, Li D, Wang X, et al. p113 isoform encoded by CUX1 circular RNA drives tumor progression via facilitating ZRF1/BRD4 transactivation. Mol Cancer 2021; 20(1): 123.
[http://dx.doi.org/10.1186/s12943-021-01421-8]
[95]
Kaur S, Ramdzan ZM, Guiot MC, Li L, Leduy L, Ramotar D, et al. CUX1 stimulates APE1 enzymatic activity and increases the resistance of glioblastoma cells to the mono-alkylating agent temozolomide. Neuro-Oncol 2018; 20(4): 484-93.
[http://dx.doi.org/10.1093/neuonc/nox178]
[96]
Ripka S, Neesse A, Riedel J, et al. CUX1: Target of Akt signalling and mediator of resistance to apoptosis in pancreatic cancer. Gut 2010; 59(8): 1101-10.
[http://dx.doi.org/10.1136/gut.2009.189720] [PMID: 20442202]
[97]
Teng S, Liu G, Li L, Ou J, Yu Y. CUX1 promotes epithelial-mesenchymal transition (EMT) in renal fibrosis of UUO model by targeting MMP7. Biochem Biophys Res Commun 2022; 608: 128-34.
[http://dx.doi.org/10.1016/j.bbrc.2022.03.097] [PMID: 35397425]
[98]
Zhang M, Wang Q, Ding Y, Wang G, Chu Y, He X. CUX1-ALK, a novel ALK rearrangement that responds to crizotinib in non-small cell lung cancer. J Thorac Oncol 2018; 13(11): 1792-7.
[http://dx.doi.org/10.1016/j.jtho.2018.07.008]
[99]
Tsai CK, Liang CS, Lin GY, Tsai CL, Lee JT, Sung YF. Identifying genetic variants for age of migraine onset in a Han Chinese population in Taiwan. J Headache Pain 2021; 22(1): 89.
[http://dx.doi.org/10.1186/s10194-021-01301-y]
[100]
Sasayama D, Hiraishi A, Tatsumi M, et al. Possible association of CUX1 gene polymorphisms with antidepressant response in major depressive disorder. Pharmacogenomic J 2013; 13(4): 354-8.
[http://dx.doi.org/10.1038/tpj.2012.18] [PMID: 22584459]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy