Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Research Article

Graded Effects of Dry-Feed Added Sodium Benzoate/Ascorbic Acid Combination on Neurobehaviour, Oxidative Stress, and Markers of Inflammation in Mice

Author(s): Anthony Tope Olofinnade, Adejoke Yetunde Onaolapo and Olakunle James Onaolapo*

Volume 20, Issue 1, 2024

Published on: 07 September, 2023

Article ID: e060723218474 Pages: 10

DOI: 10.2174/1573407219666230706145617

Price: $65

conference banner
Abstract

Background: Several concerns regarding the safety of sodium benzoate/ascorbic acid combination have been highlighted in various scientific investigations. However, there is a dearth of scientific literature on its effect on the brain. This study investigated the effects of dry-feed added sodium benzoate/ascorbic acid combination on neurobehaviour, oxidative stress, and inflammatory cytokines in mice.

Methods: Adult male mice were assigned into ten groups of 10 mice each. One group was fed a standard diet, three groups were fed a diet containing sodium benzoate (NaB) at 125 mg/kg with ascorbic acid (AA) at 100, 200, or 300 mg/kg of feed, another three groups were fed NaB at 250 mg/kg with AA at 100, 200, or 300 mg/kg of feed, respectively, and the last three groups were fed NaB at 500 mg/kg with AA at 100, 200 or 300 mg/kg, respectively. Behavioural tests were assessed, following which animals were sacrificed, and their brains were homogenised for the assessment of biochemical parameters.

Results: The result showed a decrease in body weight, self-grooming, total antioxidant capacity, inflammatory cytokines, mixed response with food intake, locomotor activity, Y maze spatial working memory, and anxiety-related behaviours and an increase in rearing and radial arm maze spatial working memory.

Conclusion: Dry-feed added NaB/AA altered behavioural, oxidative stress, and inflammatory markers in mice. It was found that both beneficial and deleterious effects might be possible, depending on the concentrations ingested in food. However, further investigations are required to ascertain its effects on humans.

Graphical Abstract

[1]
World Health Organization Model List of Essential Medicines. WHO: Geneva, 2019.
[2]
Onaolapo, A.Y.; Onaolapo, O.J. Food additives, food and the concept of ‘food addiction’: Is stimulation of the brain reward circuit by food sufficient to trigger addiction? Pathophysiology, 2018, 25(4), 263-276.
[http://dx.doi.org/10.1016/j.pathophys.2018.04.002] [PMID: 29673924]
[3]
Kearney, J. Food consumption trends and drivers. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2010, 365(1554), 2793-2807.
[http://dx.doi.org/10.1098/rstb.2010.0149] [PMID: 20713385]
[4]
Pressman, P; Clemens, R; Hayes, W Food additive safety: A review of toxicologic and regulatory issues. Toxicol. Res. Appl., 2017, 1
[http://dx.doi.org/10.1177/2397847317723572]
[5]
Mamur, S.; Yüzbaşıoğlu, D.; Ünal, F.; Aksoy, H. Genotoxicity of food preservative sodium sorbate in human lymphocytes in vitro. Cytotechnology, 2012, 64(5), 553-562.
[http://dx.doi.org/10.1007/s10616-012-9434-5] [PMID: 22373823]
[6]
Yetuk, G.; Pandir, D.; Bas, H. Protective role of catechin and quercetin in sodium benzoate-induced lipid peroxidation and the antioxidant system in human erythrocytes in vitro. ScientificWorldJournal, 2014, 2014, 1-6.
[http://dx.doi.org/10.1155/2014/874824] [PMID: 24693251]
[7]
Olofinnade, A.T.; Onaolapo, A.Y.; Onaolapo, O.J.; Olowe, O.A. The potential toxicity of food-added sodium benzoate in mice is concentration-dependent. Toxicol. Res. (Camb.), 2021, 10(3), 561-569.
[http://dx.doi.org/10.1093/toxres/tfab024] [PMID: 34141170]
[8]
Yücel, A.; Özyalçin, S.; Talu, G.K.; Yücel, E.C.; Erdine, S. Intravenous administration of caffeine sodium benzoate for postdural puncture headache. Reg. Anesth. Pain Med., 1999, 24(1), 51-54.
[http://dx.doi.org/10.1097/00115550-199924010-00010] [PMID: 9952095]
[9]
Brahmachari, S.; Jana, A.; Pahan, K. Sodium benzoate, a metabolite of cinnamon and a food additive, reduces microglial and astroglial inflammatory responses. J. Immunol., 2009, 183(9), 5917-5927.
[http://dx.doi.org/10.4049/jimmunol.0803336] [PMID: 19812204]
[10]
Lane, H.Y.; Lin, C.H.; Green, M.F.; Hellemann, G.; Huang, C.C.; Chen, P.W.; Tun, R.; Chang, Y.C.; Tsai, G.E. Add-on treatment of benzoate for schizophrenia: A randomized, double-blind, placebo-controlled trial of D-amino acid oxidase inhibitor. JAMA Psychiatry, 2013, 70(12), 1267-1275.
[http://dx.doi.org/10.1001/jamapsychiatry.2013.2159] [PMID: 24089054]
[11]
Yadav, A.; Kumar, A.; Das, M.; Tripathi, A. Sodium benzoate, a food preservative, affects the functional and activation status of splenocytes at non cytotoxic dose. Food Chem. Toxicol., 2016, 88, 40-47.
[http://dx.doi.org/10.1016/j.fct.2015.12.016] [PMID: 26706697]
[12]
Khoshnoud, MJ; Siavashpour, A; Bakhshizadeh, M; Rashedinia, M Effects of sodium benzoate, a commonly used food preservative, on learning, memory, and oxidative stress in brain of mice. J Biochem Mol Toxicol, 2018, 32(2)
[http://dx.doi.org/10.1002/jbt.22022] [PMID: 29243862]
[13]
Olofinnade, AT; Onaolapo, AY; Onaolapo, OJ Anxiogenic, memory-impairing, pro-oxidant and pro-inflammatory effects of sodium benzoate in the mouse brain. Dusunen Adam J Psychiatr Neurol Sci, 2021, 34, 14-22.
[http://dx.doi.org/10.14744/DAJPNS.2021.00116]
[14]
Beezhold, B.L.; Johnston, C.S.; Nochta, K.A. Sodium benzoate rich beverage consumption is associated with increased reporting of ADHD symptoms in college students: A pilot investigation. J. Atten. Disord., 2014, 18(3), 236-241.
[http://dx.doi.org/10.1177/1087054712443156] [PMID: 22538314]
[16]
Asejeje, F.O.; Ajayi, B.O.; Abiola, M.A.; Samuel, O.; Asejeje, G.I.; Ajiboye, E.O.; Ajayi, A.M. Sodium benzoate induces neurobehavioral deficits and brain oxido‐inflammatory stress in male Wistar rats: Ameliorative role of ascorbic acid. J. Biochem. Mol. Toxicol., 2022, 36(5), e23010. Epub ahead of print
[http://dx.doi.org/10.1002/jbt.23010] [PMID: 35187746]
[17]
Olofinnade, A.T.; Onaolapo, T.M.; Oladimeji, S.; Fatoki, A.M.; Balogun, C.I.; Onaolapo, A.Y.; Onaolapo, O.J. An evaluation of the effects of pyridoxal phosphate in chlorpromazineinduced parkinsonism using mice. Cent. Nerv. Syst. Agents Med. Chem., 2020, 20(1), 13-25.
[http://dx.doi.org/10.2174/1871524920666200120142508] [PMID: 31987026]
[18]
Onaolapo, O.J.; Onaolapo, A.Y.; Akanmu, M.A.; Olayiwola, G. Changes in spontaneous working-memory, memory-recall and approach-avoidance following “low dose” monosodium glutamate in mice. AIMS Neurosci., 2016, 3, 317-337. a
[http://dx.doi.org/10.3934/Neuroscience.2016.3.317]
[19]
Onaolapo, A.Y.; Onaolapo, O.J.; Nwoha, P.U. Alterations in behaviour, cerebral cortical morphology and cerebral oxidative stress markers following aspartame ingestion. J. Chem. Neuroanat., 2016, 78, 42-56. c
[http://dx.doi.org/10.1016/j.jchemneu.2016.08.006] [PMID: 27565676]
[20]
Onaolapo, AY; Ayeni, OJ; Ogundeji, MO; Ajao, A; Onaolapo, OJ; Owolabi, AR Subchronic ketamine alters behaviour, metabolic indices and brain morphology in adolescent rats: Involvement of oxidative stress, glutamate toxicity and caspase-3 mediated apoptosis. J Chem Neuroanat, 2019, 96, 22-33.
[http://dx.doi.org/10.1016/j.jchemneu.2018.12.002] [PMID: 30529750]
[21]
Onaolapo, A.Y.; Olawore, O.I.; Yusuf, F.O.; Adeyemo, A.M.; Adewole, I.O.; Onaolapo, O.J. Oral monosodium glutamate administration differentially affects novelty-induced behaviours, behavioural despair and place preference in male and female mice. Curr. Psychopharmacol., 2019, c.
[http://dx.doi.org/10.2174/2211556008666181213160527]
[22]
Onaolapo, O.J.; Onaolapo, A.Y.; Omololu, T.A.; Oludimu, A.T.; Segun-Busari, T.; Omoleke, T. Exogenous testosterone, ageing and changes in behavioural response of gonadally-intact male mice. J. Exp. Neurosci., 2016, 10, JEN.S39042. b
[http://dx.doi.org/10.4137/JEN.S39042] [PMID: 27158222]
[23]
Onaolapo, O.J.; Adekola, M.A.; Azeez, T.O.; Salami, K.; Onaolapo, A.Y. l-Methionine and silymarin: A comparison of prophylactic protective capabilities in acetaminophen-induced injuries of the liver, kidney and cerebral cortex. Biomed. Pharmacother., 2017, 85, 323-333. c
[http://dx.doi.org/10.1016/j.biopha.2016.11.033] [PMID: 27889232]
[24]
Onaolapo, A.Y.; Onaolapo, O.J.; Nwoha, P.U. Aspartame and the hippocampus: Revealing a bi-directional, dose/time-dependent behavioural and morphological shift in mice. Neurobiol. Learn. Mem., 2017, 139, 76-88. a
[http://dx.doi.org/10.1016/j.nlm.2016.12.021] [PMID: 28049023]
[25]
Onaolapo, O.J.; Odeniyi, A.O.; Jonathan, S.O.; Samuel, M.O.; Amadiegwu, D.; Olawale, A.; Tiamiyu, A.O.; Ojo, F.O.; Yahaya, H.A.; Ayeni, O.J.; Onaolapo, A.Y. An investigation of the anti-Parkinsonism potential of co-enzyme Q10 and co-enzyme Q10/levodopa-carbidopa combination in mice. Curr. Aging Sci., 2021, 14(1), 62-75.
[http://dx.doi.org/10.2174/1874609812666191023153724] [PMID: 31702498]
[26]
Onaolapo, O.J.; Ademakinwa, O.Q.; Olalekan, T.O.; Onaolapo, A.Y. Ketamine-induced behavioural and brain oxidative changes in mice: an assessment of possible beneficial effects of zinc as mono or adjunct therapy. Psychopharmacology (Berl.), 2017, 234(18), 2707-2725. d
[http://dx.doi.org/10.1007/s00213-017-4666-x] [PMID: 28612134]
[27]
Onaolapo, O.J.; Paul, T.B.; Onaolapo, A.Y. Comparative effects of sertraline, haloperidol or olanzapine treatments on ketamine-induced changes in mouse behaviours. Metab. Brain Dis., 2017, 32(5), 1475-1489. e
[http://dx.doi.org/10.1007/s11011-017-0031-3] [PMID: 28508340]
[28]
Onaolapo, A.Y.; Adebisi, E.O.; Adeleye, A.E.; Olofinnade, A.T.; Onaolapo, O.J. Dietary melatonin protects against behavioural, metabolic, oxidative, and organ morphological changes in mice that are fed high-fat, high-sugar diet. 2019d. Endocr. Metab. Immune Disord. Drug Targets, 2020, 20(4), 570-583.
[http://dx.doi.org/10.2174/1871530319666191009161228] [PMID: 32138638]
[29]
Nishikimi, M.; Appaji Rao, N.; Yagi, K. The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen. Biochem. Biophys. Res. Commun., 1972, 46(2), 849-854.
[http://dx.doi.org/10.1016/S0006-291X(72)80218-3] [PMID: 4400444]
[30]
Miller, N.J.; Rice-Evans, C.; Davies, M.J.; Gopinathan, V.; Milner, A. A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates. Clin. Sci. (Lond.), 1993, 84(4), 407-412.
[http://dx.doi.org/10.1042/cs0840407] [PMID: 8482045]
[31]
Ghiselli, A.; Serafini, M.; Natella, F.; Scaccini, C. Total antioxidant capacity as a tool to assess redox status: Critical view and experimental data. Free Radic. Biol. Med., 2000, 29(11), 1106-1114.
[http://dx.doi.org/10.1016/S0891-5849(00)00394-4] [PMID: 11121717]
[32]
Onaolapo, A.Y.; Sulaiman, H.; Olofinnade, A.T.; Onaolapo, O.J. Antidepressant-like potential of silymarin and silymarin-sertraline combination in mice: Highlighting effects on behaviour, oxidative stress, and neuroinflammation. World J. Pharmacol., 2022, 11(3), 27-47.
[http://dx.doi.org/10.5497/wjp.v11.i3.27]
[33]
Olofinnade, A.T.; Onaolapo, A.Y.; Onaolapo, O.J.; Olowe, O.A. Hazelnut modulates neurobehaviour and ameliorates ageing-induced oxidative stress, and caspase-3-mediated apoptosis in mice. Curr. Aging Sci., 2021, 14(2), 154-162.
[http://dx.doi.org/10.2174/1874609813666201228112349] [PMID: 33371863]
[34]
Yang, H. Conserved or lost: molecular evolution of the key gene GULO in vertebrate vitamin C biosynthesis. Biochem. Genet., 2013, 51(5-6), 413-425.
[http://dx.doi.org/10.1007/s10528-013-9574-0] [PMID: 23404229]
[35]
Onaolapo, A.Y.; Onaolapo, O.J.; Nwoha, P.U. Methyl aspartylphenylalanine, the pons and cerebellum in mice: An evaluation of motor, morphological, biochemical, immunohistochemical and apoptotic effects. J. Chem. Neuroanat., 2017, 86, 67-77. b
[http://dx.doi.org/10.1016/j.jchemneu.2017.09.001] [PMID: 28890110]
[36]
Onaolapo, O.J.; Onaolapo, A.Y.; Akanmu, M.A.; Gbola, O. Evidence of alterations in brain structure and antioxidant status following ‘low-dose’ monosodium glutamate ingestion. Pathophysiology, 2016, 23(3), 147-156.
[http://dx.doi.org/10.1016/j.pathophys.2016.05.001] [PMID: 27312658]
[37]
Onaolapo, O.J.; Omotoso, S.A.; Olofinnade, A.T.; Onaolapo, A.Y. Anti-inflammatory, anti-oxidant, and anti-lipaemic effects of daily dietary coenzyme-q10 supplement in a mouse model of metabolic syndrome. Antiinflamm. Antiallergy Agents Med. Chem., 2021, 20(4), 380-388.
[http://dx.doi.org/10.2174/1871523020666210427111328] [PMID: 33906592]
[38]
Olofinnade, A.T.; Onaolapo, A.Y.; Stefanucci, A.; Mollica, A.; Olowe, O.A.; Onaolapo, O.J. Cucumeropsis mannii reverses high-fat diet induced metabolic derangement and oxidative stress. Front. Biosci. (Elite Ed.), 2021, 13(1), 54-76.
[http://dx.doi.org/10.2741/872] [PMID: 33048776]
[39]
Olofinnade, A.T.; Onaolapo, A.Y.; Onaolapo, O.J. Concentration-dependent effects of dietary l-ascorbic acid fortification in the brains of healthy mice. Cent. Nerv. Syst. Agents Med. Chem., 2021, 21(2), 104-113.
[http://dx.doi.org/10.2174/1871524921666210315130023] [PMID: 33719957]
[40]
Naylor, G.J.; Grant, L.; Smith, C. A double blind placebo controlled trial of ascorbic acid in obesity. Nutr. Health, 1985, 4(1), 25-28.
[http://dx.doi.org/10.1177/026010618500400104] [PMID: 3914623]
[41]
Jun, C.; Jung, Y.; Hong, H.; Park, Y.; Kang, H.; Chang, J.; Suh, J. Anti-obesity effects of chitosan and psyllium husk with L-ascorbic acid in guinea pigs. Int. J. Vitam. Nutr. Res., 2012, 82(2), 113-120.
[http://dx.doi.org/10.1024/0300-9831/a000100] [PMID: 23065836]
[42]
Jung, E.Y.; Jun, S.C.; Chang, U.J.; Suh, H.J. L-ascorbic acid addition to chitosan reduces body weight in overweight women. Int. J. Vitam. Nutr. Res., 2014, 84(1-2), 5-11.
[http://dx.doi.org/10.1024/0300-9831/a000187] [PMID: 25835230]
[43]
Crane, S.C.; Lachance, P.A. The effect of chronic sodium benzoateconsumption on brain monamines and spontaneous activity in rats. Nutr. Rep. Int., 1985, 31, 169-177.
[44]
Noorafshan, A.; Erfanizadeh, M.; Karbalay-Doust, S. Sodium benzoate, a food preservative, induces anxiety and motor impairment in rats. Neurosciences (Riyadh), 2014, 19(1), 24-28.
[PMID: 24419445]
[45]
Chen, Q.; Huang, N.; Huang, J.; Chen, S.; Fan, J.; Li, C.; Xie, F. Sodium benzoate exposure downregulates the expression of tyrosine hydroxylase and dopamine transporter in dopaminergic neuronsin developing zebrafish. Birth Defects Res. B Dev. Reprod. Toxicol., 2009, 86(2), 85-91.
[http://dx.doi.org/10.1002/bdrb.20187] [PMID: 19294673]
[46]
Kamel, M.M.; Razek, A.H. Neurobehavioral alterations in male rats exposed to sodium benzoate. Life Sci. J., 2013, 10, 722-726.
[47]
Mazloom, Z.; Ekramzadeh, M.; Hejazi, N. Efficacy of supplementary vitamins C and E on anxiety, depression and stress in type 2 diabetic patients: a randomized, single-blind, placebo-controlled trial. Pak. J. Biol. Sci., 2013, 16(22), 1597-1600.
[http://dx.doi.org/10.3923/pjbs.2013.1597.1600] [PMID: 24511708]
[48]
Oliveira, I.J.L.; de Souza, V.V.; Motta, V.; Da-Silva, S.L. Effects of oral vitamin C supplementation on anxiety in students: A double-blind, randomized, placebo-controlled trial. Pak. J. Biol. Sci., 2014, 18(1), 11-18.
[http://dx.doi.org/10.3923/pjbs.2015.11.18] [PMID: 26353411]
[49]
Moritz, B.; Schwarzbold, M.L.; Guarnieri, R.; Diaz, A.P.; Rodrigues, A.L.S.; Dafre, A.L. Effects of ascorbic acid on anxiety state and affect in a non-clinical sample. Acta Neurobiol. Exp. (Warsz.), 2017, 77(4), 362-372.
[http://dx.doi.org/10.21307/ane-2017-068] [PMID: 29369301]
[50]
Fraga, D.B.; Olescowicz, G.; Moretti, M.; Siteneski, A.; Tavares, M.K.; Azevedo, D.; Colla, A.R.S.; Rodrigues, A.L.S. Anxiolytic effects of ascorbic acid and ketamine in mice. J. Psychiatr. Res., 2018, 100, 16-23.
[http://dx.doi.org/10.1016/j.jpsychires.2018.02.006] [PMID: 29475017]
[51]
Kehinde, O.S.; Christianah, O.I.; Oyetunji, O.A. Ascorbic acid and sodium benzoate synergistically aggravates testicular dysfunction in adult Wistar rats. Int. J. Physiol. Pathophysiol. Pharmacol., 2018, 10(1), 39-46.
[PMID: 29593849]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy