Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Review Article

Bioactivity of Raphanus Species against Agricultural Phytopathogens and its Role in Soil Remediation: A Review

Author(s): Gisela Marisol Seimandi, Silvia del Carmen Imhoff and Marcos Gabriel Derita*

Volume 27, Issue 4, 2024

Published on: 07 August, 2023

Page: [516 - 544] Pages: 29

DOI: 10.2174/1386207326666230706123818

Price: $65

Abstract

Phytopathogens and weeds represent around 20-40% of global agricultural productivity losses. Synthetic pesticide products are the most used to combat these pests, but it reiterates that their use has caused tremendous pressure on ecosystems' self-cleansing capacity and resistance development by pathogens to synthetic fungicides. In the last decades, researchers have demonstrated the vast biological properties of plants against pathogens and diseases. Raphanus species (Brassicaceae) possesses antimicrobial, antioxidant, anti-inflammatory, anticancer, hepatoprotective, antidiabetic, insecticidal, nematicidal, allelopathic, and phytoremediators properties. These are due to the presence of structurally diverse bioactive compounds, such as flavonoids and glucosinolates. In this review, we have provided an update on the biological properties of two Raphanus species (R. sativus and R. raphanistrum), detailing the type of natural product (extract or isolated compound), the bioassays displayed, and the results obtained for the main bioactivities of this genus cited in the literature during the last 30 years. Moreover, preliminary studies on phytopathogenic activities performed in our laboratory have also been depicted. We conclude that Raphanus species could be a source of natural bioactive molecules to treat phytopathogens and weeds that affect crops and remediate contaminated soils.

Graphical Abstract

[1]
Savary, S.; Ficke, A.; Aubertot, J.N.; Hollier, C. Crop losses due to diseases and their implications for global food production losses and food security. Food Secur., 2012, 4(4), 519-537.
[http://dx.doi.org/10.1007/s12571-012-0200-5]
[2]
Lin, Q.; Wang, Z.; Ma, S.; Chen, Y. Evaluation of dissipation mechanisms by Lolium perenne L, and Raphanus sativus for pentachlorophenol (PCP) in copper co-contaminated soil. Sci. Total Environ., 2006, 368(2-3), 814-822.
[http://dx.doi.org/10.1016/j.scitotenv.2006.03.024] [PMID: 16643990]
[3]
Liberto, M.G.D.; Seimandi, G.M.; Fernández, L.N.; Ruiz, V.E.; Svetaz, L.A.; Derita, M.G. Botanical control of citrus green mold and peach brown rot on fruits assays using a Persicaria acuminata phytochemically characterized extract. Plants, 2021, 10(3), 425.
[http://dx.doi.org/10.3390/plants10030425] [PMID: 33668242]
[4]
Stegmayer, M.I.; Fernández, N.L.; Álvarez, N.H.; Olivella, L.; Gutiérrez, H.F.; Favaro, M.A.; Derita, M.G. Aceites esenciales provenientes de plantas nativas para el control de hongos fitopatógenos que afectan a frutales. FAVE Secc. Cienc. Agrar., 2021, 20(1), 317-329.
[http://dx.doi.org/10.14409/fa.v20i1.10273]
[5]
Di Liberto, M.G.; Stegmayer, M.I.; Svetaz, L.A.; Derita, M.G. Evaluation of Argentinean medicinal plants and isolation of their bioactive compounds as an alternative for the control of postharvest fruits phytopathogenic fungi. Rev. Bras. Farmacogn., 2019, 29(5), 686-688.
[http://dx.doi.org/10.1016/j.bjp.2019.05.007]
[6]
Stegmayer, M.I.; Fernández, L.N.; Álvarez, N.H.; Seimandi, G.M.; Reutemann, A.G.; Derita, M.G. In vitro antifungal screening of argentine native or naturalized plants against the phytopathogen Monilinia fructicola. Comb. Chem. High Throughput Screen., 2022, 25(7), 1158-1166.
[http://dx.doi.org/10.2174/1386207324666210121113648] [PMID: 33475070]
[7]
Gutiérrez, R.M.P.; Perez, R.L. Raphanus sativus (Radish): their chemistry and biology. ScientificWorldJournal, 2004, 4, 811-837.
[http://dx.doi.org/10.1100/tsw.2004.131] [PMID: 15452648]
[8]
Manchali, S.; Chidambara Murthy, K.N.; Patil, B.S. Crucial facts about health benefits of popular cruciferous vegetables. J. Funct. Foods, 2012, 4(1), 94-106.
[http://dx.doi.org/10.1016/j.jff.2011.08.004]
[9]
Singh, A.; Sharma, S. Antioxidants in Vegetables and Nuts-Properties and Health Benefits; Springer: Singapore, 2020, pp. 209-235.
[10]
Terras, F.R.; Schoofs, H.M.; De Bolle, M.F.; Van Leuven, F.; Rees, S.B.; Vanderleyden, J.; Cammue, B.P.; Broekaert, W.F. Analysis of two novel classes of plant antifungal proteins from radish (Raphanus sativus L.) seeds. J. Biol. Chem., 1992, 267(22), 15301-15309.
[http://dx.doi.org/10.1016/S0021-9258(19)49534-3] [PMID: 1639777]
[11]
Beevi, S.S.; Mangamoori, L.N.; Anabrolu, N. Comparative activity against pathogenic bacteria of the root, stem, and leaf of Raphanus sativus grown in India. World J. Microbiol. Biotechnol., 2009, 25(3), 465-473.
[http://dx.doi.org/10.1007/s11274-008-9911-3]
[12]
Li, Z.; Zhou, M.; Zhang, Z.; Ren, L.; Du, L.; Zhang, B.; Xu, H.; Xin, Z. Expression of a radish defensin in transgenic wheat confers increased resistance to Fusarium graminearum and Rhizoctonia cerealis. Funct. Integr. Genomics, 2011, 11(1), 63-70.
[http://dx.doi.org/10.1007/s10142-011-0211-x] [PMID: 21279533]
[13]
Ahmad, F.; Hasan, I.; Chishti, D.K.; Ahmad, H. Antibacterial activity of Raphanus sativus Linn. seed extract. Glob. J. Med. Res., 2012, 12(11), 25-34.
[14]
Lim, S.; Han, S.W.; Kim, J. Sulforaphene identified from radish (Raphanus sativus L.) seeds possesses antimicrobial properties against multidrug-resistant bacteria and methicillin-resistant Staphylococcus aureus. J. Funct. Foods, 2016, 24, 131-141.
[http://dx.doi.org/10.1016/j.jff.2016.04.005]
[15]
Duy, H.H.; Ngoc, P.T.K.; Anh, L.T.H.; Dao, D.T.A.; Nguyen, D.C.; Than, V.T. In vitro antifungal efficacy of white radish (Raphanus sativus L.) root extract and application as a natural preservative in sponge cake. Processes (Basel), 2019, 7(9), 549.
[http://dx.doi.org/10.3390/pr7090549]
[16]
Mannai, S.; Benfradj, N.; Karoui, A.; Salem, I.B.; Fathallah, A.; M’Hamdi, M.; Boughalleb-M’Hamdi, N. Analysis of chemical composition and in vitro and in vivo antifungal activity of Raphanus raphanistrum extracts against Fusarium and Pythiaceae, affecting apple and peach seedlings. Molecules, 2021, 26(9), 2479.
[http://dx.doi.org/10.3390/molecules26092479] [PMID: 33922854]
[17]
Yi, J.H.; Park, I.K.; Choi, K.S.; Shin, S.C.; Ahn, Y.J. Toxicity of medicinal plant extracts to Lycoriella ingenua (Diptera: Sciaridae) and Coboldia fuscipes (Diptera: Scatopsidae). J. Asia Pac. Entomol., 2008, 11(4), 221-223.
[http://dx.doi.org/10.1016/j.aspen.2008.09.002]
[18]
Shanmugapriya, R.; Nareshkumar, A.; Meenambigai, K.; Kokila, R.; Shebriya, A.; Chandhirasekar, K.; Thendral Manikandan, A.; Munusamy, C. Antifungal and insecticidal activities of Raphanus sativus mediated AgNPs against mango leafhopper, Amritodus brevistylus and its associated fungus, Aspergillus niger. J. Entomol. Acarol. Res., 2017, 49(1), 13-21.
[http://dx.doi.org/10.4081/jear.2017.5953]
[19]
Mendoza-García, E.E.; Ortega-Arenas, L.D.; Pérez-Pacheco, R.; Rodríguez-Hernández, C. Repellency, toxicity, and oviposition inhibition of vegetable extracts against greenhouse whitefly Trialeurodes vaporariorum (Westwood) (Hemiptera: Aleyrodidae). Chil. J. Agric. Res., 2014, 74(1), 41-48.
[http://dx.doi.org/10.4067/S0718-58392014000100007]
[20]
Zaidat, S.A.E.; Mouhouche, F.; Babaali, D.; Abdessemed, N.; De Cara, M.; Hammache, M. Nematicidal activity of aqueous and organic extracts of local plants against Meloidogyne incognita (Kofoid and White) Chitwood in Algeria under laboratory and greenhouse conditions. Egypt. J. Biol. Pest Control, 2020, 30(1), 46.
[http://dx.doi.org/10.1186/s41938-020-00242-z]
[21]
Shalaby, M.; Gad, S.; Khalil, A.; El-Sherif, A. Nematicidal activity of seed powders of some ornamental plants against Meloidogyne incognita infecting pepper under greenhouse conditions. J Plant Protect Pathol., 2021, 12(8), 499-506.
[http://dx.doi.org/10.21608/jppp.2021.198191]
[22]
Conforti, F.; Sosa, S.; Marrelli, M.; Menichini, F.; Statti, G.A.; Uzunov, D.; Tubaro, A.; Menichini, F.; Loggia, R.D. In vivo anti-inflammatory and in vitro antioxidant activities of Mediterranean dietary plants. J. Ethnopharmacol., 2008, 116(1), 144-151.
[http://dx.doi.org/10.1016/j.jep.2007.11.015] [PMID: 18164564]
[23]
Küçükboyaci, N.; Güvenç, A.; Turan, N.; Aydin, A. Antioxidant activity and total phenolic content of aqueous extract from Raphanus Raphanistrum L. Turk. J. Pharm. Sci., 2012, 9(1), 93-100.
[24]
Beevi, S.S.; Mangamoori, L.N.; Gowda, B.B. Polyphenolics profile and antioxidant properties of Raphanus sativus L. Nat. Prod. Res., 2012, 26(6), 557-563.
[http://dx.doi.org/10.1080/14786419.2010.521884] [PMID: 21714734]
[25]
Iyda, J.H.; Fernandes, Â.; Ferreira, F.D.; Alves, M.J.; Pires, T.C.S.P.; Barros, L.; Amaral, J.S.; Ferreira, I.C.F.R. Chemical composition and bioactive properties of the wild edible plant Raphanus raphanistrum L. Food Res. Int., 2019, 121, 714-722.
[http://dx.doi.org/10.1016/j.foodres.2018.12.046] [PMID: 31108800]
[26]
Yücetepe, A.; Altin, G.; Özçelik, B. A novel antioxidant source: evaluation of in vitro bioaccessibility, antioxidant activity and polyphenol profile of phenolic extract from black radish peel wastes (Raphanus sativus L. var. niger) during simulated gastrointestinal digestion. Int. J. Food Sci. Technol., 2021, 56(3), 1376-1384.
[http://dx.doi.org/10.1111/ijfs.14494]
[27]
Syed, S.N.; Rizvi, W.; Kumar, A.; Khan, A.A.; Moin, S.; Ahsan, A. In vitro antioxidant and in vivo hepatoprotective activity of leave extract of Raphanus sativus in rats using CCL4 model. Afr. J. Tradit. Complement. Altern. Med., 2014, 11(3), 102-106.
[http://dx.doi.org/10.4314/ajtcam.v11i3.15] [PMID: 25371570]
[28]
Kim, J.; Ahn, M.; Kim, S.E.; Lee, H.S.; Kim, H.K.; Kim, G.O.; Shin, T. Hepatoprotective effect of fermented black radish (Raphanus sativus L. var niger) in CCl4 induced liver injury in rats. J Prevent Veter Med., 2017, 41(4), 143-149.
[http://dx.doi.org/10.13041/jpvm.2017.41.4.143]
[29]
Norsworthy, J.K. Allelopathic potential of wild radish (Raphanus raphanistrum). Weed Technol., 2003, 17(2), 307-313.
[http://dx.doi.org/10.1614/0890-037X(2003)017[0307:APOWRR]2.0.CO;2]
[30]
Kunz, C.; Sturm, D.J.; Sökefeld, M.; Gerhards, R. Weed suppression and early sugar beet development under different cover crop mulches. Plant Prot. Sci., 2017, 53(3), 187-193.
[http://dx.doi.org/10.17221/109/2016-PPS]
[31]
Kim, K.H.; Kim, C.S.; Park, Y.J.; Moon, E.; Choi, S.U.; Lee, J.H.; Kim, S.Y.; Lee, K.R. Anti-inflammatory and antitumor phenylpropanoid sucrosides from the seeds of Raphanus sativus. Bioorg. Med. Chem. Lett., 2015, 25(1), 96-99.
[http://dx.doi.org/10.1016/j.bmcl.2014.11.001] [PMID: 25466198]
[32]
Choi, K.C.; Cho, S.W.; Kook, S.H.; Chun, S.R.; Bhattarai, G.; Poudel, S.B.; Kim, M.K.; Lee, K.Y.; Lee, J.C. Intestinal anti-inflammatory activity of the seeds of Raphanus sativus L. in experimental ulcerative colitis models. J. Ethnopharmacol., 2016, 179, 55-65.
[http://dx.doi.org/10.1016/j.jep.2015.12.045] [PMID: 26721217]
[33]
Abd-Elmoneim, M.A.; Bakar, A.A.; Awad, I.M.; Moharib, S.A.; Mohamed, E.M. Anticarcinogenic effect of Raphanus sativus on 1, 2 dimethylhydrazine (DMH) induced colon cancer in rats. Egypt. J. Hosp. Med., 2013, 51(1), 473-486.
[http://dx.doi.org/10.21608/ejhm.2013.15996]
[34]
Vadivelan, R. Dhanabal, S.P.; Wadhawani, A.; Elango, K. α-glucosidase and α-amylase inhibitory activities of Raphanus sativus Linn. Int. J. Pharm. Sci. Res., 2012, 3(9), 3186.
[35]
Jani, D.K.; Goswami, S. Antidiabetic activity of Cassia angustifolia Vahl. and Raphanus sativus Linn. leaf extracts. J. Tradit. Complement. Med., 2019, 10(2), 124-131.
[http://dx.doi.org/10.1016/j.jtcme.2019.03.002] [PMID: 32257875]
[36]
Marchiol, L.; Assolari, S.; Sacco, P.; Zerbi, G. Phytoextraction of heavy metals by canola (Brassica napus) and radish (Raphanus sativus) grown on multicontaminated soil. Environ. Pollut., 2004, 132(1), 21-27.
[http://dx.doi.org/10.1016/j.envpol.2004.04.001] [PMID: 15276270]
[37]
Mohammed, A.S.; Kapri, A.; Goel, R. Heavy metal pollution: source, impact, and remedies. Biomanagement of metal-contaminated soils; Khan, M.; Zaidi, A.; Goel, R; Musarrat, J., Ed.; Springer: Dordrecht, 2011, pp. 1-28.
[http://dx.doi.org/10.1007/978-94-007-1914-9_1]
[38]
Hedayatzadeh, F.; Banaee, M.; Shayesteh, K. Bio-Accumulation of lead and cadmium by radish (Raphanus sativus) and cress (Lepidium sativum) under hydroponic growing medium. Pollution, 2020, 6(3), 681-693.
[39]
Maldini, M.; Foddai, M.; Natella, F.; Petretto, G.L.; Rourke, J.P.; Chessa, M.; Pintore, G. Identification and quantification of glucosinolates in different tissues of Raphanus raphanistrum by liquid chromatography tandem-mass spectrometry. J. Food Compos. Anal., 2017, 61, 20-27.
[http://dx.doi.org/10.1016/j.jfca.2016.06.002]
[40]
Malik, M.S. ecology of wild radish (Raphanus raphanistrum); PhD Thesis, Clemson University: Clemson, 2009.
[41]
Ko, H.C.; Sung, J.S.; Hur, O.S.; Baek, H.J.; Jeon, Y.A.; Luitel, B.P.; Ryu, K.Y.; Kim, J.B.; Rhee, J.H. Comparison of glucosinolate contents in leaves and roots of radish (Raphanus spp.). Korean J. Plant Res., 2017, 30(6), 579-589.
[42]
Farid, M.M.; Ibrahim, F.M.; Ragheb, A.Y.; Mohammed, R.S.; Hegazi, N.M.; Shabrawy, M.O.E.L.; Kawashty, S.A.; Marzouk, M.M. Comprehensive phytochemical characterization of Raphanus raphanistrum L.: in vitro antioxidant and antihyperglycemic evaluation. Sci. Am., 2022, 16, e01154.
[http://dx.doi.org/10.1016/j.sciaf.2022.e01154]
[43]
Takaya, Y.; Kondo, Y.; Furukawa, T.; Niwa, M. Antioxidant constituents of radish sprout (Kaiware-daikon), Raphanus sativus L. J. Agric. Food Chem., 2003, 51(27), 8061-8066.
[http://dx.doi.org/10.1021/jf0346206] [PMID: 14690397]
[44]
Goyeneche, R.; Roura, S.; Ponce, A.; Vega-Gálvez, A.; Quispe-Fuentes, I.; Uribe, E.; Di Scala, K. Chemical characterization and antioxidant capacity of red radish (Raphanus sativus L.) leaves and roots. J. Funct. Foods, 2015, 16, 256-264.
[http://dx.doi.org/10.1016/j.jff.2015.04.049]
[45]
Gamba, M.; Asllanaj, E.; Raguindin, P.F.; Glisic, M.; Franco, O.H.; Minder, B.; Bussler, W.; Metzger, B.; Kern, H.; Muka, T. Nutritional and phytochemical characterization of radish (Raphanus sativus): A systematic review. Trends Food Sci. Technol., 2021, 113, 205-218.
[http://dx.doi.org/10.1016/j.tifs.2021.04.045]
[46]
Do, M.H.; Lee, H.B.; Oh, M.J.; Jhun, H.; Choi, S.Y.; Park, H.Y. Polysaccharide fraction from greens of Raphanus sativus alleviates high fat diet-induced obesity. Food Chem., 2021, 343, 128395.
[http://dx.doi.org/10.1016/j.foodchem.2020.128395] [PMID: 33268179]
[47]
Stöhr, H.; Herrmann, K. [On the phenolic acids of vegetables. III. Hydroxycinnamic acids and hydroxybenzoic acids of root vegetables]. Z. Lebensm. Unters. Forsch., 1975, 159(4), 218-224.
[PMID: 1224796]
[48]
Strack, D.; Pieroth, M.; Scharf, H.; Sharma, V. Tissue distribution of phenylpropanoid metabolism in cotyledons of Raphanus sativus L. Planta, 1985, 164(4), 507-511.
[http://dx.doi.org/10.1007/BF00395967] [PMID: 24248224]
[49]
Beevi, S.S.; Mangamoori, L.N.; Dhand, V.; Ramakrishna, D.S. Isothiocyanate profile and selective antibacterial activity of root, stem, and leaf extracts derived from Raphanus sativus L. Foodborne Pathog. Dis., 2009, 6(1), 129-136. b
[http://dx.doi.org/10.1089/fpd.2008.0166] [PMID: 19182965]
[50]
Melotto, M.; Underwood, W.; He, S.Y. Role of stomata in plant innate immunity and foliar bacterial diseases. Annu. Rev. Phytopathol., 2008, 46(1), 101-122.
[http://dx.doi.org/10.1146/annurev.phyto.121107.104959] [PMID: 18422426]
[51]
Giusti, M.M.; Ghanadan, H.; Wrolstad, R.E. Elucidation of the structure and conformation of red radish (Raphanus sativus) anthocyanins using one-and two-dimensional nuclear magnetic resonance techniques. J. Agric. Food Chem., 1998, 46(12), 4858-4863.
[http://dx.doi.org/10.1021/jf980695b]
[52]
Shukla, S.; Chatterji, S.; Yadav, D.K.; Watal, G. Antimicrobial efficacy of Raphanus sativus root juice. Int. J. Pharm. Pharm. Sci., 2011, 3(5), 89-92.
[53]
Jdey, A.; Falleh, H.; Ben Jannet, S.; Mkadmini Hammi, K.; Dauvergne, X.; Ksouri, R.; Magné, C. Phytochemical investigation and antioxidant, antibacterial and anti-tyrosinase performances of six medicinal halophytes. S. Afr. J. Bot., 2017, 112, 508-514.
[http://dx.doi.org/10.1016/j.sajb.2017.05.016]
[54]
Paul Schreiner, R.; Koide, R.T. Antifungal compounds from the roots of mycotrophic and non-mycotrophic plant species. New Phytol., 1993, 123(1), 99-105.
[http://dx.doi.org/10.1111/j.1469-8137.1993.tb04535.x]
[55]
Rodríguez-Romero, M.; Godoy-Cancho, B.; Calha, I.M.; Passarinho, J.A.; Moreira, A.C. Allelopathic effects of three herb species on Phytophthora cinnamomi, a pathogen causing severe oak decline in Mediterranean wood pastures. Forests, 2021, 12(3), 285.
[http://dx.doi.org/10.3390/f12030285]
[56]
Singh, A.; Sharma, B.; Deswal, R. Green silver nanoparticles from novel Brassicaceae cultivars with enhanced antimicrobial potential than earlier reported Brassicaceae members. J. Trace Elem. Med. Biol., 2018, 47, 1-11.
[http://dx.doi.org/10.1016/j.jtemb.2018.01.001] [PMID: 29544794]
[57]
Javaid, A.; Bashir, A. Radish extracts as natural fungicides for management of Fusarium oxysporum f. sp. lycopersici, the cause of tomato wilt. Pak. J. Bot., 2015, 47(S1), 321-324.
[58]
Lee, Y.S.; Kwon, K.J.; Kim, M.S.; Sohn, H.Y. Antimicrobial, antioxidant and anticoagulation activities of Korean radish (Raphanus sativus L.) leaves. Han’guk Misaengmul, Saengmyong Konghakhoe Chi., 2013, 41(2), 228-235.
[http://dx.doi.org/10.4014/kjmb.1302.02007]
[59]
Ungureanu, C.; Fierascu, I.; Fierascu, R.C.; Costea, T.; Avramescu, S.M. Călinescu, M.F.; Somoghi, R.; Pirvu, C. in vitro and in vivo evaluation of silver nanoparticles phytosynthesized using Raphanus sativus L. waste extracts. Materials, 2021, 14(8), 1845.
[http://dx.doi.org/10.3390/ma14081845] [PMID: 33917755]
[60]
Törün, B.; Çoban, E.P.; Biyik, H.H.; Barisik, E. Antimicrobial activity of Echinophora tenuifolia L. and Raphanus sativus L. extracts. Indian J. Pharm. Educ. Res., 2017, 51(1), 136-143.
[61]
Schaaper, W.M.M.; Posthuma, G.A.; Plasman, H.H.; Sijtsma, L.; Fant, F.; Borremans, F.A.; Thevissen, K.; Broekaert, W.F.; Meloen, R.H.; van Amerongen, A. Synthetic peptides derived from the β2-β3 loop of Raphanus sativus antifungal protein 2 that mimic the active site. J. Pept. Res., 2001, 57(5), 409-418.
[http://dx.doi.org/10.1034/j.1399-3011.2001.00842.x] [PMID: 11350601]
[62]
Xiang-Jun, Z.; Lun-Shan, W.; Zhi-Ping, L.; Jun-Wei, J.; Shan, L.; Zhao-Qing, C.; Xiao-Ya, C. Fusion expression of Raphanus sativus-antifungal protein 1 (Rs-AFP1) in Escherichia coli and its antifungal activity on Verticillium dahliae. J. Integr. Plant Biol., 2000, 42(7), 703-707.
[63]
Siddiq, A.; Younus, I. Screening in-vitro antifungal activity of Raphanus sativus L. var. caudatus. World J. Pharm. Pharm. Sci., 2015, 4(11), 429-437.
[64]
Haq, S.; Dildar, S.; Ali, M.B.; Mezni, A.; Hedfi, A.; Shahzad, M.I.; Shahzad, N.; Shah, A. Antimicrobial and antioxidant properties of biosynthesized of NiO nanoparticles using Raphanus sativus (R. sativus) extract. Mater. Res. Express, 2021, 8(5), 055006.
[http://dx.doi.org/10.1088/2053-1591/abfc7c]
[65]
Muthusamy, B.; Shanmugam, G. Analysis of flavonoid content, antioxidant, antimicrobial and antibiofilm activity of in vitro hairy root extract of radish (Raphanus sativus L.). Plant Cell Tissue Organ Cult., 2020, 140(3), 619-633.
[http://dx.doi.org/10.1007/s11240-019-01757-6]
[66]
Ngoc, P.T.K.; Nguyet, N.T.M.; Dao, D.T.A. Antimicrobial and antioxidant properties of the flavonoid extract from Raphanus sativus L. AIP Conf. Proc., 2017, 1878(1), 020026.
[http://dx.doi.org/10.1063/1.5000194]
[67]
Kaymak, H.C.; Ozturk, S.; Ercisli, S.; Guvenc, I. In vitro antibacterial activities of black and white radishes (Raphanus sativus L.). Comptes Rend. L Acad. Bulgare Des. Sci., 2015, 68, 201-208.
[68]
Janjua, S.; Shahid, M. Phytochemical analysis and in vitro antibacterial activity of root peel extract of Raphanus sativus L. var niger. Adv. Med. Plant Res., 2013, 1(1), 1-7.
[69]
Kaymak, H.C.; Yilmaz, S.O.; Ercisli, S.; Guvenc, I. Antibacterial activities of red colored radish types (Raphanus sativus L.). Rom. Biotechnol. Lett., 2018, 23(4), 13744.
[70]
Terras, F.R.G.; Goderis, I.J.; Van Leuven, F.; Vanderleyden, J.; Cammue, B.P.A.; Broekaert, W.F. In vitro antifungal activity of a radish (Raphanus sativus L.) seed protein homologous to nonspecific lipid transfer proteins. Plant Physiol., 1992, 100(2), 1055-1058. b
[http://dx.doi.org/10.1104/pp.100.2.1055] [PMID: 16653017]
[71]
Hwang, C.W. Antifungal and plant growth promotion activities of recombinant defensin proteins from the seed of Korean radish (Raphanus sativus L.). Korean J. Environ. Agric., 2009, 28(4), 435-441.
[http://dx.doi.org/10.5338/KJEA.2009.28.4.435]
[72]
Park, J.H.; Shin, K.K.; Hwang, C.W. New antimicrobial activity from Korean radish seeds (Raphanus sativus L.). J. Microbiol. Biotechnol., 2001, 11(2), 337-341.
[73]
Karri, V.; Bharadwaja, K.P. Tandem combination of Trigonella foenum-graecum defensin (Tfgd2) and Raphanus sativus antifungal protein (RsAFP2) generates a more potent antifungal protein. Funct. Integr. Genomics, 2013, 13(4), 435-443.
[http://dx.doi.org/10.1007/s10142-013-0334-3] [PMID: 24022215]
[74]
Elshaer, A.; Imara, D.; Soliman, M.; Khafagi, E.; El-Nahas, S. Potential antifungal activity of two plant extracts and jojoba oil against fungi causing strawberry crown and root-rots. Egypt. J. Phytopathol., 2019, 47(2), 121-140.
[http://dx.doi.org/10.21608/ejp.2019.145960]
[75]
Rani, I.; Akhund, S.; Abro, H. Antimicrobial potential of seed extract of Raphanus sativus. Pak. J. Bot., 2008, 40(4), 1793-1798.
[76]
Murakami, H.; Tsushima, S.; Akimoto, T.; Murakami, K.; Goto, I.; Shishido, Y. Effects of growing leafy daikon (Raphanus sativus) on populations of Plasmodiophora brassicae (clubroot). Plant Pathol., 2000, 49(5), 584-589.
[http://dx.doi.org/10.1046/j.1365-3059.2000.00495.x]
[77]
Available from: https://imagej.nih.gov/ij/
[78]
Jbilou, R.; Ennabili, A.; Sayah, F. Insecticidal activity of four medicinal plant extracts against Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). Afr. J. Biotechnol., 2006, 5(10), 936-940.
[79]
Alghamdi, A.S. Insecticidal effect of four plant essential oils against two aphid species under laboratory conditions. J. Appl. Biol. Biotechnol., 2018, 6(2), 27-30.
[80]
Aihetasham, A.; Ramzan, A.; Khan, M.X. Efficacy of ethanolic plant extracts of Zingiber officinale, Raphanus sativus, Rosa indica and Aloe vera against Heterotermes indicola. BioSci. Rev., 2021, 3(4), 1-12.
[81]
Hatem, A.E.; Abdel-Samad, S.S.M.; Saleh, H.A.; Soliman, M.H.A.; Hussien, A.I. Toxicological and physiological activity of plant extracts against Spodoptera littoralis (Boisduval) (Lepidoptera: Noctuidae) larvae. Bol. Sanid. Veg., Plagas, 2009, 35, 517-531.
[82]
Ibrahim, H.; Abdel-Mogib, M.; Mostafa, M. Insecticidal activity of radish, Raphanus sativus Linn. (Brassicaceae) roots extracts. J. Plant Prot. Pathol., 2020, 11(1), 53-58.
[http://dx.doi.org/10.21608/jppp.2020.79164]
[83]
Jones, J.T.; Haegeman, A.; Danchin, E.G.J.; Gaur, H.S.; Helder, J.; Jones, M.G.K.; Kikuchi, T.; Manzanilla-López, R.; Palomares-Rius, J.E.; Wesemael, W.M.L.; Perry, R.N. Top 10 plant-parasitic nematodes in molecular plant pathology. Mol. Plant Pathol., 2013, 14(9), 946-961.
[http://dx.doi.org/10.1111/mpp.12057] [PMID: 23809086]
[84]
Kiontke, K.; Fitch, D.H.A. Nematodes. Curr. Biol., 2013, 23(19), R862-R864.
[http://dx.doi.org/10.1016/j.cub.2013.08.009] [PMID: 24112976]
[85]
Radwan, M.A.; Farrag, S.A.A.; Abu-Elamayem, M.M.; Ahmed, N.S. Efficacy of dried seed powder of some plant species as soil amendment against Meloidogyne incognita (Tylenchida: Meloidogynidae) on tomato. Arch. Phytopathol. Pflanzenschutz, 2012, 45(10), 1246-1251.
[http://dx.doi.org/10.1080/03235408.2012.665217]
[86]
Lazzeri, L.; Curto, G.; Leoni, O.; Dallavalle, E. Effects of glucosinolates and their enzymatic hydrolysis products via myrosinase on the root-knot nematode Meloidogyne incognita (Kofoid et White). Chitw. J. Agric. Food Chem., 2004, 52(22), 6703-6707.
[http://dx.doi.org/10.1021/jf030776u] [PMID: 15506804]
[87]
Ngala, B.M.; Woods, S.R.; Back, M.A. In vitro assessment of the effects of Brassica juncea and Raphanus sativus leaf and root extracts on the viability of Globodera pallida encysted eggs. Nematology, 2015, 17(5), 543-556.
[http://dx.doi.org/10.1163/15685411-00002888]
[88]
Fatemy, S.; Moosavi, M.R. Nematotoxic potential of daikon, chinaberry and purslane herbal green manures against Globodera rostochiensis in vitro and microplot. J. Crop Prot., 2019, 8(1), 69-80.
[89]
Insunza, V.; Aballay, E.; Macaya, J. In vitro nematicidal activity of aqueous plant extracts on Chilean populations of Xiphinema americanum sensu lato. Nematropica, 2001, 31(1), 47-54.
[90]
Eslami, S.V.; Gill, G.S.; Bellotti, B.; McDonald, G. Wild radish (Raphanus raphanistrum) interference in wheat. Weed Sci., 2006, 54(4), 749-756.
[http://dx.doi.org/10.1614/WS-05-180R2.1]
[91]
Malik, M.S.; Norsworthy, J.K.; Culpepper, A.S.; Riley, M.B.; Bridges, W., Jr Use of wild radish (Raphanus raphanistrum) and rye cover crops for weed suppression in sweet corn. Weed Sci., 2008, 56(4), 588-595.
[http://dx.doi.org/10.1614/WS-08-002.1]
[92]
Ahmed, S.A.A.; El-Masry, R.R.; Messiha, N.K.; El-Rokiek, K.G. Evaluating the allelopathic efficiency of the seed powder of Raphanus sativus L. in controlling some weeds associating Phaseolus vulgaris L. Int. J. Environ. Res., 2018, 7(3), 87-94.
[93]
Uremis, I.; Arslan, M.; Uludag, A.; Sangun, M. Allelopathic potentials of residues of 6 brassica species on johnsongrass. Afr. J. Biotechnol., 2009, 8(15), 3497-3501. [Sorghum halepense (L.) Pers.].
[94]
Sturm, D.J.; Peteinatos, G.; Gerhards, R. Contribution of allelopathic effects to the overall weed suppression by different cover crops. Weed Res., 2018, 58(5), 331-337.
[http://dx.doi.org/10.1111/wre.12316]
[95]
Sharma, S.; Singh, B.; Manchanda, V.K. Phytoremediation: role of terrestrial plants and aquatic macrophytes in the remediation of radionuclides and heavy metal contaminated soil and water. Environ. Sci. Pollut. Res. Int., 2015, 22(2), 946-962.
[http://dx.doi.org/10.1007/s11356-014-3635-8] [PMID: 25277712]
[96]
Asadi Kapourchal, S.; Asadi Kapourchal, S.; Pazira, E.; Homaee, M. Assessing radish (Raphanus sativus L.) potential for phytoremediation of lead-polluted soils resulting from air pollution. Plant Soil Environ., 2009, 55(5), 202-206.
[http://dx.doi.org/10.17221/8/2009-PSE]
[97]
Marchiol, L.; Sacco, P.; Assolari, S.; Zerbi, G. Reclamation of polluted soil: phytoremediation potential of crop-related Brassica species. Water Air Soil Pollut., 2004, 158(1), 345-356. b
[http://dx.doi.org/10.1023/B:WATE.0000044862.51031.fb]
[98]
Gunduz, S.; Uygur, F.N. Kahramanoğlu, I. Heavy metal Phytoremediation potentials of Lepidum sativum L., Lactuca sativa L., Spinacia oleracea L. and Raphanus sativus L. Her. J. Agric. Food Sci., 2012, 1(1), 1-5.
[99]
Garg, G.; Kataria, S.K. Phytoremediation potential of Raphanus sativus (L.), Brassica juncea (L.) and Triticum aestivum (L.) for copper contaminated soil. 53rd Annual Conference of the International Society for the Systems Sciences, 2009, pp. 1-10.
[100]
Neggaz, N.E.; Yssaad, H.A.R. Effect of copper-salinity interaction on proline and soluble sugars contents in radish (Raphanus sativus L.). Plant Arch., 2019, 19(2), 2158-2162.
[101]
Akhtar, M.J.; Ullah, S.; Ahmad, I.; Rauf, A.; Nadeem, S.M.; Khan, M.Y.; Hussain, S.; Bulgariu, L. Nickel phytoextraction through bacterial inoculation in Raphanus sativus. Chemosphere, 2018, 190, 234-242.
[http://dx.doi.org/10.1016/j.chemosphere.2017.09.136] [PMID: 28992475]
[102]
Wang, D.; Wen, F.; Xu, C.; Tang, Y.; Luo, X. The uptake of Cs and Sr from soil to radish (Raphanus sativus L.)- potential for phytoextraction and remediation of contaminated soils. J. Environ. Radioact., 2012, 110, 78-83.
[http://dx.doi.org/10.1016/j.jenvrad.2012.01.028] [PMID: 22402224]
[103]
Raj, J.; Rebecca, L.J. Phytoremediation of aluminium and lead using Raphanus sativus, Vigna radiata and Cicer arietinum. J. Chem. Pharm. Res., 2014, 6(5), 1148-1152.
[104]
Pattanaik, D.P.; Mishra, S.; Mishra, A.; Sharmila, S.; Dhanalakshmi, V.; Anbuselvi, S.; Rebecca, L.J. (Phytoremediation of mercury, aluminium and chromium using Raphanus sativus and Zea mays. Int. J. Biotechnol. Bioeng. Res., 2011, 2(2), 277-286.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy