Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Understanding the Artemia Salina (Brine Shrimp) Test: Pharmacological Significance and Global Impact

Author(s): Dionisio A. Olmedo, Yelkaira Vasquez, Juan Antonio Morán, Estela Guerrero De León, Catherina Caballero-George and Pablo N. Solís*

Volume 27, Issue 4, 2024

Published on: 24 July, 2023

Page: [545 - 554] Pages: 10

DOI: 10.2174/1386207326666230703095928

Price: $65

conference banner
Abstract

Background: The microplate benchtop brine shrimp test (BST) has been widely used for screening and bio-guided isolation of many active compounds, including natural products. Although the interpretation given to the results appears dissimilar, our findings suggest a correlation between positive results with a specific mechanism of action.

Objective: This study aimed to evaluate drugs belonging to fifteen pharmacological categories having diverse mechanisms of action and carry out a bibliometric analysis of over 700 citations related to microwell BST.

Methods: Test compounds were evaluated in a serial dilution on the microwell BST using healthy nauplii of Artemia salina and after 24 hrs of exposition, the number of alive and dead nauplii was determined, and the LC50 was estimated. A metric study regarding the citations of the BST miniaturized method, sorted by type of documents cited, contributing country, and interpretation of results was conducted on 706 selected citations found in Google Scholar.

Results: Out of 206 drugs tested belonging to fifteen pharmacological categories, twenty-six showed LC50 values <100 μM, most of them belonging to the category of antineoplastic drugs; compounds with different therapeutical uses were found to be cytotoxic as well. A bibliometric analysis showed 706 documents citing the miniaturized BST; 78% of them belonged to academic laboratories from developing countries located on all continents, 63% interpreted their results as cytotoxic activity and 35% indicated general toxicity assessment.

Conclusion: BST is a simple, affordable, benchtop assay, capable of detecting cytotoxic drugs with specific mechanisms of action, such as protein synthesis inhibition, antimitotic, DNA binding, topoisomerase I inhibitors, and caspases cascade interfering drugs. The microwell BST is a technique that is used worldwide for the bio-guided isolation of cytotoxic compounds from different sources.

Graphical Abstract

[1]
Meyer, B.; Ferrigni, N.; Putnam, J.; Jacobsen, L.; Nichols, D.; McLaughlin, J. Brine shrimp: a convenient general bioassay for active plant constituents. Planta Med., 1982, 45(5), 31-34.
[http://dx.doi.org/10.1055/s-2007-971236]
[2]
Solís, P.; Wright, C.; Anderson, M.; Gupta, M.; Phillipson, J. A microwell cytotoxicity assay using Artemia salina (brine shrimp). Planta Med., 1993, 59(3), 250-252.
[http://dx.doi.org/10.1055/s-2006-959661] [PMID: 8316592]
[3]
Vanhaecke, P. The ARC-Test: a standardized short-term routine toxicity test with Artemia nauplii. Methodology and evaluation. Ecotoxicol. Test Marine. Environ., 1984, 1984, 143-157.
[4]
McLaughlin, J.L. Bench-top bioassays for the discovery of bioactive compounds in higher plants. Brenesia, 1991, 34, 1-14.
[5]
McLaughlin, J.L.; Rogers, L.L.; Anderson, J.E. The use of biological assays to evaluate botanicals. Drug Inf. J., 1998, 32(2), 513-524.
[http://dx.doi.org/10.1177/009286159803200223]
[6]
Anderson, J.E.; Goetz, C.M.; McLaughlin, J.L.; Suffness, M. A blind comparison of simple bench-top bioassays and human tumour cell cytotoxicities as antitumor prescreens. Phytochem. Anal., 1991, 2(3), 107-111.
[http://dx.doi.org/10.1002/pca.2800020303]
[7]
Carballo, J.; Hernández-Inda, Z.L.; Pérez, P.; García-Grávalos, M.D. A comparison between two brine shrimp assays to detect in vitro cytotoxicity in marine natural products. BMC Biotechnol., 2002, 2(1), 17.
[http://dx.doi.org/10.1186/1472-6750-2-17] [PMID: 12270067]
[8]
Sarker, S.D.; Savchenko, T.; Whiting, P.; Šik, V.; Lafont, R.; Dinan, L. Occurrence of ecdysteroids in the genus Centaurea (Compositae): 20-hydroxyecdysone from Centaurea moschata. Biochem. Syst. Ecol., 1997, 25(4), 367-368.
[http://dx.doi.org/10.1016/S0305-1978(97)00018-5]
[9]
Sarker, S.D.; Dinan, L.; Šik, V.; Underwood, E.; Waterman, P.G. Moschamide: An unusual alkaloid from the seeds of Centaurea moschata. Tetrahedron Lett., 1998, 39(11), 1421-1424. a
[http://dx.doi.org/10.1016/S0040-4039(97)10818-8]
[10]
Sarker, S.D.; Dinan, L.; Šik, V.; Rees, H.H. Moschatine: an unusual steroidal glycoside from centaurea moschata. Phytochemistry, 1998, 48(6), 1039-1043. b
[http://dx.doi.org/10.1016/S0031-9422(97)01038-8]
[11]
Padmaja, R.; Arun, P.C.; Prashanth, D.; Deepak, M.; Amit, A.; Anjana, M. Brine shrimp lethality bioassay of selected Indian medicinal plants. Fitoterapia, 2002, 73(6), 508-510.
[http://dx.doi.org/10.1016/S0367-326X(02)00182-X] [PMID: 12385875]
[12]
Kumarasamy, Y.; Fergusson, M.E.; Nahar, L.; Sarker, S.D. Bioactivity of moschamindole from Centaurea moschata. Pharm. Biol., 2002, 40(4), 307-310.
[http://dx.doi.org/10.1076/phbi.40.4.307.8467]
[13]
Moshi, M.J.; Cosam, J.C.; Mbwambo, Z.H.; Kapingu, M.; Nkunya, M.H.H. Testing beyond ethnomedical claims: Brine shrimp lethality of some tanzanian plants. Pharm. Biol., 2004, 42(7), 547-551.
[http://dx.doi.org/10.3109/13880200490897920]
[14]
Sheikh, C.; Hossain, M.S.; Easmin, M.S.; Islam, M.S.; Rashid, M. Evaluation of in vitro antimicrobial and in vivo cytotoxic properties of some novel titanium-based coordination complexes. Biol. Pharm. Bull., 2004, 27(5), 710-713.
[http://dx.doi.org/10.1248/bpb.27.710] [PMID: 15133251]
[15]
Wanyoike, G.N.; Chhabra, S.C.; Lang’at-Thoruwa, C.C.; Omar, S.A. Brine shrimp toxicity and antiplasmodial activity of five Kenyan medicinal plants. J. Ethnopharmacol., 2004, 90(1), 129-133.
[http://dx.doi.org/10.1016/j.jep.2003.09.047] [PMID: 14698520]
[16]
Déciga-Campos, M.; Rivero-Cruz, I.; Arriaga-Alba, M.; Castañeda-Corral, G.; Angeles-López, G.E.; Navarrete, A.; Mata, R. Acute toxicity and mutagenic activity of Mexican plants used in traditional medicine. J. Ethnopharmacol., 2007, 110(2), 334-342.
[http://dx.doi.org/10.1016/j.jep.2006.10.001] [PMID: 17101253]
[17]
McGaw, L.J.; Steenkamp, V.; Eloff, J.N. Evaluation of Athrixia bush tea for cytotoxicity, antioxidant activity, caffeine content and presence of pyrrolizidine alkaloids. J. Ethnopharmacol., 2007, 110(1), 16-22.
[http://dx.doi.org/10.1016/j.jep.2006.08.029] [PMID: 17045437]
[18]
Ahmad, B.; Ali, N.; Shumaila, B.; Choudhary, M.I. Biological activities of aerial parts of Tylophorahirsuta Wall. Afr. J. Biotechnol., 2009, 8(18), 4627-4631.
[19]
Apu, A.S.; Muhit, M.A.; Tareq, S.M.; Pathan, A.H.; Jamaluddin, A.T.M.; Ahmed, M. Pathan, A.H.: Jamaluddin, A.T.M.; Ahmed M. Antimicrobial activity and brine shrimp lethality bioassay of the leaves extract of Dillenia indica Linn. J. Young Pharm., 2010, 2(1), 50-53.
[http://dx.doi.org/10.4103/0975-1483.62213] [PMID: 21331191]
[20]
Muhit, M.A.; Apu, A.S.; Islam, S.; Ahmed, M. Cytotoxic and antimicrobial activity of the crude extract of Abutilon indicum. Int. J. Pharmacogn. Phytochem. Res., 2010, 2(1), 1-4.
[21]
Abu, H.; Zulfiker, M.S.; Laizuman, N.; Razibul, H.; Nizam, U.; Nahid, H.; Sohel, R. In vitro antibacterial, antifungal and cytotoxic activity of Scoparia dulcis L. Int. J. Pharm. Pharm. Sci., 2011, 3(2), 198-203.
[22]
Kabir, M.S.H.; Mahamoud, M.S.; Chakrabarty, N.; Ahmad, S.; Masum, M.A.A.; Hoque, M.A.; Hossain, M.M.; Rahman, M.M.; Uddin, M.M.N. Antithrombotic and cytotoxic activities of four Bangladeshi plants and PASS prediction of their isolated compounds. J. Basic Clin. Physiol. Pharmacol., 2016, 27(6), 659-666.
[http://dx.doi.org/10.1515/jbcpp-2015-0144] [PMID: 27371821]
[23]
Tania Sultana, ; Priyanka, A.K.; Sultana, T.; Kawsar, H.; Sumon, H.U.; Sohel, D. In vitro antimicrobial, antioxidant and cytotoxic activities of Polygonum orientale (Bishkatali). J. Pharm. Nutr. Sci., 2016, 6(3), 112-119.
[http://dx.doi.org/10.6000/1927-5951.2016.06.03.5]
[24]
Kivçak, B.; Mert, T.; Öztürk, H.T. Antimicrobial and cytotoxic activities of Ceratonia siliqua L. extracts. Turk. J. Biol., 2016, 26, 197-200.
[25]
Jamil, S.; Khan, R.A.; Afroz, S.; Ahmed, S. Phytochemistry, Brine shrimp lethality and mice acute oral toxicity studies on seed extracts of Vernonia anthelmintica. Pak. J. Pharm. Sci., 2016, 29(6), 2053-2057.
[PMID: 28375123]
[26]
Ogbole, O.O.; Aliu, L.O.; Abiodun, O.O.; Ajaiyeoba, E.O. Alphaamylase inhibition and brine shrimp lethality activities of nine medicinal plant extracts from South-West Nigerian ethnomedicine. J. Herbs Spices Med. Plants, 2016, 22(4), 319-326.
[http://dx.doi.org/10.1080/10496475.2016.1214941]
[27]
Wang, C.Y.; Wang, K.L.; Qian, P.Y.; Xu, Y.; Chen, M.; Zheng, J.J.; Liu, M.; Shao, C.L.; Wang, C.Y. Antifouling phenyl ethers and other compounds from the invertebrates and their symbiotic fungi collected from the South China Sea. AMB Express, 2016, 6(1), 102.
[http://dx.doi.org/10.1186/s13568-016-0272-2] [PMID: 27785778]
[28]
Wang, M.; Jin, J.; Li, L.; Cao, F.; Wang, C.; Wang, C.Y. Cembranoid diterpenes from the south China sea soft coral Sinularia compacta. Chem. Nat. Compd., 2017, 53(1), 181-184.
[http://dx.doi.org/10.1007/s10600-017-1944-0]
[29]
Morshed, M.H.; Das, P.K.; Roy, A.K.; Ibrahim, M. Cytotoxicity of four active dyes against Artemia salina Leach. J. Eng. Sci., 2018, 09(2), 55-59.
[30]
Orumwensodia, K.O.; Uadia, P.O.; Choudhary, M.I. Phytotoxicity, cytotoxicity and chemical composition of Spondias mombin Linn. Stem bark. Clinical Phytoscience, 2021, 7(1), 59.
[http://dx.doi.org/10.1186/s40816-021-00297-x]
[31]
Addae-Kyereme, J.; Croft, S.L.; Kendrick, H.; Wright, C.W. Antiplasmodial activities of some Ghanaian plants traditionally used for fever/malaria treatment and of some alkaloids isolated from Pleiocarpa mutica; in vivo antimalarial activity of pleiocarpine. J. Ethnopharmacol., 2001, 76(1), 99-103.
[http://dx.doi.org/10.1016/S0378-8741(01)00212-4] [PMID: 11378289]
[32]
Kirira, P.G.; Rukunga, G.M.; Wanyonyi, A.W.; Muregi, F.M.; Gathirwa, J.W.; Muthaura, C.N.; Omar, S.A.; Tolo, F.; Mungai, G.M.; Ndiege, I.O. Anti-plasmodial activity and toxicity of extracts of plants used in traditional malaria therapy in Meru and Kilifi Districts of Kenya. J. Ethnopharmacol., 2006, 106(3), 403-407.
[http://dx.doi.org/10.1016/j.jep.2006.01.017] [PMID: 16530996]
[33]
Ajaiyeoba, E.O.; Abiodun, O.O.; Falade, M.O.; Ogbole, N.O.; Ashidi, J.S.; Happi, C.T.; Akinboye, D.O. In vitro cytotoxicity studies of 20 plants used in Nigerian antimalarial ethnomedicine. Phytomedicine, 2006, 13(4), 295-298.
[http://dx.doi.org/10.1016/j.phymed.2005.01.015] [PMID: 16492535]
[34]
del Rayo Camacho, M.; Mata, R.; Castañeda, P.; Kirby, G.C.; Warhurst, D.C.; Croft, S.L.; Phillipson, J.D. Bioactive compounds from Celaenodendron mexicanum. Planta Med., 2000, 66(5), 463-468.
[http://dx.doi.org/10.1055/s-2000-8598] [PMID: 10909269]
[36]
Donthu, N.; Kumar, S.; Mukherjee, D.; Pandey, N.; Lim, W.M. How to conduct a bibliometric analysis: An overview and guidelines. J. Bus. Res., 2021, 133(2), 285-296.
[http://dx.doi.org/10.1016/j.jbusres.2021.04.070]
[37]
Ralhan, R.; Kaur, J. Alkylating agents and cancer therapy. Expert Opin. Ther. Pat., 2007, 17(9), 1061-1075.
[http://dx.doi.org/10.1517/13543776.17.9.1061]
[38]
Warwick, G.P. The mechanism of action of alkylating agents. Cancer Res., 1963, 23, 1315-1333.
[PMID: 14070386]
[39]
Fattahi, N.; Ramazani, A.; Hamidi, M.; Parsa, M.; Rostamizadeh, K.; Rashidzadeh, H. Enhancement of the brain delivery of methotrexate with administration of mid-chain ester prodrugs: in vitro and in vivo studies. Int. J. Pharm., 2021, 600, 120479.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120479] [PMID: 33722757]
[40]
Raka, S.C.; Rahman, A.; Hussain, F.; Rahman, S.M.A. Synthesis, characterization and in vitro, in vivo, in silico biological evaluations of substituted benzimidazole derivatives. Saudi J. Biol. Sci., 2022, 29(1), 239-250.
[http://dx.doi.org/10.1016/j.sjbs.2021.08.082] [PMID: 35002414]
[41]
Al-Mahmoud, M.S.; Alali, F.Q.; Tawaha, K.; Qasaymeh, R.M. Phytochemical study and cytotoxicity evaluation of Colchicum stevenii Kunth (Colchicaceae): A Jordanian meadow saffron. Nat. Prod. Res., 2006, 20(2), 153-160.
[http://dx.doi.org/10.1080/14786410500046224] [PMID: 16319009]
[42]
Kavallaris, M. Microtubules and resistance to tubulin-binding agents. Nat. Rev. Cancer, 2010, 10(3), 194-204.
[http://dx.doi.org/10.1038/nrc2803] [PMID: 20147901]
[43]
Gallego-Jara, J.; Lozano-Terol, G.; Sola-Martínez, R.A.; Cánovas-Díaz, M.; de Diego Puente, T. A compressive review about taxol: history and future challenges. Molecules, 2020, 25(24), 5986.
[http://dx.doi.org/10.3390/molecules25245986]
[44]
Yang, C.H.; Horwitz, S.B. Taxol: The first microtubule stabilizing agent. Int. J. Mol. Sci., 2017, 18(8), 173.
[http://dx.doi.org/10.3390/ijms18081733]
[45]
van Vuuren, R.J.; Visagie, M.H.; Theron, A.E.; Joubert, A.M. Antimitotic drugs in the treatment of cancer. Cancer Chemother. Pharmacol., 2015, 76(6), 1101-1112.
[http://dx.doi.org/10.1007/s00280-015-2903-8] [PMID: 26563258]
[46]
Cortese, F.; Bhattacharyya, B.; Wolff, J. Podophyllotoxin as a probe for the colchicine binding site of tubulin. J. Biol. Chem., 1977, 252(4), 1134-1140.
[http://dx.doi.org/10.1016/S0021-9258(17)40631-4] [PMID: 14143]
[47]
Macias-Silva, M.; Vazquez-Victorio, G.; Hernandez-Damian, J. Anisomycinis a multifunctional drug: more than just a tool to inhibit protein synthesis. Curr. Chem. Biol., 2010, 4(2), 124-132.
[http://dx.doi.org/10.2174/187231310791170793]
[48]
Törocsik, B.; Szeberényi, J. Anisomycin uses multiple mechanisms to stimulate mitogen-activated protein kinases and gene expression and to inhibit neuronal differentiation in PC12 pheochromocytoma cells. Eur. J. Neurosci., 2000, 12(2), 527-532.
[49]
Li, Y.; Hu, J.; Song, H.; Wu, T. Antibiotic anisomycin selectively targets leukemia cell lines and patient samples through suppressing Wnt/β-catenin signaling. Biochem. Biophys. Res. Commun., 2018, 505(3), 858-864.
[http://dx.doi.org/10.1016/j.bbrc.2018.09.183] [PMID: 30301525]
[50]
Gürel, G.; Blaha, G.; Moore, P.B.; Steitz, T.A. U2504 determines the species specificity of the A-site cleft antibiotics: the structures of tiamulin, homoharringtonine, and bruceantin bound to the ribosome. J. Mol. Biol., 2009, 389(1), 146-156.
[http://dx.doi.org/10.1016/j.jmb.2009.04.005] [PMID: 19362093]
[51]
Yakhni, M.; Briat, A.; El Guerrab, A.; Furtado, L.; Kwiatkowski, F.; Miot-Noirault, E.; Cachin, F.; Penault-Llorca, F.; Radosevic-Robin, N. Homoharringtonine, an approved anti-leukemia drug, suppresses triple negative breast cancer growth through a rapid reduction of anti-apoptotic protein abundance. Am. J. Cancer Res., 2019, 9(5), 1043-1060.
[PMID: 31218111]
[52]
He, Y.; Yao, W.; Liu, P.; Li, J.; Wang, Q. Expression profiles of the p38 MAPK signaling pathway from Chinese shrimp Fenneropenaeus chinensis in response to viral and bacterial infections. Gene, 2018, 642, 381-388.
[http://dx.doi.org/10.1016/j.gene.2017.11.050] [PMID: 29155327]
[53]
Anglin, I.E.; Glassman, D.T.; Kyprianou, N. Induction of prostate apoptosis by α1-adrenoceptor antagonists: mechanistic significance of the quinazoline component. Prostate Cancer Prostatic Dis., 2002, 5(2), 88-95.
[http://dx.doi.org/10.1038/sj.pcan.4500561] [PMID: 12496995]
[54]
Kyprianou, N. Doxazosin and terazosin suppress prostate growth by inducing apoptosis: clinical significance. J. Urol., 2003, 169(4), 1520-1525.
[http://dx.doi.org/10.1097/01.ju.0000033280.29453.72] [PMID: 12629407]
[55]
Yang, Y.F.; Wu, C.C.; Chen, W.P.; Chen, Y.L.; Su, M.J. Prazosin induces p53-mediated autophagic cell death in H9C2 cells. Naunyn Schmiedebergs Arch. Pharmacol., 2011, 384(2), 209-216.
[http://dx.doi.org/10.1007/s00210-011-0657-3] [PMID: 21614555]
[56]
Tan, Z.; Dohi, S.; Chen, J.; Banno, Y.; Nozawa, Y. Involvement of the mitogen-activated protein kinase family in tetracaine-induced PC12 cell death. Anesthesiology, 2002, 96(5), 1191-1201.
[http://dx.doi.org/10.1097/00000542-200205000-00024] [PMID: 11981161]
[57]
Fafalios, A.; Akhavan, A.; Parwani, A.V.; Bies, R.R.; McHugh, K.J.; Pflug, B.R. Translocator protein blockade reduces prostate tumor growth. Clin. Cancer Res., 2009, 15(19), 6177-6184.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-0844] [PMID: 19789311]
[58]
Lee, D.H.; Kang, S.K.; Lee, R.H.; Ryu, J.M.; Park, H.Y.; Choi, H.S.; Bae, Y.C.; Suh, K.T.; Kim, Y.K.; Jung, J.S. Effects of peripheral benzodiazepine receptor ligands on proliferation and differentiation of human mesenchymal stem cells. J. Cell. Physiol., 2004, 198(1), 91-99.
[http://dx.doi.org/10.1002/jcp.10391] [PMID: 14584048]
[59]
Kugawa, F.; Ueno, A.; Aoki, M. Apoptosis of NG108-15 cells induced by buprenorphine hydrochloride occurs via the caspase-3 pathway. Biol. Pharm. Bull., 2000, 23(8), 930-935.
[http://dx.doi.org/10.1248/bpb.23.930] [PMID: 10963298]
[60]
Kugawa, F.; Arae, K.; Ueno, A.; Aoki, M. Buprenorphine hydrochloride induces apoptosis in NG108-15 nerve cells. Eur. J. Pharmacol., 1998, 347(1), 105-112.
[http://dx.doi.org/10.1016/S0014-2999(98)00080-6] [PMID: 9650855]
[61]
Kugawa, F.; Aoki, M. Expression of the polyubiquitin gene early in the buprenorphine hydrochloride-induced apoptosis of NG108-15 cells. DNA Seq., 2004, 15(4), 237-245.
[http://dx.doi.org/10.1080/10425170400006372] [PMID: 15620210]
[62]
Jeong, H.S.; Choi, H.Y.; Lee, E.R.; Kim, J.H.; Jeon, K.; Lee, H.J.; Cho, S.G. Involvement of caspase-9 in autophagy-mediated cell survival pathway. Biochim. Biophys. Acta Mol. Cell Res., 2011, 1813(1), 80-90.
[http://dx.doi.org/10.1016/j.bbamcr.2010.09.016] [PMID: 20888374]
[63]
Noureini, S.; Wink, M. Antiproliferative effect of the isoquinoline alkaloid papaverine in hepatocarcinoma HepG-2 cells--inhibition of telomerase and induction of senescence. Molecules, 2014, 19(8), 11846-11859.
[http://dx.doi.org/10.3390/molecules190811846] [PMID: 25111025]
[64]
Afzali, M.; Ghaeli, P.; Khanavi, M.; Parsa, M.; Montazeri, H.; Ghahremani, M.H.; Ostad, S.N. Non-addictive opium alkaloids selectively induce apoptosis in cancer cells compared to normal cells. Daru, 2015, 23(1), 16.
[http://dx.doi.org/10.1186/s40199-015-0101-1] [PMID: 25890335]
[65]
Mao, X.; Hou, T.; Cao, B.; Wang, W.; Li, Z.; Chen, S.; Fei, M.; Hurren, R.; Gronda, M.; Wu, D.; Trudel, S.; Schimmer, A.D. The tricyclic antidepressant amitriptyline inhibits D-cyclin transactivation and induces myeloma cell apoptosis by inhibiting histone deacetylases: in vitro and in silico evidence. Mol. Pharmacol., 2011, 79(4), 672-680.
[http://dx.doi.org/10.1124/mol.110.068122] [PMID: 21220410]
[66]
Pula, G.; Pistilli, A.; Montagnoli, C.; Stabile, A.M.; Rambotti, M.G.; Rende, M. The tricyclic antidepressant amitriptyline is cytotoxic to HTB114 human leiomyosarcoma and induces p75NTR-dependent apoptosis. Anticancer Drugs, 2013, 24(9), 899-910.
[http://dx.doi.org/10.1097/CAD.0b013e328364312f] [PMID: 23872911]
[67]
Xia, Z.; Bergstrand, A.; DePierre, J.W.; Nässberger, L. The antidepressants imipramine, clomipramine, and citalopram induce apoptosis in human acute myeloid leukemia HL-60 cells via caspase-3 activation. J. Biochem. Mol. Toxicol., 1999, 13(6), 338-347.
[http://dx.doi.org/10.1002/(SICI)1099-0461(1999)13:6<338:AID-JBT8>3.0.CO;2-7] [PMID: 10487422]
[68]
Hsu, S.; Huang, C.; Chen, J.; Cheng, H.; Chang, H.; Jiann, B.; Lin, K.; Wang, J.; Ho, C.; Jan, C. Effect of nortriptylineon intracellular Ca2+ handling and proliferation in human osteosarcoma. Basic Clin. Pharmacol. Toxicol., 2004, 95, 124-130.
[69]
Yuan, S.Y.; Cheng, C.L.; Ho, H.C.; Wang, S.S.; Chiu, K.Y.; Su, C.K.; Ou, Y.C.; Lin, C.C. Nortriptyline induces mitochondria and death receptor-mediated apoptosis in bladder cancer cells and inhibits bladder tumor growth in vivo. Eur. J. Pharmacol., 2015, 761, 309-320.
[http://dx.doi.org/10.1016/j.ejphar.2015.06.007] [PMID: 26086857]
[70]
López-Lázaro, M. Digitoxin as an anticancer agent with selectivity for cancer cells: possible mechanisms involved. Expert Opin. Ther. Targets, 2007, 11(8), 1043-1053.
[http://dx.doi.org/10.1517/14728222.11.8.1043] [PMID: 17665977]
[71]
Kometiani, P.; Liu, L.; Askari, A. Digitalis-induced signaling byNa+/K+-ATPasein human breast cancer cells. Mol. Pharmacol., 2005, 67(3), 929-936.
[http://dx.doi.org/10.1124/mol.104.007302]
[72]
Haux, J. Digitoxin is a potential anticancer agent for several types of cancer. Med. Hypotheses, 1999, 53(6), 543-548.
[http://dx.doi.org/10.1054/mehy.1999.0985] [PMID: 10687899]
[73]
Elbaz, H.A.; Stueckle, T.A.; Tse, W.; Rojanasakul, Y.; Dinu, C.Z. Digitoxin and its analogs as novel cancer therapeutics. Exp. Hematol. Oncol., 2012, 1(1), 4.
[http://dx.doi.org/10.1186/2162-3619-1-4] [PMID: 23210930]
[74]
Xie, Z.; Cai, T. Na+-K+--ATPase-mediated signal transduction: from protein interaction to cellular function. Mol. Interv., 2003, 3(3), 157-168.
[http://dx.doi.org/10.1124/mi.3.3.157] [PMID: 14993422]
[75]
Mohammadi, K.; Kometiani, P.; Xie, Z.; Askari, A. Role of protein kinase C in the signal pathways that link Na+/K+-ATPase to ERK1/2. J. Biol. Chem., 2001, 276(45), 42050-42056.
[http://dx.doi.org/10.1074/jbc.M107892200] [PMID: 11562372]
[76]
Sun, C.; Zhao, W.; Wang, X.; Sun, Y.; Chen, X. A pharmacological review of dicoumarol: An old natural anticoagulant agent. Pharmacol. Res., 2020, 160, 105193.
[http://dx.doi.org/10.1016/j.phrs.2020.105193] [PMID: 32911072]
[77]
Du, J.; Daniels, D.H.; Asbury, C.; Venkataraman, S.; Liu, J.; Spitz, D.R.; Oberley, L.W.; Cullen, J.J. Mitochondrial production of reactive oxygen species mediate dicumarol-induced cytotoxicity in cancer cells. J. Biol. Chem., 2006, 281(49), 37416-37426.
[http://dx.doi.org/10.1074/jbc.M605063200] [PMID: 17040906]
[78]
Sudhakaran, M.; Parra, M.R.; Stoub, H.; Gallo, K.A.; Doseff, A.I. Apigenin by targeting hnRNPA2 sensitizes triple-negative breast cancer spheroids to doxorubicin-induced apoptosis and regulates expression of ABCC4 and ABCG2 drug efflux transporters. Biochem. Pharmacol., 2020, 182, 114259.
[http://dx.doi.org/10.1016/j.bcp.2020.114259] [PMID: 33011162]
[79]
Chiu, Y.H.; Hsu, S.H.; Hsu, H.W.; Huang, K.C.; Liu, W.; Wu, C.Y.; Huang, W.P.; Chen, J.; Chen, B.H.; Chiu, C.C. Human non small cell lung cancer cells can be sensitized to camptothecin by modulating autophagy. Int. J. Oncol., 2018, 53(5), 1967-1979.
[http://dx.doi.org/10.3892/ijo.2018.4523] [PMID: 30106130]
[80]
de Souza, P.L.; Castillo, M.; Myers, C.E. Enhancement of paclitaxel activity against hormone-refractory prostate cancer cells in vitro and in vivo by quinacrine. Br. J. Cancer, 1997, 75(11), 1593-1600.
[http://dx.doi.org/10.1038/bjc.1997.272] [PMID: 9184173]
[81]
Dermawan, J.K.T.; Gurova, K.; Pink, J.; Dowlati, A.; De, S.; Narla, G.; Sharma, N.; Stark, G.R. Quinacrine overcomes resistance to erlotinib by inhibiting FACT, NF-κB, and cell-cycle progression in non-small cell lung cancer. Mol. Cancer Ther., 2014, 13(9), 2203-2214.
[http://dx.doi.org/10.1158/1535-7163.MCT-14-0013] [PMID: 25028470]
[82]
Samanta, A.; Ravindran, G.; Sarkar, A. Quinacrine causes apoptosis in human cancer cell lines through caspase-mediated pathway and regulation of small-GTPase. J. Biosci., 2020, 45(1), 43.
[http://dx.doi.org/10.1007/s12038-020-0011-3] [PMID: 32098922]
[83]
Chen, R.; Huo, L.; Jaiswal, Y.; Huang, J.; Zhong, Z.; Zhong, J.; Williams, L.; Xia, X.; Liang, Y.; Yan, Z. Design, Synthesis, Antimicrobial, and Anticancer activities of acridine thiosemicarbazides derivatives. Molecules, 2019, 24(11), 2065.
[http://dx.doi.org/10.3390/molecules24112065] [PMID: 31151235]
[84]
Komatsu, S.; Miyazawa, K.; Moriya, S.; Takase, A.; Naito, M.; Inazu, M.; Kohno, N.; Itoh, M.; Tomoda, A. Clarithromycin enhances bortezomib-induced cytotoxicity via endoplasmic reticulum stress-mediated CHOP (GADD153) induction and autophagy in breast cancer cells. Int. J. Oncol., 2012, 40(4), 1029-1039.
[http://dx.doi.org/10.3892/ijo.2011.1317] [PMID: 22200786]
[85]
Zhou, B.; Xia, M.; Wang, B.; Thapa, N.; Gan, L.; Sun, C.; Guo, E.; Huang, J.; Lu, Y.; Cai, H. Clarithromycin synergizes with cisplatin to inhibit ovarian cancer growth in vitro and in vivo. J. Ovarian Res., 2019, 12(1), 107.
[http://dx.doi.org/10.1186/s13048-019-0570-9] [PMID: 31703731]
[86]
Seo, E.J.; Sugimoto, Y.; Greten, H.J.; Efferth, T. Repurposing of Bromocriptine for Cancer Therapy. Front. Pharmacol., 2018, 9, 1030.
[http://dx.doi.org/10.3389/fphar.2018.01030] [PMID: 30349477]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy