Generic placeholder image

Current Women`s Health Reviews

Editor-in-Chief

ISSN (Print): 1573-4048
ISSN (Online): 1875-6581

Research Article

Study of Ultrasonographic Changes of the Adrenal Gland in Growth Restricted Fetus

Author(s): Fathimath Hashreen* and Shraddha Shetty*

Volume 20, Issue 5, 2024

Published on: 07 September, 2023

Article ID: e050723218454 Pages: 6

DOI: 10.2174/1573404820666230705162433

Price: $65

conference banner
Abstract

Background: Fetuses with Fetal Growth Restriction (FGR) are at increased risk of chronic intra-uterine hypoxia, due to increased secretion of corticosterone from the fetal adrenal glands. This plays a major role in the cardiovascular and circulatory adaptation of FGR fetuses. These modifications are untimely identified by sonographic imaging.

Objective: To study the association between ultrasound features of the adrenal gland and growth restriction in the fetus.

Methods: A total of 104 pregnant women (52 FGR pregnancies and 52 controls) were evaluated between 28 and 36 weeks of gestation. All the study participants underwent transabdominal ultrasonography to measure bilateral fetal adrenal gland volume and fetal zone volume, corrected for gestational age. They were followed up until delivery. The two groups were compared to analyze the perinatal outcome in relation to ultrasonographic changes in the adrenal gland.

Results: The adrenal gland measurements were significantly larger in fetuses with FGR as compared to the control group. FGR group had a larger corrected adrenal gland volume(cAGV) and fetal zone and adrenal gland (FZ/AG) ratio A statistically significant correlation was found between the two groups regarding gestational age at delivery, birth weight, APGAR score, and NICU admissions. Perinatal morbidity was found to be higher among women diagnosed with FGR, i.e., 14 (53.84%).

Conclusion: Fetal adrenal gland size measurement is important to identify FGR fetuses that are vulnerable to hypoxia. It helps the obstetrician prepare for effective in-utero management to reduce perinatal morbidity and mortality.

Graphical Abstract

[1]
Melau, C.; Nielsen, J.E.; Frederiksen, H.; Kilcoyne, K.; Perlman, S.; Lundvall, L.; Langhoff Thuesen, L.; Juul Hare, K.; Andersson, A.M.; Mitchell, R.T.; Juul, A.; Jørgensen, A. Characterization of human adrenal steroidogenesis during fetal development. J. Clin. Endocrinol. Metab., 2019, 104(5), 1802-1812.
[http://dx.doi.org/10.1210/jc.2018-01759] [PMID: 30590593]
[2]
Beshay, V.; Carr, B.; Rainey, W. The human fetal adrenal gland, corticotropin-releasing hormone, and parturition. Semin. Reprod. Med., 2007, 25(1), 014-020.
[http://dx.doi.org/10.1055/s-2006-956772] [PMID: 17205420]
[3]
Mesiano, S.; Jaffe, R.B. Developmental and functional biology of the primate fetal adrenal cortex. Endocr. Rev., 1997, 18(3), 378-403.
[PMID: 9183569]
[4]
Naeye, R.L. Malnutrition: Probable cause of fetal growth retardation. Arch. Pathol., 1965, 79, 284-291.
[PMID: 14246208]
[5]
Sennaiyan, U.N.; Melov, S.J.; Arcus, C.; Kirby, A.; Alahakoon, T.I. Fetal adrenal gland: Total gland volume and fetal zone to total gland ratio as markers of small for gestational age. J. Clin. Ultrasound, 2020, 48(7), 377-387.
[http://dx.doi.org/10.1002/jcu.22852] [PMID: 32333815]
[6]
Helfer, T.M.; Rolo, L.C.; Okasaki, N.A.B.M.; de Castro Maldonado, A.A.; Rabachini Caetano, A.C.; Perez Zamarian, A.C.; Hamamoto, T.E.N.K.; Calsavara, V.F.; Moron, A.F.; Araujo Júnior, E.; Nardozza, L.M.M. Reference ranges of fetal adrenal gland and fetal zone volumes between 24 and 37 + 6 weeks of gestation by three-dimensional ultrasound. J. Matern. Fetal Neonatal Med., 2017, 30(5), 568-573.
[http://dx.doi.org/10.1080/14767058.2016.1178226] [PMID: 27075298]
[7]
Farzad Mohajeri, Z.; Aalipour, S.; Sheikh, M.; Shafaat, M.; Hantoushzadeh, S.; Borna, S.; Khazardoost, S. Ultrasound measurement of fetal adrenal gland in fetuses with intrauterine growth restriction, an early predictive method for adverse outcomes. J. Matern. Fetal Neonatal Med., 2019, 32(9), 1485-1491.
[http://dx.doi.org/10.1080/14767058.2017.1410125] [PMID: 29251009]
[8]
Bolt, R.J.; van Weissenbruch, M.M.; Popp-Snijders, C.; Sweep, C.G.J.; Lafeber, H.N.; Delemarre-van de Waal, H.A. Fetal growth and the function of the adrenal cortex in preterm infants. J. Clin. Endocrinol. Metab., 2002, 87(3), 1194-1199.
[http://dx.doi.org/10.1210/jcem.87.3.8295] [PMID: 11889187]
[9]
Iijima, S. Sonographic evaluation of adrenal size in neonates (23 to 41 weeks of gestation). BMC Pediatr., 2018, 18(1), 60.
[http://dx.doi.org/10.1186/s12887-018-1056-4] [PMID: 29444643]
[10]
Khadilkar, A.V.; Parthasarathy, L.S. Fetal growth restriction and cardiovascular health among adolescents. Indian Pediatr., 2015, 52(2), 107-108.
[http://dx.doi.org/10.1007/s13312-015-0581-6] [PMID: 25691175]
[11]
Uquillas, K.R.; Grubbs, B.H.; Prosper, A.E.; Chmait, R.H.; Grant, E.G.; Walker, D.K. Doppler US in the evaluation of fetal growth and perinatal health. Radiographics, 2017, 37(6), 1831-1838.
[http://dx.doi.org/10.1148/rg.2017170020] [PMID: 29019748]
[12]
Bahado-Singh, R.O.; Kovanci, E.; Jeffres, A.; Oz, U.; Deren, O.; Copel, J.; Mari, G. The Doppler cerebroplacental ratio and perinatal outcome in intrauterine growth restriction. Am. J. Obstet. Gynecol., 1999, 180(3), 750-756.
[http://dx.doi.org/10.1016/S0002-9378(99)70283-8] [PMID: 10076158]
[13]
Kaya, B.; Polat, İ. The investigation of fetal adrenal gland sizes in the pregnancies complicated with the intrauterine growth restriction. Perinat. J., 2019, 27(3), 176-182.
[http://dx.doi.org/10.2399/prn.19.0273009]
[14]
Heese, S.; Hammer, K.; Möllers, M.; Köster, H.A.; Falkenberg, M.K.; Eveslage, M.; Braun, J.; Oelmeier de Murcia, K.; Klockenbusch, W.; Schmitz, R. Adrenal gland size in growth restricted fetuses. J. Perinat. Med., 2018, 46(8), 900-904.
[http://dx.doi.org/10.1515/jpm-2017-0339] [PMID: 29543592]
[15]
Blue, N.R.; Hoffman, M.; Allshouse, A.A.; Grobman, W.A.; Simhan, H.N.; Turan, O.M.; Parry, S.; Chung, J.H.; Reddy, U.; Haas, D.M.; Myers, S.; Mercer, B.; Saade, G.R.; Silver, R.M. Antenatal fetal adrenal measurements at 22 to 30 weeks’ gestation, fetal growth restriction, and perinatal morbidity. Am. J. Perinatol., 2021, 38(7), 676-682.
[http://dx.doi.org/10.1055/s-0039-3400308] [PMID: 31756754]
[16]
Adiyaman, D.; Konuralp Atakul, B.; Kuyucu, M.; Toklu, G.; Golbasi, H.; Koc, A.; Kaya, O.O.; Ozdemir, T.R.; Ekin, A. Can fetal fractions in the cell-free DNA test predict the onset of fetal growth restriction? J. Perinat. Med., 2020, 48(4), 395-401.
[http://dx.doi.org/10.1515/jpm-2020-0010] [PMID: 32242833]
[17]
Dessì, A.; Fanos, V. Myoinositol: A new marker of intrauterine growth restriction? J. Obstet. Gynaecol., 2013, 33(8), 776-780.
[http://dx.doi.org/10.3109/01443615.2013.831046] [PMID: 24219712]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy