Generic placeholder image

Current Nutrition & Food Science

Editor-in-Chief

ISSN (Print): 1573-4013
ISSN (Online): 2212-3881

Review Article

Plant Materials for the Production of Functional Foods for Weight Management and Obesity Prevention

Author(s): Оlena Stabnikova* and Octavio Paredes-López

Volume 20, Issue 4, 2024

Published on: 17 July, 2023

Page: [401 - 422] Pages: 22

DOI: 10.2174/1573401319666230705110854

Price: $65

Abstract

Obesity is a serious problem in the modern world and is considered a risk factor in the development of many human diseases.

Consumption of low-calorie, low-fat diets, together with increased physical activity and a healthy lifestyle, contribute a lot to the fight against obesity. Meanwhile, functional foods with a reduced calorie content and enriched with substances useful for the human body may play a role as additional helpers in weight management. In this review, general suggestions for the elaboration of foods with plant-origin functional ingredients for weight management, which help the human body with obesity prevention, based on human clinical trials, are proposed.

Including new ingredients of plant-origin for the preparation of traditional foods helps to have a balanced diet and may contribute to weight management and obesity prevention.

Graphical Abstract

[1]
World Health Organization, Global strategy for the prevention and control of noncommunicable diseases 2000. Available from: https://www.afro.who.int/sites/default/files/2017-06/NCD-Global_Strategy_for_the_Prevention_and_Control_of_NCD_2000.pdf
[2]
Engin A. The definition and prevalence of obesity and metabolic syndrome. Adv Exp Med Biol 2017; (960): 1-17.
[http://dx.doi.org/10.1007/978-3-319-48382-5_1]
[3]
WHO european regional obesity report 2022 2022. Available from: https://apps.who.int/iris/bitstream/handle/10665/353747/9789289057738-eng.pdf
[4]
Barnes AS. The epidemic of obesity and diabetes: trends and treatments. Tex Heart Inst J 2011; 38(2): 142-4.
[PMID: 21494521]
[5]
Gupta S, Bansal S. Does a rise in BMI cause an increased risk of diabetes?: Evidence from India. PLoS One 2021; 16(2): e0247537.
[http://dx.doi.org/10.1371/journal.pone.0247537]
[6]
Schnurr TM, Jakupović H, Carrasquilla GD, et al. Obesity, unfavourable lifestyle and genetic risk of type 2 diabetes: a case-cohort study. Diabetologia 2020; 63(7): 1324-32.
[http://dx.doi.org/10.1007/s00125-020-05140-5] [PMID: 32291466]
[7]
Global Health Observatory data repository. Prevalence of obesity among adults, BMI ≥ 30, age-standardized estimates by country. 1999. Available from: https://apps.who.int/gho/data/view.main-wpro.REGION2480A?lang=en
[8]
WHO, World Health Organization, Obesity and overweight 2016. Available from: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight
[9]
Fontana L, Hu FB. Optimal body weight for health and longevity: bridging basic, clinical, and population research. Aging Cell 2014; 13(3): 391-400.
[http://dx.doi.org/10.1111/acel.12207] [PMID: 24628815]
[10]
Sahu SK, Kumar M, Hussain MS, et al. An overview of treatment modalities and management aspects for obesity. Curr Nutr Food Sci 2023; 19(2): 105-13.
[http://dx.doi.org/10.2174/1573401318666220527124759]
[11]
Lavie CJ, Laddu D, Arena R, Ortega FB, Alpert MA, Kushner RF. Healthy weight and obesity prevention: JACC health promotion series. J Am Coll Cardiol 2018; 72(13): 1506-31.
[http://dx.doi.org/10.1016/j.jacc.2018.08.1037] [PMID: 30236314]
[12]
Adan R, Vanderschuren L, Elafleur S. Anti-obesity drugs and neural circuits of feeding. Trends Pharmacol Sci 2008; 29(4): 208-17.
[http://dx.doi.org/10.1016/j.tips.2008.01.008] [PMID: 18353447]
[13]
Toplak H, Woodward E, Yumuk V, Oppert JM, Halford JCG, Frühbeck G. 2014 EASO position statement on the use of anti-obesity drugs. Obes Facts 2015; 8(3): 166-74.
[http://dx.doi.org/10.1159/000430801] [PMID: 25968960]
[14]
Stern JS, Thomas PR, Blair SN, et al. Weighing the options: criteria for evaluating weight-management programs. Obes Res 1995; 3(6): 589-90.
[http://dx.doi.org/10.1002/j.1550-8528.1995.tb00194.x] [PMID: 8653537]
[15]
Kruger J, Galuska DA, Serdula MK, Jones DA. Attempting to lose weight. Am J Prev Med 2004; 26(5): 402-6.
[http://dx.doi.org/10.1016/j.amepre.2004.02.001] [PMID: 15165656]
[16]
Pan MH, Tung YC, Yang G, Li S, Ho CT. Molecular mechanisms of the anti-obesity effect of bioactive compounds in tea and coffee. Food Funct 2016; 7(11): 4481-91.
[http://dx.doi.org/10.1039/C6FO01168C] [PMID: 27722362]
[17]
Hainer V, Toplak H, Mitrakou A. Treatment modalities of obesity: what fits whom? Diabetes Care 2008; 31 (Suppl. 2): S269-77.
[http://dx.doi.org/10.2337/dc08-s265] [PMID: 18227496]
[18]
Evbuomwan SA, Omotosho OE. A Review on the role of selected functional foods in obesity management. World News Nat Sci 2022; 40: 1-40. www.worldnewsnaturalsciences.com
[19]
Trigueros L, Peña S, Ugidos AV, Sayas-Barberá E, Pérez-Álvarez JA, Sendra E. Food ingredients as anti-obesity agents: a review. Crit Rev Food Sci Nutr 2015; 53(9): 929-42.
[http://dx.doi.org/10.1080/10408398.2011.574215]
[20]
Regulation (EU) 2015/2283 of the european parliament and of the council. 2015. Available from: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32015R2283=
[21]
Biesalski HK, Dragsted LO, Elmadfa I, et al. Bioactive compounds: Definition and assessment of activity. Nutrition 2009; 25(11-12): 1202-5.
[http://dx.doi.org/10.1016/j.nut.2009.04.023] [PMID: 19695833]
[22]
Konstantinidi M, Koutelidakis AE. Functional foods and bioactive compounds: A review of its possible role on weight management and obesity’s metabolic consequences. Medicines (Basel) 2019; 6(3): 94.
[http://dx.doi.org/10.3390/medicines6030094] [PMID: 31505825]
[23]
Ramírez-Moreno E, Arias-Rico J, Jiménez-Sánchez RC, et al. Role of bioactive compounds in obesity: metabolic mechanism focused on inflammation. Foods 2022; 11(9): 1232.
[http://dx.doi.org/10.3390/foods11091232] [PMID: 35563955]
[24]
Arai S, Yasuoka A, Abe K. Functional food science and food for specified health use policy in Japan: state of the art. Curr Opin Lipidol 2008; 19(1): 69-73.
[http://dx.doi.org/10.1097/MOL.0b013e3282f3f505] [PMID: 18196990]
[25]
Temple NJ. A rational definition for functional foods: A perspective. Front Nutr 2022; 9: 957516.
[http://dx.doi.org/10.3389/fnut.2022.957516] [PMID: 36245478]
[26]
Ivanov V, Shevchenko O, Marynin A, et al. Trends and expected benefits of the breaking edge food technologies in 2021–2030. Ukr Food J 2021; 10(1): 7-36.
[http://dx.doi.org/10.24263/2304-974X-2021-10-1-3]
[27]
Ferreira Guine RP, Reis Lima M. Overview and developments regarding functional foods and beverages. Curr Nutr Food Sci 2008; 4(4): 298-304.
[http://dx.doi.org/10.2174/157340108786263720]
[28]
Tiwari U, Cummins E. Factors influencing levels of phytochemicals in selected fruit and vegetables during pre- and post-harvest food processing operations. Food Res Int 2013; 50(2): 497-506.
[http://dx.doi.org/10.1016/j.foodres.2011.09.007]
[29]
Boccellino M, D’Angelo S. Anti-obesity effects of polyphenol intake: Current status and future possibilities. Int J Mol Sci 2020; 21(16): 5642.
[http://dx.doi.org/10.3390/ijms21165642] [PMID: 32781724]
[30]
Noce A, Di Lauro M, Di Daniele F, et al. Natural bioactive compounds useful in clinical management of metabolic syndrome. Nutrients 2021; 13(2): 630.
[http://dx.doi.org/10.3390/nu13020630] [PMID: 33669163]
[31]
D’Angelo S, Motti ML, Meccariello R. ω-3 and ω-6 polyunsaturated fatty acids, obesity and cancer. Nutrients 2020; 12(9): 2751.
[http://dx.doi.org/10.3390/nu12092751] [PMID: 32927614]
[32]
WHO, World Health Organization, Diet, nutrition and the prevention of chronic diseases 2003. Available from: http://apps.who.int/iris/bitstream/handle/10665/42665/WHO_TRS_916.pdf;jsessionid=9B8899CB77BAAEC360BEA529147672A4?sequence=1
[33]
Arsic A, Takic M, Kojadinovic M, et al. Metabolically healthy obesity: is there a link with polyunsaturated fatty acid intake and status? Can J Physiol Pharmacol 2021; 99(1): 64-71.
[http://dx.doi.org/10.1139/cjpp-2020-0317] [PMID: 32822561]
[34]
Simopoulos A. An increase in the omega-6/omega-3 fatty acid ratio increases the risk for obesity. Nutrients 2016; 8(3): 128-45.
[http://dx.doi.org/10.3390/nu8030128] [PMID: 26950145]
[35]
Barceló-Coblijn G, Murphy EJ. Alpha-linolenic acid and its conversion to longer chain n−3 fatty acids: Benefits for human health and a role in maintaining tissue n−3 fatty acid levels. Prog Lipid Res 2009; 48(6): 355-74.
[http://dx.doi.org/10.1016/j.plipres.2009.07.002] [PMID: 19619583]
[36]
Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein, and amino acids. Washington, DC: The National Academies Press 2005.
[http://dx.doi.org/10.17226/10490]
[37]
Simopoulos AP. The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed Pharmacother 2002; 56(8): 365-79.
[http://dx.doi.org/10.1016/S0753-3322(02)00253-6] [PMID: 12442909]
[38]
Thorsdottir I, Tomasson H, Gunnarsdottir I, et al. Randomized trial of weight-loss-diets for young adults varying in fish and fish oil content. Int J Obes 2007; 31(10): 1560-6.
[http://dx.doi.org/10.1038/sj.ijo.0803643] [PMID: 17502874]
[39]
Singh AP, Singh R, Verma SS, et al. Health benefits of resveratrol: Evidence from clinical studies. Med Res Rev 2019; 39(5): 1851-91.
[http://dx.doi.org/10.1002/med.21565] [PMID: 30741437]
[40]
Shaito A, Posadino AM, Younes N, et al. Potential adverse effects of resveratrol: A literature review. Int J Mol Sci 2020; 21(6): 2084.
[http://dx.doi.org/10.3390/ijms21062084] [PMID: 32197410]
[41]
Chen IJ, Liu CY, Chiu JP, Hsu CH. Therapeutic effect of high-dose green tea extract on weight reduction: A randomized, double-blind, placebo-controlled clinical trial. Clin Nutr 2016; 35(3): 592-9.
[http://dx.doi.org/10.1016/j.clnu.2015.05.003] [PMID: 26093535]
[42]
Nabavi SF, Russo GL, Daglia M, Nabavi SM. Role of quercetin as an alternative for obesity treatment: You are what you eat! Food Chem 2015; 179: 305-10.
[http://dx.doi.org/10.1016/j.foodchem.2015.02.006] [PMID: 25722169]
[43]
Di Pierro F, Bressan A, Ranaldi D, Rapacioli G, Giacomelli L, Bertuccioli A. Potential role of bioavailable curcumin in weight loss and omental adipose tissue decrease: preliminary data of a randomized, controlled trial in overweight people with metabolic syndrome. Preliminary study. Eur Rev Med Pharmacol Sci 2015; 19(21): 4195-202. https://www.europeanreview.org/wp/wp-content/uploads/4195-4202.pdf
[PMID: 26592847]
[44]
Jin T, Song Z, Weng J, Fantus IG. Curcumin and other dietary polyphenols: potential mechanisms of metabolic actions and therapy for diabetes and obesity. Am J Physiol Endocrinol Metab 2018; 314(3): E201-5.
[http://dx.doi.org/10.1152/ajpendo.00285.2017] [PMID: 29089337]
[45]
Zhao Y, Chen B, Shen J, et al. The beneficial effects of quercetin, curcumin, and resveratrol in obesity. Oxid Med Cell Longev 2017; 2017: 1-8.
[http://dx.doi.org/10.1155/2017/1459497] [PMID: 29138673]
[46]
Pandey KB, Rizvi SI. Plant polyphenols as dietary antioxidants in human health and disease. Oxid Med Cell Longev 2009; 2(5): 270-8.
[http://dx.doi.org/10.4161/oxim.2.5.9498] [PMID: 20716914]
[47]
Park JS, Cha YJ, Lee KH, Yim JE. Erratum: Onion peel extract reduces the percentage of body fat in overweight and obese subjects: a 12-week, randomized, double-blind, placebo-controlled study. Nutr Res Pract 2016; 10(3): 364.
[http://dx.doi.org/10.4162/nrp.2016.10.3.364] [PMID: 27231523]
[48]
Huang H, Liao D, Dong Y, Pu R. Clinical effectiveness of quercetin supplementation in the management of weight loss: a pooled analysis of randomized controlled trials. Diabetes Metab Syndr Obes 2019; 12: 553-63.
[http://dx.doi.org/10.2147/DMSO.S199830] [PMID: 31114281]
[49]
Carrasco-Pozo C, Cires MJ, Gotteland M. Quercetin and epigallocatechin gallate in the prevention and treatment of obesity: From molecular to clinical studies. J Med Food 2019; 22(8): 753-70.
[http://dx.doi.org/10.1089/jmf.2018.0193] [PMID: 31084513]
[50]
Arslan G, Yilmaz N. Determination of trans-resveratrol levels in different fruits, vegetables and their skin by HPLC. Asian J Chem 2013; 25(3): 1225-8. https://asianjournalofchemistry.co.in/User/ViewFreeArticle.aspx?ArticleID=25_3_10
[51]
Wang Y, Catana F, Yang Y, Roderick R, van Breemen RB. An LC-MS method for analyzing total resveratrol in grape juice, cranberry juice, and in wine. J Agric Food Chem 2002; 50(3): 431-5.
[http://dx.doi.org/10.1021/jf010812u] [PMID: 11804508]
[52]
Sobolev VS, Cole RJ. trans-resveratrol content in commercial peanuts and peanut products. J Agric Food Chem 1999; 47(4): 1435-9.
[http://dx.doi.org/10.1021/jf9809885] [PMID: 10563995]
[53]
Hurst WJ, Glinski JA, Miller KB, Apgar J, Davey MH, Stuart DA. Survey of the trans-resveratrol and trans-piceid content of cocoa-containing and chocolate products. J Agric Food Chem 2008; 56(18): 8374-8.
[http://dx.doi.org/10.1021/jf801297w] [PMID: 18759443]
[54]
Stervbo U, Vang O, Bonnesen C. A review of the content of the putative chemopreventive phytoalexin resveratrol in red wine. Food Chem 2007; 101(2): 449-57.
[http://dx.doi.org/10.1016/j.foodchem.2006.01.047]
[55]
Tabrizi R, Tamtaji OR, Lankarani KB, et al. The effects of resveratrol intake on weight loss: a systematic review and meta-analysis of randomized controlled trials. Crit Rev Food Sci Nutr 2020; 60(3): 375-90.
[http://dx.doi.org/10.1080/10408398.2018.1529654] [PMID: 30421960]
[56]
Delpino FM, Figueiredo LM, Caputo EL, Mintem GC, Gigante DP. What is the effect of resveratrol on obesity? A systematic review and meta-analysis. Clin Nutr ESPEN 2021; 41: 59-67.
[http://dx.doi.org/10.1016/j.clnesp.2020.11.025] [PMID: 33487308]
[57]
Hillsley A, Chin V, Li A, McLachlan CS. Resveratrol for weight loss in obesity: An Assessment of randomized control trial designs in ClinicalTrials.gov. Nutrients 2022; 14(7): 1424.
[http://dx.doi.org/10.3390/nu14071424] [PMID: 35406038]
[58]
Xu XY, Meng X, Li S, Gan RY, Li Y, Li HB. Bioactivity, health benefits, and related molecular mechanisms of curcumin: Current progress, challenges, and perspectives. Nutrients 2018; 10(10): 1553.
[http://dx.doi.org/10.3390/nu10101553] [PMID: 30347782]
[59]
Aguilar F, Dusemund B, Galtier P, et al. Panel members at the time of adoption. EFSA J 2010; 8(9): 1679.
[http://dx.doi.org/10.2903/j.efsa.2010.1679]
[60]
Lakshmi G. Food coloring: the natural way. Res J Chem Sci 2014; 4(2): 87-96.
[61]
Sharifi-Rad J, Rayess YE, Rizk AA, et al. Turmeric and its major compound curcumin on health: Bioactive effects and safety profiles for food, pharmaceutical, biotechnological and medicinal applications. Front Pharmacol 2020; 11: 01021.
[http://dx.doi.org/10.3389/fphar.2020.01021] [PMID: 33041781]
[62]
Mohammadi A, Sahebkar A, Iranshahi M, et al. Effects of supplementation with curcuminoids on dyslipidemia in obese patients: a randomized crossover trial. Phytother Res 2013; 27(3): 374-9.
[http://dx.doi.org/10.1002/ptr.4715] [PMID: 22610853]
[63]
Yang YS, Su YF, Yang HW, Lee YH, Chou JI, Ueng KC. Lipid-lowering effects of curcumin in patients with metabolic syndrome: a randomized, double-blind, placebo-controlled trial. Phytother Res 2014; 28(12): 1770-7.
[http://dx.doi.org/10.1002/ptr.5197] [PMID: 25131839]
[64]
Baziar N, Parohan M. The effects of curcumin supplementation on body mass index, body weight, and waist circumference in patients with nonalcoholic fatty liver disease: A systematic review and dose–response meta-analysis of randomized controlled trials. Phytother Res 2020; 34(3): 464-74.
[http://dx.doi.org/10.1002/ptr.6542] [PMID: 31799714]
[65]
Akbari M, Lankarani KB, Tabrizi R, et al. The effects of curcumin on weight loss among patients with metabolic syndrome and related disorders: A systematic review and meta-analysis of randomized controlled trials. Front Pharmacol 2019; 10: 649.
[http://dx.doi.org/10.3389/fphar.2019.00649] [PMID: 31249528]
[66]
Mousavi SM, Milajerdi A, Varkaneh HK, Gorjipour MM, Esmaillzadeh A. The effects of curcumin supplementation on body weight, body mass index and waist circumference: A systematic review and dose-response meta-analysis of randomized controlled trials. Crit Rev Food Sci Nutr 2020; 60(1): 171-80.
[http://dx.doi.org/10.1080/10408398.2018.1517724] [PMID: 30373373]
[67]
Liddle M, Hull C, Liu C, Powell D. Contact urticaria from curcumin. Dermatitis 2006; 17(4): 196-7.
[http://dx.doi.org/10.2310/6620.2006.06004] [PMID: 17150169]
[68]
Dahl WJ, Stewart ML. Position of the academy of nutrition and dietetics: Health implications of dietary fiber. J Acad Nutr Diet 2015; 115(11): 1861-70.
[http://dx.doi.org/10.1016/j.jand.2015.09.003] [PMID: 26514720]
[69]
Park Y. Dietary fiber and health: Cardiovascular disease and beyond. Fruits, Vegetables, and Herbs 2016; pp. 423-49.
[http://dx.doi.org/10.1016/B978-0-12-802972-5.00020-2]
[70]
Turner ND, Lupton JR. Dietary Fiber. Adv Nutr 2011; 2(2): 151-2.
[http://dx.doi.org/10.3945/an.110.000281] [PMID: 22332044]
[71]
Van Itallie TB. Dietary fiber and obesity. Am J Clin Nutr 1978; 31(10) (Suppl.): 43S-52S.
[http://dx.doi.org/10.1093/ajcn/31.10.S43] [PMID: 707393]
[72]
Ntrigiou V, Ntrigios I, Rigopoulos N, Dimou C, Koutelidakis A. Functional food consumption correlates with anthropometric characteristics and body composition in healthy adults. Curr Top Nutraceutical Res 2018; 16(4): 279-88.
[73]
Tucker LA, Thomas KS. Increasing total fiber intake reduces risk of weight and fat gains in women. J Nutr 2009; 139(3): 576-81.
[http://dx.doi.org/10.3945/jn.108.096685] [PMID: 19158230]
[74]
Waddell IS, Orfila C. Dietary fiber in the prevention of obesity and obesity-related chronic diseases: From epidemiological evidence to potential molecular mechanisms. Crit Rev Food Sci Nutr 2022; 1-16.
[http://dx.doi.org/10.1080/10408398.2022.2061909] [PMID: 35471164]
[75]
Jovanovski E, Mazhar N, Komishon A, et al. Can dietary viscous fiber affect body weight independently of an energy-restrictive diet? A systematic review and meta-analysis of randomized controlled trials. Am J Clin Nutr 2020; 111(2): 471-85.
[http://dx.doi.org/10.1093/ajcn/nqz292] [PMID: 31897475]
[76]
Salas-Salvadó J, Farrés X, Luque X, et al. Effect of two doses of a mixture of soluble fibres on body weight and metabolic variables in overweight or obese patients: A randomised trial. Br J Nutr s 2008; 99(6): 380-7..
[http://dx.doi.org/10.1017/S0007114507868528]
[77]
Liu S, Willett WC, Manson JE, Hu FB, Rosner B, Colditz G. Relation between changes in intakes of dietary fiber and grain products and changes in weight and development of obesity among middle-aged women. Am J Clin Nutr 2003; 78(5): 920-7.
[http://dx.doi.org/10.1093/ajcn/78.5.920] [PMID: 14594777]
[78]
Thane CW, Stephen AM, Jebb SA. Whole grains and adiposity: little association among British adults. Eur J Clin Nutr 2009; 63(2): 229-37.
[http://dx.doi.org/10.1038/sj.ejcn.1602911] [PMID: 17882134]
[79]
Howarth NC, Saltzman E, Roberts SB. Dietary fiber and weight regulation. Nutr Rev 2001; 59(5): 129-39.
[http://dx.doi.org/10.1111/j.1753-4887.2001.tb07001.x] [PMID: 11396693]
[80]
Allison DB, Gadbury G, Schwartz LG, et al. A novel soy-based meal replacement formula for weight loss among obese individuals: a randomized controlled clinical trial. Eur J Clin Nutr 2003; 57(4): 514-22.
[http://dx.doi.org/10.1038/sj.ejcn.1601587] [PMID: 12700612]
[81]
St-Onge MP, Claps N, Wolper C, Heymsfield SB. Supplementation with soy-protein-rich foods does not enhance weight loss. J Am Diet Assoc 2007; 107(3): 500-5.
[http://dx.doi.org/10.1016/j.jada.2006.12.002] [PMID: 17324670]
[82]
Phillips KM, Ruggio DM, Ashraf-Khorassani M. Phytosterol composition of nuts and seeds commonly consumed in the United States. J Agric Food Chem 2005; 53(24): 9436-45.
[http://dx.doi.org/10.1021/jf051505h] [PMID: 16302759]
[83]
Ryan E, Galvin K, O’Connor TP, Maguire AR, O’Brien NM. Fatty acid profile, tocopherol, squalene and phytosterol content of brazil, pecan, pine, pistachio and cashew nuts. Int J Food Sci Nutr 2006; 57(3-4): 219-28.
[http://dx.doi.org/10.1080/09637480600768077] [PMID: 17127473]
[84]
Nagao T, Watanabe H, Goto N, et al. Dietary diacylglycerol suppresses accumulation of body fat compared to triacylglycerol in men in a double-blind controlled trial. J Nutr 2000; 130(4): 792-7.
[http://dx.doi.org/10.1093/jn/130.4.792] [PMID: 10736331]
[85]
Takeshita M, Saito S, Moriwaki J, et al. Effects of dietary diacylglycerol oil containing phytosterols in mayonnaise on abdominal fat and blood cholesterol levels in Japanese men. Jpn Pharmacol Ther 2007; 39: 973-87.
[86]
Khan N, Mukhtar H. Tea polyphenols in promotion of human health. Nutrients 2018; 11(1): 39.
[http://dx.doi.org/10.3390/nu11010039] [PMID: 30585192]
[87]
Chantre P, Lairon D. Recent findings of green tea extract AR25 (Exolise) and its activity for the treatment of obesity. Phytomedicine 2002; 9(1): 3-8.
[http://dx.doi.org/10.1078/0944-7113-00078] [PMID: 11924761]
[88]
Auvichayapat P, Prapochanung M, Tunkamnerdthai O, et al. Effectiveness of green tea on weight reduction in obese Thais: A randomized, controlled trial. Physiol Behav 2008; 93(3): 486-91.
[http://dx.doi.org/10.1016/j.physbeh.2007.10.009] [PMID: 18006026]
[89]
Kao YH, Chang HH, Lee MJ, Chen CL. Tea, obesity, and diabetes. Mol Nutr Food Res 2006; 50(2): 188-210.
[http://dx.doi.org/10.1002/mnfr.200500109] [PMID: 16416476]
[90]
Westerterp-Plantenga MS. Green tea catechins, caffeine and body-weight regulation. Physiol Behav 2010; 100(1): 42-6.
[http://dx.doi.org/10.1016/j.physbeh.2010.02.005] [PMID: 20156466]
[91]
Hursel R, Viechtbauer W, Westerterp-Plantenga MS. The effects of green tea on weight loss and weight maintenance: A meta-analysis. Int J Obes 2009; 33(9): 956-61.
[http://dx.doi.org/10.1038/ijo.2009.135] [PMID: 19597519]
[92]
Basu A, Sanchez K, Leyva MJ, et al. Green tea supplementation affects body weight, lipids, and lipid peroxidation in obese subjects with metabolic syndrome. J Am Coll Nutr 2010; 29(1): 31-40.
[http://dx.doi.org/10.1080/07315724.2010.10719814] [PMID: 20595643]
[93]
Wang H, Wen Y, Du Y, et al. Effects of catechin enriched green tea on body composition. Obesity (Silver Spring) 2010; 18(4): 773-9.
[http://dx.doi.org/10.1038/oby.2009.256] [PMID: 19680234]
[94]
Mielgo-Ayuso J, Barrenechea L, Alcorta P, Larrarte E, Margareto J, Labayen I. Effects of dietary supplementation with epigallocatechin-3-gallate on weight loss, energy homeostasis, cardiometabolic risk factors and liver function in obese women: randomised, double-blind, placebo-controlled clinical trial. Br J Nutr 2014; 111(7): 1263-71.
[http://dx.doi.org/10.1017/S0007114513003784] [PMID: 24299662]
[95]
Santos RMM, Lima DRA. Coffee consumption, obesity and type 2 diabetes: a mini-review. Eur J Nutr 2016; 55(4): 1345-58.
[http://dx.doi.org/10.1007/s00394-016-1206-0] [PMID: 27026242]
[96]
Thom E. The effect of chlorogenic acid enriched coffee on glucose absorption in healthy volunteers and its effect on body mass when used long-term in overweight and obese people. J Int Med Res 2007; 35(6): 900-8.
[http://dx.doi.org/10.1177/147323000703500620] [PMID: 18035001]
[97]
Advisory Report to the Secretary of Health and Human Services and the Secretary of Agriculture 2015. Available from: https://health.gov/sites/default/files/2019-09/Scientific-Report-of-the-2015-Dietary-Guidelines-Advisory-Committee.pdf
[98]
Bakuradze T, Boehm N, Janzowski C, et al. Antioxidant-rich coffee reduces DNA damage, elevates glutathione status and contributes to weight control: Results from an intervention study. Mol Nutr Food Res 2011; 55(5): 793-7.
[http://dx.doi.org/10.1002/mnfr.201100093] [PMID: 21462335]
[99]
Tabrizi R, Saneei P, Lankarani KB, et al. The effects of caffeine intake on weight loss: a systematic review and dos-response meta-analysis of randomized controlled trials. Crit Rev Food Sci Nutr 2019; 59(16): 2688-96.
[http://dx.doi.org/10.1080/10408398.2018.1507996] [PMID: 30335479]
[100]
Lopez-Garcia E, van Dam RM, Rajpathak S, Willett WC, Manson JE, Hu FB. Changes in caffeine intake and long-term weight change in men and women. Am J Clin Nutr 2006; 83(3): 674-80.
[http://dx.doi.org/10.1093/ajcn.83.3.674] [PMID: 16522916]
[101]
Dow CA, Going SB, Chow HHS, Patil BS, Thomson CA. The effects of daily consumption of grapefruit on body weight, lipids, and blood pressure in healthy, overweight adults. Metabolism 2012; 61(7): 1026-35.
[http://dx.doi.org/10.1016/j.metabol.2011.12.004] [PMID: 22304836]
[102]
Kandyliari A, Elmaliklis IN, Kontopoulou O, et al. An epidemiological study report on the antioxidant and phenolic content of selected Mediterranean functional foods, their consumption association with the body mass index, and consumers purchasing behavior in a sample of healthy greek adults. Appl Sci (Basel) 2021; 11(17): 7818.
[http://dx.doi.org/10.3390/app11177818]
[103]
Ianiro G, Dal Toma E, Vitale A, et al. White mulberry supplementation as adjuvant treatment of obesity. Dig Liver Dis 2014; 46(1): S124.
[http://dx.doi.org/10.1016/S1590-8658(14)60368-6] [PMID: 24750800]
[104]
Keast DR, O’Neil CE, Jones JM. Dried fruit consumption is associated with improved diet quality and reduced obesity in US adults: National Health and Nutrition Examination Survey, 1999-2004. Nutr Res 2011; 31(6): 460-7.
[http://dx.doi.org/10.1016/j.nutres.2011.05.009] [PMID: 21745628]
[105]
Kim KA, Yim JE. The effect of onion peel extract on inflammatory mediators in Korean overweight and obese women. Clin Nutr Res 2016; 5(4): 261-9.
[http://dx.doi.org/10.7762/cnr.2016.5.4.261] [PMID: 27812515]
[106]
Henning SM, Yang J, Woo SL, et al. Hass avocado inclusion in a weight-loss diet supported weight loss and altered gut microbiota: A 12-week randomized, parallel-controlled trial. Curr Dev Nutr 2019; 3(8): nzz068.
[http://dx.doi.org/10.1093/cdn/nzz068] [PMID: 31367691]
[107]
Jane Monica S, John S, Madhanagopal R, et al. Chemical composition of pumpkin (Cucurbita maxima) seeds and its supplemental effect on Indian women with metabolic syndrome. Arab J Chem 2022; 15(8): 103985.
[http://dx.doi.org/10.1016/j.arabjc.2022.103985]
[108]
Ebrahimzadeh Attari V, Ostadrahimi A, Asghari Jafarabadi M, Mehralizadeh S, Mahluji S. Changes of serum adipocytokines and body weight following Zingiber officinale supplementation in obese women: a RCT. Eur J Nutr 2016; 55(6): 2129-36.
[http://dx.doi.org/10.1007/s00394-015-1027-6] [PMID: 26318445]
[109]
Park SH, Jung SJ, Choi EK, et al. The effects of steamed ginger ethanolic extract on weight and body fat loss: A randomized, double-blind, placebo-controlled clinical trial. Food Sci Biotechnol 2020; 29(2): 265-73.
[http://dx.doi.org/10.1007/s10068-019-00649-x] [PMID: 32064135]
[110]
Hernández-Pérez T, Gómez-García MR, Valverde ME, Paredes-López O. Capsicum annuum (hot pepper): An ancient Latin-American crop with outstanding bioactive compounds and nutraceutical potential. A review. Compr Rev Food Sci Food Saf 2020; 19(6): 2972-93.
[http://dx.doi.org/10.1111/1541-4337.12634] [PMID: 33337034]
[111]
Leung FW. Capsaicin as an anti-obesity drug. Prog Drug Res 2014; 68: 171-9.
[http://dx.doi.org/10.1007/978-3-0348-0828-6_7] [PMID: 24941669]
[112]
Zheng J, Zheng S, Feng Q, Zhang Q, Xiao X. Dietary capsaicin and its anti-obesity potency: from mechanism to clinical implications. Biosci Rep 2017; 37(3): BSR20170286.
[http://dx.doi.org/10.1042/BSR20170286] [PMID: 28424369]
[113]
Snitker S, Fujishima Y, Shen H, et al. Effects of novel capsinoid treatment on fatness and energy metabolism in humans: possible pharmacogenetic implications. Am J Clin Nutr 2009; 89(1): 45-50.
[http://dx.doi.org/10.3945/ajcn.2008.26561] [PMID: 19056576]
[114]
Silska G, Walkowiak M. Comparative analysis of fatty acid composition in 84 accessions of flax (Linum usitatissimum L.). J Pre-Clin. Clin Res 2019; 13(3): 118-29.
[http://dx.doi.org/10.26444/jpccr/111889]
[115]
Adjepong M, Jain R, Pickens CA, Appaw W, Fenton JI. Quantification of fatty acid and mineral levels of selected seeds, nuts, and oils in Northern Ghana. J Food Sci Technol 2018; 55(11): 4615-22.
[http://dx.doi.org/10.1007/s13197-018-3400-y] [PMID: 30333658]
[116]
Ghafoorunissa PJ, Pangrekar J. Vegetables as sources of α-linolenic acid in Indian diets. Food Chem 1993; 47(2): 121-4.
[http://dx.doi.org/10.1016/0308-8146(93)90231-4]
[117]
Fidan H, Stankov S, Petkova N, et al. Evaluation of chemical composition, antioxidant potential and functional properties of carob (Ceratonia siliqua L.) seeds. J Food Sci Technol 2020; 57(7): 2404-13.
[http://dx.doi.org/10.1007/s13197-020-04274-z] [PMID: 32549590]
[118]
Saini RK, Shang XM, Ko EY, Choi JH, Kim D, Keum YS. Characterization of nutritionally important phytoconstituents in minimally processed ready-to-eat baby-leaf vegetables using HPLC–DAD and GC–MS. J Food Meas Charact 2016; 10(2): 341-9.
[http://dx.doi.org/10.1007/s11694-016-9312-5]
[119]
Saini RK, Prasad P, Sreedhar RV, Akhilender Naidu K, Shang X, Keum YS. Omega-3 polyunsaturated fatty acids (PUFAs): Emerging plant and microbial sources, oxidative stability, bioavailability, and health benefits - a review. Antioxidants 2021; 10(10): 1627.
[http://dx.doi.org/10.3390/antiox10101627] [PMID: 34679761]
[120]
Kim DE, Shang X, Assefa AD, Keum YS, Saini RK. Metabolite profiling of green, green/red, and red lettuce cultivars: Variation in health beneficial compounds and antioxidant potential. Food Res Int 2018; 105: 361-70.
[http://dx.doi.org/10.1016/j.foodres.2017.11.028] [PMID: 29433225]
[121]
Lee S, Lim DK, Baek SY, et al. Quantitative analyses of essential fatty acids in cereals and green vegetables by isotope dilution-gas chromatography/mass spectrometry. J Anal Sci Technol 2020; 11(1): 37.
[http://dx.doi.org/10.1186/s40543-020-00237-3]
[122]
Vekiari AS, Ouzounidou G, Gork G, Ozturk M, Asfi M. Compositional changes of major chemical compounds in Greek carob pods during development. Bull Chem Soc Ethiop 2012; 26(3): 343-51.
[http://dx.doi.org/10.4314/bcse.v26i3.3]
[123]
Saini RK, Shetty NP, Giridhar P. GC-FID/MS Analysis of fatty acids in Indian cultivars of Moringa oleifera: potential sources of PUFA. J Am Oil Chem Soc 2014; 91(6): 1029-34.
[http://dx.doi.org/10.1007/s11746-014-2439-9]
[124]
Dhakal KH, Lee JD, Jeong YS, Kim HS, Shannon JG, Hwang YH. Stability of linolenic acid in seed oil of soybean accessions with elevated linolenic acid concentration. J Food Agric Environ 2013; 11(1): 80-5.
[125]
Khalifa AH, Abdel-Rahman EA, Safaa AM, Al-Barbary FS. Characteristics of seeds and seed oils of some Egyptian pumpkin cultivars. J Food and Diary Sci 2012; 3(12): 681-97.
[126]
Velasco L, Goffman FD, Becker HC. Variability for the fatty acid composition of the seed oil in a germplasm collection of the genus Brassica. Genet Resour Crop Evol 1998; 45: 371-82.
[http://dx.doi.org/10.1023/A:1008628624867]
[127]
Sharafi Y, Majidi MM, Goli SAH, Rashidi F. Oil content and fatty acids composition in Brassica species. Int J Food Prop 2015; 18(10): 2145-54.
[http://dx.doi.org/10.1080/10942912.2014.968284]
[128]
Haliński ŁP, Topolewska A, Rynkowska A, et al. Impact of plant domestication on selected nutrient and anti-nutrient compounds in Solanaceae with edible leaves (Solanum spp.). Genet Resour Crop Evol 2019; 66(1): 89-103.
[http://dx.doi.org/10.1007/s10722-018-0699-1]
[129]
Heck RT, Vendruscolo RG, de Araújo Etchepare M, et al. Is it possible to produce a low-fat burger with a healthy n − 6/n − 3 PUFA ratio without affecting the technological and sensory properties? Meat Sci 2017; 130: 16-25.
[http://dx.doi.org/10.1016/j.meatsci.2017.03.010] [PMID: 28347883]
[130]
Knez Hrnčič M, Ivanovski M, Cör D, Knez Ž. Chia seeds (Salvia hispanica L.): An overview-phytochemical profile, isolation methods, and application. Molecules 2019; 25(1): 11.
[http://dx.doi.org/10.3390/molecules25010011] [PMID: 33375102]
[131]
Miedzianka J, Drzymała K, Nemś A, Kita A. Comparative evaluation of the antioxidant, antimicrobial and nutritive properties of gluten-free flours. Sci Rep 2021; 11(1): 10385.
[http://dx.doi.org/10.1038/s41598-021-89845-6] [PMID: 34471165]
[132]
Jumbe TJ, Pickens CA, Valentini K, et al. Evaluation of fatty acid and mineral content of Tanzanian seeds and oils. J Food Compos Anal 2016; 50: 108-13.
[http://dx.doi.org/10.1016/j.jfca.2016.05.016]
[133]
Burns-Whitmore B, Froyen E, Heskey C, Parker T, San Pablo G. Alpha-linolenic and linoleic fatty acids in the vegan diet: Do they require dietary reference intake/adequate intake special consideration? Nutrients 2019; 11(10): 2365.
[http://dx.doi.org/10.3390/nu11102365] [PMID: 31590264]
[134]
Karvonen HM, Aro A, Tapola NS, Salminen I, Uusitupa MIJ, Sarkkinen ES. Effect of [alpha]-linolenic acid[ndash]rich Camelina sativa oil on serum fatty acid composition and serum lipids in hypercholesterolemic subjects. Metabolism 2002; 51(10): 1253-60.
[http://dx.doi.org/10.1053/meta.2002.35183] [PMID: 12370843]
[135]
Bere E. Wild berries: A good source of omega-3. Eur J Clin Nutr 2007; 61(3): 431-3.
[http://dx.doi.org/10.1038/sj.ejcn.1602512] [PMID: 16900081]
[136]
Bajramova A, Spégel P. A comparative study of the fatty acid profile of common fruits and fruits claimed to confer health benefits. J Food Compos Anal 2022; 112: 104657.
[http://dx.doi.org/10.1016/j.jfca.2022.104657]
[137]
Balić A, Vlašić D, Žužul K, Marinović B, Bukvić Mokos Z. Omega-3 versus omega-6 polyunsaturated fatty acids in the prevention and treatment of inflammatory skin diseases. Int J Mol Sci 2020; 21(3): 741.
[http://dx.doi.org/10.3390/ijms21030741] [PMID: 31979308]
[138]
Konuskan DB, Arslan M, Oksuz A. Physicochemical properties of cold pressed sunflower, peanut, rapeseed, mustard and olive oils grown in the Eastern Mediterranean region. Saudi J Biol Sci 2019; 26(2): 340-4.
[http://dx.doi.org/10.1016/j.sjbs.2018.04.005] [PMID: 31485174]
[139]
Mariamenatu AH, Abdu EM. Overconsumption of omega-6 polyunsaturated fatty acids (PUFAs) versus deficiency of omega-3 PUFAs in modern-day diets: The disturbing factor for their “Balanced antagonistic metabolic functions” in the human body. J Lipids 2021; 2021: 1-15.
[http://dx.doi.org/10.1155/2021/8848161] [PMID: 33815845]
[140]
Saini RK, Keum YS. Omega-3 and omega-6 polyunsaturated fatty acids: Dietary sources, metabolism, and significance — A review. Life Sci 2018; 203: 255-67.
[http://dx.doi.org/10.1016/j.lfs.2018.04.049] [PMID: 29715470]
[141]
Stabnikova O, Marinin A, Stabnikov V. Main trends in application of novel natural additives for food production. Ukr Food J 2021; 10(3): 524-51.
[http://dx.doi.org/10.24263/2304-974X-2021-10-3-8]
[142]
Kajla P, Sharma A, Sood DR. Flaxseed—a potential functional food source. J Food Sci Technol 2015; 52(4): 1857-71.
[http://dx.doi.org/10.1007/s13197-014-1293-y] [PMID: 25829567]
[143]
Hernández-Pérez T, Valverde ME, Orona-Tamayo D, Paredes-Lopez O. Chia (Salvia hispanica): Nutraceutical properties and therapeutic applications. Proceedings 2020; 53(1): 17.
[http://dx.doi.org/10.3390/proceedings2020053017]
[144]
Kurhade A, Patil S, Sonawane SK, Waghmare JS, Arya SS. Effect of banana peel powder on bioactive constituents and microstructural quality of chapatti: unleavened Indian flat bread. J Food Meas Charact 2016; 10(1): 32-41.
[http://dx.doi.org/10.1007/s11694-015-9273-0]
[145]
Chantaro P, Devahastin S, Chiewchan N. Production of antioxidant high dietary fiber powder from carrot peels. Lebensm Wiss Technol 2008; 41(10): 1987-94.
[http://dx.doi.org/10.1016/j.lwt.2007.11.013]
[146]
Waghmare AG, Arya SS. Use of fruit by-products in the preparation of hypoglycemic Thepla: Indian unleavened vegetable flat bread. J Food Process Preserv 2014; 38(3): 1198-206.
[http://dx.doi.org/10.1111/jfpp.12080]
[147]
Pacheco de Delahaye E, Jiménez P, Pérez E. Effect of enrichment with high content dietary fiber stabilized rice bran flour on chemical and functional properties of storage frozen pizzas. J Food Eng 2005; 68(1): 1-7.
[http://dx.doi.org/10.1016/j.jfoodeng.2004.05.048]
[148]
El-Sayed SM. Use of spinach powder as functional ingredient in the manufacture of UF-Soft cheese. Heliyon 2020; 6(1): e03278.
[http://dx.doi.org/10.1016/j.heliyon.2020.e03278] [PMID: 31993529]
[149]
Erkaya T, Dağdemir E, Şengül M. Influence of Cape gooseberry (Physalis peruviana L.) addition on the chemical and sensory characteristics and mineral concentrations of ice cream. Food Res Int 2012; 45(1): 331-5.
[http://dx.doi.org/10.1016/j.foodres.2011.09.013]
[150]
Issar K, Sharma PC, Gupta A. Utilization of apple pomace in the preparation of fiber-enriched acidophilus yogurt. J Food Process Preserv 2017; 41(4): e13098.
[http://dx.doi.org/10.1111/jfpp.13098]
[151]
Tseng A, Zhao Y. Wine grape pomace as antioxidant dietary fibre for enhancing nutritional value and improving storability of yogurt and salad dressing. Food Chem 2013; 138(1): 356-65.
[http://dx.doi.org/10.1016/j.foodchem.2012.09.148] [PMID: 23265499]
[152]
Hernández-Pérez T, Valverde ME, Paredes-López O. Seeds from ancient food crops with the potential for antiobesity promotion. Crit Rev Food Sci Nutr 2022; 62(17): 4563-70.
[http://dx.doi.org/10.1080/10408398.2021.1877107] [PMID: 33506693]
[153]
Nieman DC, Cayea EJ, Austin MD, Henson DA, McAnulty SR, Jin F. Chia seed does not promote weight loss or alter disease risk factors in overweight adults. Nutr Res 2009; 29(6): 414-8.
[http://dx.doi.org/10.1016/j.nutres.2009.05.011] [PMID: 19628108]
[154]
Peláez P, Orona-Tamayo D, Montes-Hernández S, Valverde ME, Paredes-López O, Cibrián-Jaramillo A. Comparative transcriptome analysis of cultivated and wild seeds of Salvia hispanica (chia). Sci Rep 2019; 9(1): 9761.
[http://dx.doi.org/10.1038/s41598-019-45895-5] [PMID: 31278279]
[155]
Orona-Tamayo D, Valverde ME, Paredes-Lopez O. 2017.
[http://dx.doi.org/10.1016/B978-0-12-802778-3.00017-2]
[156]
da Silva BP, Anunciação PC, Matyelka JCS, Della Lucia CM, Martino HSD, Pinheiro-Sant’Ana HM. Chemical composition of Brazilian chia seeds grown in different places. Food Chem 2017; 221: 1709-16.
[http://dx.doi.org/10.1016/j.foodchem.2016.10.115] [PMID: 27979151]
[157]
Kulczyński B, Kobus-Cisowska J, Taczanowski M, Kmiecik D, Gramza-Michałowska A. The chemical composition and nutritional value of chia seeds-current state of knowledge. Nutrients 2019; 11(6): 1242.
[http://dx.doi.org/10.3390/nu11061242] [PMID: 31159190]
[158]
Tavares TL, Tavares TL, Leite TR, da Oliveira SCS, Silva AS. Chia induces clinically discrete weight loss and improves lipid profile only in altered previous values. Nutr Hosp 2014; 31(3): 1176-82.
[http://dx.doi.org/10.3305/nh.2015.31.3.8242] [PMID: 25726210]
[159]
Rabail R, Sultan MT, Khalid AR, et al. Clinical, nutritional, and functional evaluation of chia seed-fortified muffins. Molecules 2022; 27(18): 5907.
[http://dx.doi.org/10.3390/molecules27185907] [PMID: 36144643]
[160]
Commission implementing decision 2013. Available from: https://eurlex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2013:021:0034:0035:en:PDF
[161]
Mesías M, Holgado F, Márquez-Ruiz G, Morales FJ. Risk/benefit considerations of a new formulation of wheat-based biscuit supplemented with different amounts of chia flour. Lebensm Wiss Technol 2016; 73: 528-35.
[http://dx.doi.org/10.1016/j.lwt.2016.06.056]
[162]
Scientific opinion on acrylamide in food. EFSA J 2015; 13: 4104.http://www.efsa.europa.eu/sites/default/files/scientific_output/files/main_documents/4104.pdf
[163]
Opinion of the scientific panel on food additives, flavourings, processing aids and materials in contact with food (AFC) on a request from the Commission related to flavouring group evaluation 13; furfuryl and furan derivatives with and without additional side-chain substituents and heteroatoms from chemical group 14. EFSA J 2005; 215: 1-73.
[http://dx.doi.org/10.2903/j.efsa.2005.215]
[164]
Giovanelli G, Cappa C. 5-Hydroxymethylfurfural formation in bread as a function of heat treatment intensity: Correlations with browning indices. Foods 2021; 10(2): 417.
[http://dx.doi.org/10.3390/foods10020417] [PMID: 33668628]
[165]
Fujita K, Norikura T, Matsui-Yuasa I, et al. Carob pod polyphenols suppress the differentiation of adipocytes through posttranscriptional regulation of C/EBPβ. PLoS One 2021; 16(3): e0248073.
[http://dx.doi.org/10.1371/journal.pone.0248073] [PMID: 33684156]
[166]
Batlle I, Tous J. Carob Tree Ceratonia siliqua L promoting the conservation and use of underutilized and neglected crops. Rome: Institute of Plant Genetics and Crop Plant 1997.https://hdl.handle.net/10568/104277
[167]
Santonocito D, Granata G, Geraci C, et al. Carob seeds: Food waste or source of bioactive compounds? Pharmaceutics 2020; 12(11): 1090.
[http://dx.doi.org/10.3390/pharmaceutics12111090] [PMID: 33202757]
[168]
Crops and livestock products. 2020. Available from: http://www.fao.org/faostat/en/#data/QC
[169]
Brassesco ME, Brandão TRS, Silva CLM, Pintado M. Carob bean (Ceratonia siliqua L.): A new perspective for functional food. Trends Food Sci Technol 2021; 114: 310-22.
[http://dx.doi.org/10.1016/j.tifs.2021.05.037]
[170]
Kokkinofta R, Yiannopoulos S, Stylianou MA, Agapiou A. Use of chemometrics for correlating carobs nutritional compositional values with geographic origin. Metabolites 2020; 10(2): 62.
[http://dx.doi.org/10.3390/metabo10020062] [PMID: 32050624]
[171]
Musa Özcan M, Arslan D, Gökçalik H. Some compositional properties and mineral contents of carob (Ceratonia siliqua) fruit, flour and syrup. Int J Food Sci Nutr 2007; 58(8): 652-8.
[http://dx.doi.org/10.1080/09637480701395549] [PMID: 17852490]
[172]
El Bouzdoudi B, El Ansari ZN, Mangalagiu I, Mantu D, Badoc A, Lamarti A. Determination of polyphenols content in carob pulp from wild and domesticated Moroccan trees. Am J Plant Sci 2016; 7(14): 1937-51.
[http://dx.doi.org/10.4236/ajps.2016.714177]
[173]
Brahim EB, Ammouri N, Joly N, et al. Total polyphenols and gallic acid contents in domesticated Carob (Ceratonia siliqua L.) pods and leaves. Int J Pure Appl Biosc 2017; 5(4): 22-30.
[http://dx.doi.org/10.18782/2320-7051.5344]
[174]
Avallone R, Plessi M, Baraldi M, Monzani A. Determination of chemical composition of carob (Ceratonia siliqua): protein, fat, carbohydrates, and tannins. J Food Compos Anal 1997; 10(2): 166-72.
[http://dx.doi.org/10.1006/jfca.1997.0528]
[175]
Farag MA, El-Kersh DM, Ehrlich A, et al. Variation in Ceratonia siliqua pod metabolome in context of its different geographical origin, ripening stage and roasting process. Food Chem 2019; 283: 675-87.
[http://dx.doi.org/10.1016/j.foodchem.2018.12.118] [PMID: 30722926]
[176]
Loullis A, Pinakoulaki E. Carob as cocoa substitute: a review on composition, health benefits and food applications. Eur Food Res Technol 2018; 244(6): 959-77.
[http://dx.doi.org/10.1007/s00217-017-3018-8]
[177]
Yousif A, Alghzawi HM. Processing and characterization of carob powder. Food Chem 2000; 69(3): 283-7.
[http://dx.doi.org/10.1016/S0308-8146(99)00265-4]
[178]
Rodríguez-Solana R, Romano A, Moreno-Rojas JM. Carob Pulp: A nutritional and functional by-product worldwide spread in the formulation of different food products and beverages. A review. Processes (Basel) 2021; 9(7): 1146.
[http://dx.doi.org/10.3390/pr9071146]
[179]
Gioxari A, Amerikanou C, Nestoridi I, et al. Carob: A sustainable opportunity for metabolic health. Foods 2022; 11(14): 2154.
[http://dx.doi.org/10.3390/foods11142154] [PMID: 35885396]
[180]
Capcanari T, Chirsanova A, Covaliov E, Radu O, Siminiuc R. Pastry sauce with carob (Ceratonia siliqua) powder. Ukr Food J 2022; 11(2): 235-58.
[http://dx.doi.org/10.24263/2304-974X-2022-11-2-4]
[181]
Fidan H, Petkova N, Sapundzhieva T, et al. Carob syrup and carob flour (Ceratonia siliqua L.) as functional ingredients in sponge cakes. Carpathian J Food Sci Technol 2019; 11(1): 71-82.
[182]
Moreira TC, Transfeld da Silva Á, Fagundes C, et al. Elaboration of yogurt with reduced level of lactose added of carob (Ceratonia siliqua L.). Lebensm Wiss Technol 2017; 76: 326-9.
[http://dx.doi.org/10.1016/j.lwt.2016.08.033]
[183]
Pintado T, Herrero AM, Jiménez-Colmenero F, Ruiz-Capillas C. Strategies for incorporation of chia (Salvia hispanica L.) in frankfurters as a health-promoting ingredient. Meat Sci 2016; 114: 75-84.
[http://dx.doi.org/10.1016/j.meatsci.2015.12.009] [PMID: 26745305]
[184]
Ding Y, Lin HW, Lin YL, et al. Nutritional composition in the chia seed and its processing properties on restructured ham-like products. J Food Drug Anal 2018; 26(1): 124-34.
[http://dx.doi.org/10.1016/j.jfda.2016.12.012] [PMID: 29389547]
[185]
Choi YS, Kim HW, Hwang KE, et al. Physicochemical properties and sensory characteristics of reduced-fat frankfurters with pork back fat replaced by dietary fiber extracted from makgeolli lees. Meat Sci 2014; 96(2): 892-900.
[http://dx.doi.org/10.1016/j.meatsci.2013.08.033] [PMID: 24200582]
[186]
Antonini E, Torri L, Piochi M, Cabrino G, Meli MA, De Bellis R. Nutritional, antioxidant and sensory properties of functional beef burgers formulated with chia seeds and goji puree, before and after in vitro digestion. Meat Sci 2020; 161: 108021.
[http://dx.doi.org/10.1016/j.meatsci.2019.108021] [PMID: 31809915]
[187]
Souza AHP, Gohara AK, Rotta EM, et al. Effect of the addition of chia’s by-product on the composition of fatty acids in hamburgers through chemometric methods. J Sci Food Agric 2015; 95(5): 928-35.
[http://dx.doi.org/10.1002/jsfa.6764] [PMID: 24909559]
[188]
Coelho MS, Salas-Mellado MM. Effects of substituting chia (Salvia hispanica L.) flour or seeds for wheat flour on the quality of the bread. Lebensm Wiss Technol 2015; 60(2): 729-36.
[http://dx.doi.org/10.1016/j.lwt.2014.10.033]
[189]
Fernandes SS, Salas-Mellado MM. Addition of chia seed mucilage for reduction of fat content in bread and cakes. Food Chem 2017; 227: 237-44.
[http://dx.doi.org/10.1016/j.foodchem.2017.01.075] [PMID: 28274428]
[190]
Caggia C, Palmeri R, Russo N, et al. Employ of citrus by-product as fat replacer ingredient for bakery confectionery products. Front Nutr 2020; 7: 46.
[http://dx.doi.org/10.3389/fnut.2020.00046] [PMID: 32373622]
[191]
Borneo R, Aguirre A, León AE. Chia (Salvia hispanica L) gel can be used as egg or oil replacer in cake formulations. J Am Diet Assoc 2010; 110(6): 946-9.
[http://dx.doi.org/10.1016/j.jada.2010.03.011] [PMID: 20497788]
[192]
Lipilina E, Ganji V. Incorporation of ground flaxseed into bakery products and its effect on sensory and nutritional characteristics - a pilot study. J Foodserv 2009; 20(1): 52-9.
[http://dx.doi.org/10.1111/j.1748-0159.2008.00124.x]
[193]
Alshehry GA. Preparation and nutritional properties of cookies from the partial replacement of wheat flour using pumpkin seeds powder. World J Environ Biosci 2020; 9(2): 48-56.
[194]
Michalak-Majewska M, Teterycz D, Muszyński S, Radzki W, Sykut-Domańska E. Influence of onion skin powder on nutritional and quality attributes of wheat pasta. PLoS One 2020; 15(1): e0227942.
[http://dx.doi.org/10.1371/journal.pone.0227942] [PMID: 31986166]
[195]
Sayed HS, Hassan NMM. The effect of using onion skin powder as a source of dietary fiber and antioxidants on properties of dried and fried noodles. Cur Sci Int 2014; 3(4): 468-75.
[196]
Choo CL, Aziz NAA. Effects of banana flour and β-glucan on the nutritional and sensory evaluation of noodles. Food Chem 2010; 119(1): 34-40.
[http://dx.doi.org/10.1016/j.foodchem.2009.05.004]
[197]
Mohamed AG, Shalaby SM, Gafour WA. Quality characteristics and acceptability of an analogue processed spreadable cheese made with carrot paste (Daucus carota L.). Int J Dairy Sci 2016; 11(3): 91-9.
[http://dx.doi.org/10.3923/ijds.2016.91.99]
[198]
do Espírito Santo AP, Cartolano NS, Silva TF, et al. Fibers from fruit by-products enhance probiotic viability and fatty acid profile and increase CLA content in yoghurts. Int J Food Microbiol 2012; 154(3): 135-44.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2011.12.025] [PMID: 22264421]
[199]
Aykan V, Sezgin E, Guzel-Seydim ZB. Use of fat replacers in the production of reduced-calorie vanilla ice cream. Eur J Lipid Sci Technol 2008; 110(6): 516-20.
[http://dx.doi.org/10.1002/ejlt.200700277]
[200]
Crizel TM, Araujo RR, Rios AO, Rech R, Flôres SH. Orange fiber as a novel fat replacer in lemon ice cream. Food Sci Technol (Campinas) 2014; 34(2): 332-40.
[http://dx.doi.org/10.1590/fst.2014.0057]
[201]
Morais Ferreira JM, Azevedo BM, Luccas V, Bolini HMA. Sensory profile and consumer acceptability of prebiotic white chocolate with sucrose substitutes and the addition of goji berry (Lycium barbarum). J Food Sci 2017; 82(3): 818-24.
[http://dx.doi.org/10.1111/1750-3841.13632] [PMID: 28181242]
[202]
Taneva I, Zlatev Z. Total phenolic content and antioxidant activity of yogurt with goji berries (Lycium barbarum), Scientific Study & Research: Chemistry & Chemical Engineering, Biotechnology. Food Ind 2020; 21(1): 125-31.http://pubs.ub.ro/dwnl.php?id=CSCC6202001V01S01A0011
[203]
Kim MY, Kim EJ, Kim YN, Choi C, Lee BH. Comparison of the chemical compositions and nutritive values of various pumpkin (Cucurbitaceae) species and parts. Nutr Res Pract 2012; 6(1): 21-7.
[http://dx.doi.org/10.4162/nrp.2012.6.1.21] [PMID: 22413037]
[204]
Krishna A, Krishna KN, Patel SS. Inulin- benefits and scope of use in dairy products. Int J Curr Microbiol Appl Sci 2020; 9(8): 1911-21.
[http://dx.doi.org/10.20546/ijcmas.2020.908.219]
[205]
Karimi R, Azizi MH, Ghasemlou M, Vaziri M. Application of inulin in cheese as prebiotic, fat replacer and texturizer: A review. Carbohydr Polym 2015; 119: 85-100.
[http://dx.doi.org/10.1016/j.carbpol.2014.11.029] [PMID: 25563948]
[206]
Wang X, Kristo E, LaPointe G. The effect of apple pomace on the texture, rheology and microstructure of set type yogurt. Food Hydrocoll 2019; 91: 83-91.
[http://dx.doi.org/10.1016/j.foodhyd.2019.01.004]
[207]
Salehi F. Quality, physicochemical, and textural properties of dairy products containing fruits and vegetables: A review. Food Sci Nutr 2021; 9(8): 4666-86.
[http://dx.doi.org/10.1002/fsn3.2430] [PMID: 34401112]
[208]
de Pinho Ferreira Guiné R. Study of consumer acceptance by means of questionnaire survey towards newly developed yogurts with functional ingredients. Curr Nutr Food Sci 2019; 15(3): 243-56.
[http://dx.doi.org/10.2174/1573401313666171004150928]
[209]
Koliaki C, Spinos T, Spinou Μ, Brinia ΜE, Mitsopoulou D, Katsilambros N. Defining the optimal dietary approach for safe, effective and sustainable weight loss in overweight and obese adults. Healthcare (Basel) 2018; 6(3): 73.
[http://dx.doi.org/10.3390/healthcare6030073] [PMID: 29958395]
[210]
Langeveld M, DeVries JH. The long-term effect of energy restricted diets for treating obesity. Obesity (Silver Spring) 2015; 23(8): 1529-38.
[http://dx.doi.org/10.1002/oby.21146] [PMID: 26179364]
[211]
Tosti V, Bertozzi B, Fontana L. Health benefits of the Mediterranean diet: Metabolic and molecular mechanisms. J Gerontol A Biol Sci Med Sci 2018; 73(3): 318-26.
[http://dx.doi.org/10.1093/gerona/glx227] [PMID: 29244059]
[212]
Trichopoulou A, Martínez-González MA, Tong TYN, et al. Definitions and potential health benefits of the Mediterranean diet: views from experts around the world. BMC Med 2014; 12(1): 112.
[http://dx.doi.org/10.1186/1741-7015-12-112] [PMID: 25055810]
[213]
Kaaks R, Bellati C, Venturelli E, et al. Effects of dietary intervention on IGF-I and IGF-binding proteins, and related alterations in sex steroid metabolism: the Diet and Androgens (DIANA) Randomised Trial. Eur J Clin Nutr 2003; 57(9): 1079-88.
[http://dx.doi.org/10.1038/sj.ejcn.1601647] [PMID: 12947426]
[214]
Shai I, Schwarzfuchs D, Henkin Y, et al. Weight loss with a low-carbohydrate, Mediterranean, or low-fat diet. N Engl J Med 2008; 359(3): 229-41.
[http://dx.doi.org/10.1056/NEJMoa0708681] [PMID: 18635428]
[215]
Hwalla N, Jaafar Z. Dietary management of obesity: A review of the evidence. Diagnostics 2020; 11(1): 24.
[http://dx.doi.org/10.3390/diagnostics11010024] [PMID: 33375554]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy