Generic placeholder image

Current Medical Imaging

Editor-in-Chief

ISSN (Print): 1573-4056
ISSN (Online): 1875-6603

Research Article

Investigating Risk Factors and Magnetic Resonance Imaging (MRI)-based Grading of Subchondral Incomplete Fracture (SIF) of Medial Femoral Condyle

Author(s): Xiaoman Dong, Xiaoguang Zhang, Xiaokun Yu, Xianghong Meng, Kaihui Zhang, Xiao Chen, Lin Guo* and Zhi Wang*

Volume 20, 2024

Published on: 25 July, 2023

Article ID: e040723218388 Pages: 8

DOI: 10.2174/1573405620666230704092752

Price: $65

Abstract

Background: Subchondral insufficiency fractures (SIF) of the knee joint are prevalent in osteoporosis patients over the age of 55. Early diagnosis of SIF fracture of the medial femoral condyle is crucial for delaying disease progression, early therapy, and potential disease reversal. Magnetic resonance imaging (MRI) is useful in detecting SIF, which is often undetectable on initial radiographs.

This study aimed at developing a grading system for subchondral insufficiency fractures (SIF) based on MRI to predict outcomes and evaluate risk factors.

Methods: In this study, MRI was used to examine SIF risk variables in the medial condyle of the femur to help clinicians diagnose, treat, and delay the condition. A total of 386 patients with SIF from 2019 to 2021 were retrospectively analyzed and divided into 106 patients in the disease group and 280 patients in the control group according to whether they had SIF. The lesion site, meniscus, ligament, and other parameters were evaluated and compared. At the same time, a grading system was introduced to stratify and statistically analyze the size of the lesion area, the degree of bone marrow edema (BME), meniscus tears, and other parameters in the patients.

Results: Most SIF were low-grade (LG) fractures, and the predictors of LG and high-grade (HG) fractures included heel tear (P =0.031), degree of medial malleolus degeneration (P < 0.001), advanced age (P < 0.001), and lesion size (P < 0.001). The prognostic factors that showed significant differences between the two groups included age (P =0.027), gender (P =0.005), side (P =0.005), medial tibial plateau injury (P < 0.0001), femoral medullary bone marrow edema (P < 0.0001), medial tibial plateau bone marrow edema (P < 0.0001), meniscus body partial injury (P =0.016), heel tear (P =0.001), anterior cruciate ligament injury (P =0.002), and medial collateral ligament injury (P < 0.0001).

Conclusion: This current study proposed an MRI-based grading system for inferior condylar fractures of the femur, in which HG inferior condylar fractures are associated with severe medial malleolus degeneration, advanced age, lesion size (correlation), and meniscus heel tears.

[1]
Pathria MN, Chung CB, Resnick DL. Acute and stress-related injuries of bone and cartilage: Pertinent anatomy, basic biomechanics, and imaging perspective. Radiology 2016; 280(1): 21-38.
[http://dx.doi.org/10.1148/radiol.16142305] [PMID: 27322971]
[2]
Ahlbäck S, Bauer GCH, Bohne WH. Spontaneous osteonecrosis of the knee. Arthritis Rheum 1968; 11(6): 705-33.
[http://dx.doi.org/10.1002/art.1780110602] [PMID: 5700639]
[3]
Iwasaki K, Yamamoto T, Nakashima Y, et al. Subchondral insufficiency fracture of the femoral head after liver transplantation. Skeletal Radiol 2009; 38(9): 925-8.
[http://dx.doi.org/10.1007/s00256-009-0706-x] [PMID: 19418050]
[4]
Ikemura S, Yamamoto T, Nakashima Y, Shuto T, Jingushi S, Iwamoto Y. Bilateral subchondral insufficiency fracture of the femoral head after renal transplantation: A case report. Arthritis Rheum 2005; 52(4): 1293-6.
[http://dx.doi.org/10.1002/art.20994] [PMID: 15818681]
[5]
Yamamoto T. Subchondral insufficiency fractures of the femoral head. Clin Orthop Surg 2012; 4(3): 173-80.
[http://dx.doi.org/10.4055/cios.2012.4.3.173] [PMID: 22949947]
[6]
Gourlay ML, Renner JB, Spang JT, Rubin JE. Subchondral insufficiency fracture of the knee: A non-traumatic injury with prolonged recovery time. BMJ Case Rep 2015; 2015(jun08 1): bcr2015209399.
[http://dx.doi.org/10.1136/bcr-2015-209399] [PMID: 26055598]
[7]
Sehajpal S, Prasad DN, Singh RK. Prodrugs of non-steroidal anti-inflammatory drugs (NSAIDs): A long march towards synthesis of safer NSAIDs. Mini Rev Med Chem 2018; 18(14): 1199-219.
[http://dx.doi.org/10.2174/1389557518666180330112416] [PMID: 29600762]
[8]
Sehajpal S, Prasad DN, Singh RK. Novel ketoprofen–antioxidants mutual codrugs as safer nonsteroidal anti‐inflammatory drugs: Synthesis, kinetic and pharmacological evaluation. Arch Pharm 2019; 352(7): 1800339.
[http://dx.doi.org/10.1002/ardp.201800339] [PMID: 31231875]
[9]
Joshi T, Gupta G. Effect of dynamic loading on hip implant using finite element method. Mater Today Proc 2021; 46: 10211-6.
[http://dx.doi.org/10.1016/j.matpr.2020.11.378]
[10]
Joshi T, Sharma R, Kumar Mittal V, Gupta V. Comparative investigation and analysis of hip prosthesis for different bio-compatible alloys. Mater Today Proc 2021; 43: 105-11.
[http://dx.doi.org/10.1016/j.matpr.2020.11.222]
[11]
Song WS, Yoo JJ, Koo KH, Yoon KS, Kim YM, Kim HJ. Subchondral fatigue fracture of the femoral head in military recruits. J Bone Joint Surg Am 2004; 86(9): 1917-24.
[http://dx.doi.org/10.2106/00004623-200409000-00009] [PMID: 15342753]
[12]
Yamamoto T, Iwamoto Y, Schneider R, Bullough PG. Histopathological prevalence of subchondral insufficiency fracture of the femoral head. Ann Rheum Dis 2008; 67(2): 150-3.
[http://dx.doi.org/10.1136/ard.2006.066878] [PMID: 17526549]
[13]
Miyanishi K, Hara T, Kaminomachi S, Maeda H, Watanabe H, Torisu T. Contrast-enhanced MR imaging of subchondral insufficiency fracture of the femoral head: A preliminary comparison with that of osteonecrosis of the femoral head. Arch Orthop Trauma Surg 2009; 129(5): 583-9.
[http://dx.doi.org/10.1007/s00402-008-0642-6] [PMID: 18542974]
[14]
Pape D, Seil R, Fritsch E, Rupp S, Kohn D. Prevalence of spontaneous osteonecrosis of the medial femoral condyle in elderly patients. Knee Surg Sports Traumatol Arthrosc 2002; 10(4): 233-40.
[http://dx.doi.org/10.1007/s00167-002-0285-z] [PMID: 12172718]
[15]
Robertson DD, Armfield DR, Towers JD, Irrgang JJ, Maloney WJ, Harner CD. Meniscal root injury and spontaneous osteonecrosis of the knee. J Bone Joint Surg Br 2009; 91-B(2): 190-5.
[http://dx.doi.org/10.1302/0301-620X.91B2.21097] [PMID: 19190052]
[16]
Yamagami R, Taketomi S, Inui H, Tahara K, Tanaka S. The role of medial meniscus posterior root tear and proximal tibial morphology in the development of spontaneous osteonecrosis and osteoarthritis of the knee. Knee 2017; 24(2): 390-5.
[http://dx.doi.org/10.1016/j.knee.2016.12.004] [PMID: 28169099]
[17]
Ramnath RR, Kattapuram S. MR appearance of SONK-like subchondral abnormalities in the adult knee: SONK redefined. Skeletal Radiol 2004; 33(10): 575-81.
[http://dx.doi.org/10.1007/s00256-004-0777-7] [PMID: 15249985]
[18]
Lotke PA, Ecker ML. Osteonecrosis of the knee. J Bone Joint Surg Am 1988; 70(3): 470-3.
[http://dx.doi.org/10.2106/00004623-198870030-00027] [PMID: 3279040]
[19]
Yasuda T, Ota S, Fujita S, Onishi E, Iwaki K, Yamamoto H. Association between medial meniscus extrusion and spontaneous osteonecrosis of the knee. Int J Rheum Dis 2018; 21(12): 2104-11.
[http://dx.doi.org/10.1111/1756-185X.13074] [PMID: 28378451]
[20]
Viana SL, Machado BB, Mendlovitz PS. MRI of subchondral fractures: A review. Skeletal Radiol 2014; 43(11): 1515-27.
[http://dx.doi.org/10.1007/s00256-014-1946-y] [PMID: 25001872]
[21]
Wilmot AS, Ruutiainen AT, Bakhru PT, Schweitzer ME, Shabshin N. Subchondral insufficiency fracture of the knee: A recognizable associated soft tissue edema pattern and a similar distribution among men and women. Eur J Radiol 2016; 85(11): 2096-103.
[http://dx.doi.org/10.1016/j.ejrad.2016.08.016] [PMID: 27776664]
[22]
Sung JH, Ha JK, Lee DW, Seo WY, Kim JG. Meniscal extrusion and spontaneous osteonecrosis with root tear of medial meniscus: Comparison with horizontal tear. Arthroscopy 2013; 29(4): 726-32.
[http://dx.doi.org/10.1016/j.arthro.2012.11.016] [PMID: 23395469]
[23]
Sayyid S, Younan Y, Sharma G, et al. Subchondral insufficiency fracture of the knee: Grading, risk factors, and outcome. Skeletal Radiol 2019; 48(12): 1961-74.
[http://dx.doi.org/10.1007/s00256-019-03245-6] [PMID: 31250037]
[24]
Liu X, Zhu B, Liu X, Liu Z, Dang G. Circumferential decompression via the posterior approach for the surgical treatment of multilevel thoracic ossification of the posterior longitudinal ligaments: A single institution comparative study. Chin Med J 2014; 127(19): 3371-7.
[PMID: 25269897]
[25]
Norman A, Baker ND. Spontaneous osteonecrosis of the knee and medial meniscal tears. Radiology 1978; 129(3): 653-6.
[http://dx.doi.org/10.1148/129.3.653] [PMID: 581522]
[26]
Feldstein A, Elmer PJ, Orwoll E, Herson M, Hillier T. Bone mineral density measurement and treatment for osteoporosis in older individuals with fractures: a gap in evidence-based practice guideline implementation. Arch Intern Med 2003; 163(18): 2165-72.
[http://dx.doi.org/10.1001/archinte.163.18.2165] [PMID: 14557214]
[27]
Ravikant MVK, Gupta V. Homogeneous and heterogeneous modeling of patient-specific hip implant under static and dynamic loading condition using finite element analysis. J Inst Eng India Ser D 2023.
[http://dx.doi.org/10.1007/s40033-023-00447-0]
[28]
Lotke PA, Abend JA, Ecker ML. The treatment of osteonecrosis of the medial femoral condyle. Clin Orthop Relat Res 1982; 171(&NA;): 109-16.
[http://dx.doi.org/10.1097/00003086-198211000-00019] [PMID: 7140057]
[29]
Aglietti P, Insall JN, Buzzi R, Deschamps G. Idiopathic osteonecrosis of the knee. Aetiology, prognosis and treatment. J Bone Joint Surg Br 1983; 65-B(5): 588-97.
[http://dx.doi.org/10.1302/0301-620X.65B5.6643563] [PMID: 6643563]
[30]
Satku K, Kumar VP, Chong SM, Thambyah A. The natural history of spontaneous osteonecrosis of the medial tibial plateau. J Bone Joint Surg Br 2003; 85-B(7): 983-8.
[http://dx.doi.org/10.1302/0301-620X.85B7.14580] [PMID: 14516032]
[31]
Artul S, Jabaly-Habib H, Artoul F, Habib G. The association between Baker’s cyst and medial meniscal tear in patients with symptomatic knee using ultrasonography. Clin Imaging 2015; 39(4): 659-61.
[http://dx.doi.org/10.1016/j.clinimag.2015.03.003] [PMID: 25825346]
[32]
Marti CB, Rodriguez M, Zanetti M, Romero J. Spontaneous osteonecrosis of the medial compartment of the knee: a MRI follow-up after conservative and operative treatment, preliminary results. Knee Surg Sports Traumatol Arthrosc 2000; 8(2): 83-8.
[http://dx.doi.org/10.1007/s001670050191] [PMID: 10795669]
[33]
Forst J, Forst R, Heller KD, Adam G. Spontaneous osteonecrosis of the femoral condyle: causal treatment by early core decompression. Arch Orthop Trauma Surg 1998; 117(1-2): 18-22.
[http://dx.doi.org/10.1007/BF00703433] [PMID: 9457330]
[34]
Mont MA, Tomek IM, Hungerford DS. Core decompression for avascular necrosis of the distal femur: long term followup. Clin Orthop Relat Res 1997; (334): 124-30.
[http://dx.doi.org/10.1097/00003086-199705000-00019] [PMID: 9005904]
[35]
Valentí Nín JR, Leyes M, Schweitzer D. Spontaneous osteonecrosis of the knee. Knee Surg Sports Traumatol Arthrosc 1998; 6(1): 12-5.
[http://dx.doi.org/10.1007/s001670050065] [PMID: 9507464]
[36]
Gorbachova T, Melenevsky Y, Cohen M, Cerniglia BW. Osteochondral lesions of the knee: Differentiating the most common entities at MRI. Radiographics 2018; 38(5): 1478-95.
[http://dx.doi.org/10.1148/rg.2018180044] [PMID: 30118392]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy