Generic placeholder image

Current Traditional Medicine

Editor-in-Chief

ISSN (Print): 2215-0838
ISSN (Online): 2215-0846

Review Article

Therapeutic Approach of Phytomedicine for Dementia: A Review

Author(s): Sonia Singh* and Neha Gupta

Volume 10, Issue 5, 2024

Published on: 14 July, 2023

Article ID: e230623218225 Pages: 16

DOI: 10.2174/2215083810666230623160622

Price: $65

Abstract

Dementia is a brain disorder with progressive neurological disease. It destroys essential brain cells, impairing memory, thinking, and behavior in a severe way to impact health, enduring interests, and social life. Memory, cognition, orientation, learning capacity, language, and judgments gradually get impaired. Dementia results from anatomical and functional abnormalities, cerebral ischemia, energy deficits, calcium excess, glutamate-mediated excitotoxicity, and oxidative stress. Vascular dementia (VaD), which accounts for 10-15% of dementia cases, is the second most frequent form of dementia after Alzheimer's disease (AD). There are currently no approved pharmaceutical treatments for VaD, and traditional anti-AD therapies only offer modest, temporary relief from the symptoms of VaD. Since herbal remedies have a multicomponent and multitarget approach, they may provide effective treatments for VaD. Herbal remedies have been used for centuries to address dementia-like symptoms. This author describes some preliminary research that supports using herbal drugs in managing vascular dementia and dementia.

Graphical Abstract

[1]
Chang D, Liu J, Bilinski K, et al. Herbal medicine for the treatment of vascular dementia: an overview of scientific evidence. Evid Based Complement Alternat Med 2016; 2016: 7293626.
[http://dx.doi.org/10.1155/2016/7293626]
[2]
Tewari D, Stankiewicz AM, Mocan A, et al. Ethnopharmacological approaches for dementia therapy and significance of natural products and herbal drugs. Front Aging Neurosci 2018; 10: 3.
[http://dx.doi.org/10.3389/fnagi.2018.00003] [PMID: 29483867]
[3]
Dwivedi C, Chandrakar K, Singh V, et al. Indian herbal medicines used for treatment of dementia: an overview. Intl J Pharmacog 2014; 1(9): 353-71.
[4]
Tao P, Ji J, Gu S, Wang Q, Xu Y. Progress in the mechanism of autophagy and traditional Chinese medicine herb involved in dementia. Front Pharmacol 2022; 12: 825330.
[http://dx.doi.org/10.3389/fphar.2021.825330] [PMID: 35242028]
[5]
Farooqui AA, Farooqui T, Madan A, Ong JH, Ong WY. Ayurvedic medicine for the treatment of dementia: mechanistic aspects. Evid Based Compl Alter Med 2018; 2018: 2481076.
[http://dx.doi.org/10.1155/2018/2481076]
[6]
Levine DA, Langa KM. Vascular cognitive impairment: disease mechanisms and therapeutic implications. Neurotherapeutics 2011; 8(3): 361-73.
[http://dx.doi.org/10.1007/s13311-011-0047-z] [PMID: 21556678]
[7]
Jagtap A, Gawande S, Sharma S. Biomarkers in vascular dementia: A recent update. Biomark Gen Med 2015; 7(2): 43-56.
[http://dx.doi.org/10.1016/j.bgm.2014.11.001]
[8]
Uddin MS, Mamun AA, Iqbal MA, et al. Analyzing nootropic effect of Phyllanthus reticulatus Poir. on cognitive functions, brain antioxidant enzymes and acetylcholinesterase activity against aluminium-induced Alzheimer’s model in rats: Applicable for controlling the risk factors of Alzheimer’s disease. Adv Alzheimer Dis 2016; 5(3): 87-102.
[http://dx.doi.org/10.4236/aad.2016.53007]
[9]
Battle CE, Abdul-Rahim AH, Shenkin SD, Hewitt J, Quinn TJ. Cholinesterase inhibitors for vascular dementia and other vascular cognitive impairments: a network meta‐analysis. Cochrane Database Syst Rev 2(2): CD013306.
[10]
Tayler H, Miners JS, Güzel Ö, MacLachlan R, Love S. Mediators of cerebral hypoperfusion and blood‐brain barrier leakiness in Alzheimer’s disease, vascular dementia and mixed dementia. Brain Pathol 2021; 31(4): e12935.
[http://dx.doi.org/10.1111/bpa.12935] [PMID: 33410232]
[11]
Podcasy JL, Epperson CN. Considering sex and gender in Alzheimer disease and other dementias. Dialogues Clin Neurosci 2022.
[PMID: 28179815]
[12]
Sahoo AK, Dandapat J, Dash UC, Kanhar S. Features and outcomes of drugs for combination therapy as multi-targets strategy to combat Alzheimer’s disease. J Ethnopharmacol 2018; 215: 42-73.
[http://dx.doi.org/10.1016/j.jep.2017.12.015] [PMID: 29248451]
[13]
Zanforlin E, Zagotto G, Ribaudo G. The medicinal chemistry of natural and semisynthetic compounds against Parkinson’s and Huntington’s diseases. ACS Chem Neurosci 2017; 8(11): 2356-68.
[http://dx.doi.org/10.1021/acschemneuro.7b00283] [PMID: 28862431]
[14]
Dembitsky VM, Dzhemileva L, Gloriozova T, D’yakonov V. Natural and synthetic drugs used for the treatment of the dementia. Biochem Biophys Res Commun 2020; 524(3): 772-83.
[http://dx.doi.org/10.1016/j.bbrc.2020.01.123] [PMID: 32037088]
[15]
Téglás T, Németh Z, Koller Á, Van der Zee EA, Luiten PGM, Nyakas C. Effects of long-term moderate intensity exercise on cognitive behaviors and cholinergic forebrain in the aging rat. Neuroscience 2019; 411: 65-75.
[http://dx.doi.org/10.1016/j.neuroscience.2019.05.037] [PMID: 31146009]
[16]
Wu Q, Cao Y, Liu M, et al. Traditional Chinese medicine shenmayizhi decoction ameliorates memory and cognitive impairment induced by scopolamine via preventing hippocampal cholinergic dysfunction in rats. Neuropsychiatr Dis Treat 2019; 15: 3167-76.
[http://dx.doi.org/10.2147/NDT.S214976] [PMID: 31814724]
[17]
Bai X, Zhang M. Traditional Chinese medicine intervenes in vascular dementia: traditional medicine brings new expectations. Front Pharmacol 2021; 12: 689625.
[http://dx.doi.org/10.3389/fphar.2021.689625] [PMID: 34194332]
[18]
Zhao T, Fu Y, Sun H, Liu X. Ligustrazine suppresses neuron apoptosis via the Bax/Bcl-2 and caspase-3 pathway in PC12 cells and in rats with vascular dementia. IUBMB Life 2018; 70(1): 60-70.
[http://dx.doi.org/10.1002/iub.1704] [PMID: 29247598]
[19]
Sun ZK, Ma XR, Jia YJ, Liu YR, Zhang JW, Zhang BA. Effects of resveratrol on apoptosis in a rat model of vascular dementia. Exp Ther Med 2014; 7(4): 843-8.
[http://dx.doi.org/10.3892/etm.2014.1542] [PMID: 24660032]
[20]
Xu J, Qi Q, Lv P, Dong Y, Jiang X, Liu Z. Oxiracetam ameliorates cognitive deficits in vascular dementia rats by regulating the expression of neuronal apoptosis/autophagy-related genes associated with the activation of the Akt/mTOR signaling pathway. Braz J Med Biol Res 2019; 52(11): e8371.
[http://dx.doi.org/10.1590/1414-431x20198371] [PMID: 31721903]
[21]
García-Alberca JM, Mendoza S, Gris E. Benefits of treatment with Ginkgo biloba extract EGb 761 alone or combined with acetylcholinesterase inhibitors in vascular dementia. Clin Drug Investig 2022; 42(5): 391-402.
[http://dx.doi.org/10.1007/s40261-022-01136-8] [PMID: 35349093]
[22]
Hashiguchi M, Ohta Y, Shimizu M, Maruyama J, Mochizuki M. Meta-analysis of the efficacy and safety of Ginkgo biloba extract for the treatment of dementia. J Pharm Health Care Sci 2015; 1(1): 14.
[http://dx.doi.org/10.1186/s40780-015-0014-7] [PMID: 26819725]
[23]
Zhang HF, Huang LB, Zhong YB, et al. An overview of systematic reviews of Ginkgo biloba extracts for mild cognitive impairment and dementia. Front Aging Neurosci 2016; 8: 276.
[http://dx.doi.org/10.3389/fnagi.2016.00276] [PMID: 27999539]
[24]
Kumbhar SA, Hangargekar CB, Joshi AA. Huperzine a from Huperzia serrata-a systematic review. Int J Adv Sci Res 2020; 11(03): 22-9.
[25]
Ferreira A, Rodrigues M, Fortuna A, Falcão A, Alves G. Huperzine A from Huperzia serrata: a review of its sources, chemistry, pharmacology and toxicology. Phytochem Rev 2016; 15(1): 51-85.
[http://dx.doi.org/10.1007/s11101-014-9384-y]
[26]
Ohba T, Yoshino Y, Ishisaka M, et al. Japanese Huperzia serrata extract and the constituent, huperzine A, ameliorate the scopolamine-induced cognitive impairment in mice. Biosci Biotechnol Biochem 2015; 79(11): 1838-44.
[http://dx.doi.org/10.1080/09168451.2015.1052773] [PMID: 26059088]
[27]
Wang X, Kim JR, Lee SB, et al. Effects of curcuminoids identified in rhizomes of Curcuma longa on BACE-1 inhibitory and behavioral activity and lifespan of Alzheimer’s disease Drosophila models. BMC Complement Altern Med 2014; 14(1): 88.
[http://dx.doi.org/10.1186/1472-6882-14-88] [PMID: 24597901]
[28]
Rajabian A, Rameshrad M, Hosseinzadeh H. Therapeutic potential of Panax ginseng and its constituents, ginsenosides and gintonin, in neurological and neurodegenerative disorders: a patent review. Expert Opin Ther Pat 2019; 29(1): 55-72.
[http://dx.doi.org/10.1080/13543776.2019.1556258] [PMID: 30513224]
[29]
Shen F, Wang J, Gao F, Wang J, Zhu G. Ginsenoside Rg1 prevents cognitive impairment and hippocampal neuronal apoptosis in experimental vascular dementia mice by promoting GPR30 expression. Neural Plast 2021; 2021: 1-11.
[http://dx.doi.org/10.1155/2021/2412220] [PMID: 34899899]
[30]
Liu J, Chang D, Cordato D, et al. A pilot randomized controlled trial of WeiNaoKang (SaiLuoTong) in treating vascular dementia. Aging Med (Milton) 2022; 5(4): 246-56.
[http://dx.doi.org/10.1002/agm2.12230] [PMID: 36606270]
[31]
Kamkaew N, Ingkaninan K, Waranuch N, et al. Efficacy of Bacopa monnieri on memory and vascular functions: A randomised controlled trial. Res Squ 2022; 2022: PPR556928.
[http://dx.doi.org/10.21203/rs.3.rs-2069630/v1]
[32]
Le XT, Nguyet Pham HT, Van Nguyen T, et al. Protective effects of Bacopa monnieri on ischemia-induced cognitive deficits in mice: The possible contribution of bacopaside I and underlying mechanism. J Ethnopharmacol 2015; 164: 37-45.
[http://dx.doi.org/10.1016/j.jep.2015.01.041] [PMID: 25660331]
[33]
Hu J, Zhao M, Hou Z, Shang J. The complete chloroplast genome sequence of Salvia miltiorrhiza, a medicinal plant for preventing and treating vascular dementia. Mitochondrial DNA B Resour 2020; 5(3): 2460-2.
[http://dx.doi.org/10.1080/23802359.2020.1778574] [PMID: 33457827]
[34]
Kim MS, Bang JH, Lee J, et al. Salvia miltiorrhiza extract protects white matter and the hippocampus from damage induced by chronic cerebral hypoperfusion in rats. BMC Complement Altern Med 2015; 15(1): 415.
[http://dx.doi.org/10.1186/s12906-015-0943-6] [PMID: 26597908]
[35]
Jung I, Kim H, Moon S, Lee H, Kim B. Overview of Salvia miltiorrhiza as a potential therapeutic agent for various diseases: an update on efficacy and mechanisms of action. Antioxidants 2020; 9(9): 857.
[http://dx.doi.org/10.3390/antiox9090857] [PMID: 32933217]
[36]
Wang DG, Liu WY, Chen GT. A simple method for the isolation and purification of resveratrol from Polygonum cuspidatum. J Pharm Anal 2013; 3(4): 241-7.
[http://dx.doi.org/10.1016/j.jpha.2012.12.001] [PMID: 29403824]
[37]
Nemetchek MD, Stierle AA, Stierle DB, Lurie DI. The Ayurvedic plant Bacopa monnieri inhibits inflammatory pathways in the brain. J Ethnopharmacol 2017; 197: 92-100.
[http://dx.doi.org/10.1016/j.jep.2016.07.073] [PMID: 27473605]
[38]
Omar NS, Akmal Z, Zakaria C, Mian TS. Centella asiatica modulates neuron cell survival by altering caspase-9 pathway. J Med Plants Res 2011; 5(11): 2201-109.
[39]
Rachitha P, Krupashree K, Jayashree GV, et al. Chemical composition, antioxidant potential, macromolecule damage and neuroprotective activity of Convolvulus pluricaulis. J Tradit Complement Med 2018; 8(4): 483-96.
[http://dx.doi.org/10.1016/j.jtcme.2017.11.002] [PMID: 30302329]
[40]
Ramakrishna V, Gupta KP, Setty HO, Kondapi KA. Neuroprotective effect of Emblica officinalis extract against H2O2 induced DNA damage and repair in neuroblastoma cells. J Homeop Ayurv Med 2014; S1: 1002.
[41]
Yadav MK, Singh SK, Tripathi JS, Tripathi YB. Phytochemical screening and in vitro antioxidant activity of Evolvulus alsinoides extracts. Int J Pharm Sci Res 2018; 9(3): 1247-50.
[42]
Anosike CA, Igboegwu ON, Nwodo OFC. Antioxidant properties and membrane stabilization effects of methanol extract of Mucuna pruriens leaves on normal and sickle erythrocytes. J Tradit Complement Med 2019; 9(4): 278-84.
[http://dx.doi.org/10.1016/j.jtcme.2017.08.002] [PMID: 31453123]
[43]
Kataria H, Wadhwa R, Kaul SC, Kaur G. Water extract from the leaves of Withania somnifera protect RA differentiated C6 and IMR-32 cells against glutamate-induced excitotoxicity. PLoS One 2012; 7(5): e37080.
[http://dx.doi.org/10.1371/journal.pone.0037080] [PMID: 22606332]
[44]
Uddin MS, Asaduzzaman M, Mamun AA, Iqbal MA, Wahid F, Rony RK. Neuroprotective activity of Asparagus racemosus Linn. against ethanol-induced cognitive impairment and oxidative stress in rats brain: Auspicious for controlling the risk of Alzheimer’s disease. J Alzheimers Dis Parkinsonism 2016; 6: 4.
[http://dx.doi.org/10.4172/2161-0460.1000245]
[45]
Bayram C, Hacimuftuoglu A. Investigation of antioxidant efficacy of Glycyrrhiza glabra L. extract in glutamate toxicity-induced primary neuron culture. Anatolian Journal of Biology 2022; 3(1): 18-24.
[46]
Mokhtarian A, Esfandiari E, Ghanadian M, Rashidi B, Vatankhah A. The effects of Acorus calamus L. in preventing memory loss, anxiety, and oxidative stress on lipopolysaccharide-induced neuroinflammation rat models. Int J Prev Med 2018; 9(1): 85.
[http://dx.doi.org/10.4103/ijpvm.IJPVM_75_18] [PMID: 30450168]
[47]
Malik J, Karan M, Dogra R. Ameliorating effect of Celastrus paniculatus standardized extract and its fractions on 3-nitropropionic acid induced neuronal damage in rats: possible antioxidant mechanism. Pharm Biol 2017; 55(1): 980-90.
[http://dx.doi.org/10.1080/13880209.2017.1285945] [PMID: 28164735]
[48]
Plaingam W, Sangsuthum S, Angkhasirisap W, Tencomnao T. Kaempferia parviflora rhizome extract and Myristica fragrans volatile oil increase the levels of monoamine neurotransmitters and impact the proteomic profiles in the rat hippocampus: Mechanistic insights into their neuroprotective effects. J Tradit Complement Med 2017; 7(4): 538-52.
[http://dx.doi.org/10.1016/j.jtcme.2017.01.002] [PMID: 29034205]
[49]
Kosaraju J, Chinni S, Roy P, Kannan E, Antony AS, Kumar MNS. Neuroprotective effect of Tinospora cordifolia ethanol extract on 6-hydroxy dopamine induced Parkinsonism. Indian J Pharmacol 2014; 46(2): 176-80.
[http://dx.doi.org/10.4103/0253-7613.129312] [PMID: 24741189]
[50]
Moneim AE. Antioxidant activities of Punica granatum (pomegranate) peel extract on brain of rats. J Med Plants Res 2012; 6(2): 195-9.
[51]
Ceker S, Agar G, Alpsoy L, Nardemir G, Kizil HE, Mete E. Protective Role of Mentha longifolia L. ssp. longifolia against Aflatoxin B. J Essent Oil-Bear Plants 2013; 16(5): 600-7.
[http://dx.doi.org/10.1080/0972060X.2013.854487]
[52]
Kaur P, Arora S. Superoxide anion radical scavenging activity of Cassia siamea and Cassia javanica. Med Chem Res 2011; 20(1): 9-15.
[http://dx.doi.org/10.1007/s00044-009-9274-9]
[53]
Park SE, Kim S, Sapkota K, Kim SJ. Neuroprotective effect of Rosmarinus officinalis extract on human dopaminergic cell line, SH-SY5Y. Cell Mol Neurobiol 2010; 30(5): 759-67.
[http://dx.doi.org/10.1007/s10571-010-9502-3] [PMID: 20563702]
[54]
Bozorgi M, Najafi Z, Omidpanah S, et al. Investigation of anti-Alzheimer’s activity of aqueous extract of areca nuts (Areca catechu L.): In vitro and in vivo studies. Bol Latinoam Caribe Plantas Med Aromat 2021; 20(4): 406-15.
[http://dx.doi.org/10.37360/blacpma.21.20.4.30]
[55]
Bayat M, Azami Tameh A, Hossein Ghahremani M, et al. Neuroprotective properties of Melissa officinalis after hypoxic-ischemic injury both in vitro and in vivo. Daru 2012; 20(1): 42.
[http://dx.doi.org/10.1186/2008-2231-20-42] [PMID: 23351182]
[56]
Rybková Z, Malachová K. Antigenotoxic effects of a bark extract from Magnolia officinalis. Acta Mus Sil Sci Nat 2012; 61: 273-8.
[57]
Gupta J. Recent advances in nanomaterials for therapy and diagnosis of cardiovascular disease. J Pharm Res Int 2021; 33(59A): 229-44.
[http://dx.doi.org/10.9734/jpri/2021/v33i59A34268]
[58]
Harwansh RK, Deshmukh R, Rahman MA. Nanoemulsion: Promising nanocarrier system for delivery of herbal bioactives. J Drug Deliv Sci Technol 2019; 51: 224-33.
[http://dx.doi.org/10.1016/j.jddst.2019.03.006]
[59]
Verma T, Sinha M, Bansal N, et al. Plants used as Antihypertensive Nat Prod Bioprospect. Nat Prod Bioprospect 2021; 11(2): 155-84.
[60]
Bajpai M, Shafi H, Kumari S. Nanoparticles: Importance and need for regulations. Nanoform Hum Health 2020; pp. 93-107.
[61]
Wagner H, Ulrich-Merzenich G. Synergy research: Approaching a new generation of phytopharmaceuticals. Phytomedicine 2009; 16(2-3): 97-110.
[http://dx.doi.org/10.1016/j.phymed.2008.12.018] [PMID: 19211237]
[62]
Rasoanaivo P, Wright CW, Willcox ML, Gilbert B. Whole plant extracts versus single compounds for the treatment of malaria: synergy and positive interactions. Malar J 2011; 10(S1) (Suppl. 1): S4.
[http://dx.doi.org/10.1186/1475-2875-10-S1-S4] [PMID: 21411015]
[63]
Carmona F, Soares Pereira AM. Herbal medicines: Old and new concepts, truths and misunderstandings. Rev Bras Farmacogn 2013; 23(2): 379-85.
[http://dx.doi.org/10.1590/S0102-695X2013005000018]
[64]
Williamson E. Synergy and other interactions in phytomedicines. Phytomedicine 2001; 8(5): 401-9.
[http://dx.doi.org/10.1078/0944-7113-00060] [PMID: 11695885]
[65]
Tian J, Shi J, Zhang X, Wang Y. Herbal therapy: a new pathway for the treatment of Alzheimer’s disease. Alzheimers Res Ther 2010; 2(5): 30.
[http://dx.doi.org/10.1186/alzrt54] [PMID: 21067555]
[66]
Akram M, Nawaz A. Effects of medicinal plants on Alzheimer’s disease and memory deficits. Neural Regen Res 2017; 12(4): 660-70.
[http://dx.doi.org/10.4103/1673-5374.205108] [PMID: 28553349]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy