Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Mini-Review Article

A Comprehensive Review on the Role of Chemotype Marine Derived-Drug Discovery

Author(s): Santhosh Rajakumar, Ramprasadh S.V., Susha D. and Sameer Sharma*

Volume 20, Issue 1, 2024

Published on: 16 August, 2023

Article ID: e220623218182 Pages: 12

DOI: 10.2174/1573407219666230622153941

Price: $65

Abstract

The global population's rapid expansion is a worldwide concern, which has led to higher medication and resource consumption. As a result, there is a tremendous need to seek out new means of producing reliable medications to meet the rising demand of a global populace suffering from a wide range of health problems. Various resources are available in marine habitats for the development of novel medications. Their life circumstances are radically different from those found in a terrestrial setting. In order for marine animals to thrive in the ocean, they produce a variety of secondary metabolites, which can possibly be life-saving bioactive compounds that come from an increasing variety of marine microorganisms. These metabolites have pharmacological properties that make them intriguing as a potential for human medications. Therefore, there has recently been a rise in interest in marine-derived biomolecules as potential treatments. Utilizing a wide range of screening methods, we can investigate the effects of these extracts and purified compounds from marine organisms in the medicinal industry, such as cancer prevention, inflammation reduction, virus and bacteria inhibition, ion channel/receptor modulation, and plant growth stimulation. The structures of bioactive substances will be determined after they have been isolated chromatographically. Marine-based bioactive compounds can be (semi) synthesized to make new derivatives, structural analogues, and copies that can be used to build new marine-based chemical catalogs and contribute as lead or hit molecules. This overview classifies FDA-approved marine-based drugs and provides information on their origins, chemical composition, manufacturing processes, and pharmacology. This paper outlines the supply dilemma in marine medicine development.

Graphical Abstract

[1]
Kiuru, P.; DʼAuria, M.; Muller, C.; Tammela, P.; Vuorela, H.; Yli-Kauhaluoma, J. Exploring marine resources for bioactive compounds. Planta Med., 2014, 80(14), 1234-1246.
[http://dx.doi.org/10.1055/s-0034-1383001] [PMID: 25203732]
[2]
Lindequist, U. Marine-derived pharmaceuticals - challenges and opportunities. Biomol. Ther. (Seoul), 2016, 24(6), 561-571.
[http://dx.doi.org/10.4062/biomolther.2016.181] [PMID: 27795450]
[3]
Pandey, A. Pharmacological Potential of Marine Microbes. Environmental Chemistry for a Sustainable World; Springer International Pub-lishing: Cham, 2019, pp. 1-25.
[4]
Singh, K.N.; Kanase, H. Marine pharmacology: potential, challenges, and future in India. Yixue Yanjiu Zazhi, 2018, 38(2), 49.
[http://dx.doi.org/10.4103/jmedsci.jmedsci_126_17]
[5]
Petersen, L-E.; Kellermann, M.Y.; Schupp, P.J. Secondary Metabolites of Marine Microbes: From Natural Products Chemistry to Chemical Ecology. YOUMARES 9 - The Oceans: Our Research, Our Future; Springer International Publishing: Cham, 2020, pp. 159-180.
[http://dx.doi.org/10.1007/978-3-030-20389-4_8]
[6]
Kupchan, S.M.; Britton, R.W.; Ziegler, M.F.; Sigel, C.W. Bruceantin, a new potent antileukemic simaroubolide from Brucea antidysenter-ica. J. Org. Chem., 1973, 38(1), 178-179.
[http://dx.doi.org/10.1021/jo00941a049] [PMID: 4682660]
[7]
Graverholt, O.S.; Eriksen, N.T. Heterotrophic high-cell-density fed-batch and continuous-flow cultures of Galdieria sulphuraria and production of phycocyanin. Appl. Microbiol. Biotechnol., 2007, 77(1), 69-75.
[http://dx.doi.org/10.1007/s00253-007-1150-2] [PMID: 17786429]
[8]
Esteves-Ferreira, A.A.; Corrêa, D.M.; Carneiro, A.P.S.; Rosa, R.M.; Loterio, R.; Araújo, W.L. Comparative evaluation of different preservation methods for cyanobacterial strains. J. Appl. Phycol., 2013, 25(4), 919-929.
[http://dx.doi.org/10.1007/s10811-012-9927-9]
[9]
Verschuere, L.; Rombaut, G.; Sorgeloos, P.; Verstraete, W. Probiotic bacteria as biological control agents in aquaculture. Microbiol. Mol. Biol. Rev., 2000, 64(4), 655-671.
[http://dx.doi.org/10.1128/MMBR.64.4.655-671.2000] [PMID: 11104813]
[10]
Preisig, H.R.; Andersen, R.A. Historical Review of Algal Culturing Techniques.Algal Culturing Techniques; Elsevier, 2005, pp. 1-12.
[11]
Donia, M.S.; Ruffner, D.E.; Cao, S.; Schmidt, E.W. Accessing the hidden majority of marine natural products through metagenomics. Chem Bio Chem, 2011, 12(8), 1230-1236.
[http://dx.doi.org/10.1002/cbic.201000780] [PMID: 21542088]
[12]
Breton, R.C.; Reynolds, W.F. Using NMR to identify and characterize natural products. Nat. Prod. Rep., 2013, 30(4), 501-524.
[http://dx.doi.org/10.1039/c2np20104f] [PMID: 23291908]
[13]
Ghitti, M.; Musco, G.; Spitaleri, A. NMR and computational methods in the structural and dynamic characterization of ligand-receptor interactions. Adv. Exp. Med. Biol., 2014, 805, 271-304.
[http://dx.doi.org/10.1007/978-3-319-02970-2_12] [PMID: 24446366]
[14]
Seco, J.M.; Quiñoá, E.; Riguera, R. The assignment of absolute configuration by NMR. Chem. Rev., 2004, 104(1), 17-118.
[http://dx.doi.org/10.1021/cr000665j] [PMID: 22658125]
[15]
Koehn, F.E.; Carter, G.T. The evolving role of natural products in drug discovery. Nat. Rev. Drug Discov., 2005, 4(3), 206-220.
[http://dx.doi.org/10.1038/nrd1657] [PMID: 15729362]
[16]
Khalifa, S.A.M.; Elias, N.; Farag, M.A.; Chen, L.; Saeed, A.; Hegazy, M.E.F.; Moustafa, M.S.; Abd El-Wahed, A.; Al-Mousawi, S.M.; Musharraf, S.G.; Chang, F.R.; Iwasaki, A.; Suenaga, K.; Alajlani, M.; Göransson, U.; El-Seedi, H.R. Marine natural products: a source of novel anticancer drugs. Mar. Drugs, 2019, 17(9), 491.
[http://dx.doi.org/10.3390/md17090491] [PMID: 31443597]
[17]
Chen, J.; Chen, X.; Willot, M.; Zhu, J. Asymmetric total syntheses of ecteinascidin 597 and ecteinascidin 583. Angew. Chem. Int. Ed., 2006, 45(47), 8028-8032.
[http://dx.doi.org/10.1002/anie.200603179] [PMID: 17099922]
[18]
Shang, S.; Tan, D.S. Advancing chemistry and biology through diversity-oriented synthesis of natural product-like libraries. Curr. Opin. Chem. Biol., 2005, 9(3), 248-258.
[http://dx.doi.org/10.1016/j.cbpa.2005.03.006] [PMID: 15939326]
[19]
Biemar, F.; Foti, M. Global progress against cancer-challenges and opportunities. Cancer Biol. Med., 2013, 10(4), 183-186.
[http://dx.doi.org/10.7497/j.issn.2095-3941.2013.04.001] [PMID: 24349827]
[20]
Carroll, A.R.; Copp, B.R.; Davis, R.A.; Keyzers, R.A.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep., 2022, 39(6), 1122-1171.
[http://dx.doi.org/10.1039/D1NP00076D] [PMID: 35201245]
[21]
de Claro, R.A.; McGinn, K.; Kwitkowski, V.; Bullock, J.; Khandelwal, A.; Habtemariam, B.; Ouyang, Y.; Saber, H.; Lee, K.; Koti, K.; Rothmann, M.; Shapiro, M.; Borrego, F.; Clouse, K.; Chen, X.H.; Brown, J.; Akinsanya, L.; Kane, R.; Kaminskas, E.; Farrell, A.; Pazdur, R. U.S. Food and drug administration approval summary: brentuximab vedotin for the treatment of relapsed Hodgkin lymphoma or re-lapsed systemic anaplastic large-cell lymphoma. Clin. Cancer Res., 2012, 18(21), 5845-5849.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-1803] [PMID: 22962441]
[22]
Pereira, R.B.; Evdokimov, N.M.; Lefranc, F.; Valentão, P.; Kornienko, A.; Pereira, D.M.; Andrade, P.B.; Gomes, N.G.M. Marine-derived anticancer agents: clinical benefits, innovative mechanisms, and new targets. Mar. Drugs, 2019, 17(6), 329.
[http://dx.doi.org/10.3390/md17060329] [PMID: 31159480]
[23]
Di Francia, R.; Crisci, S.; De Monaco, A.; Cafiero, C.; Re, A.; Iaccarino, G.; De Filippi, R.; Frigeri, F.; Corazzelli, G.; Micera, A.; Pinto, A. Response and toxicity to cytarabine therapy in leukemia and lymphoma: from dose puzzle to pharmacogenomic biomarkers. Cancers, 2021, 13(5), 966.
[http://dx.doi.org/10.3390/cancers13050966] [PMID: 33669053]
[24]
Lichtman, M.A. A historical perspective on the development of the cytarabine (7days) and daunorubicin (3days) treatment regimen for acute myelogenous leukemia: 2013 the 40th anniversary of 7+3. Blood Cells Mol. Dis., 2013, 50(2), 119-130.
[http://dx.doi.org/10.1016/j.bcmd.2012.10.005] [PMID: 23154039]
[25]
Rinehart, K.L.; Holt, T.G.; Fregeau, N.L.; Stroh, J.G.; Keifer, P.A.; Sun, F.; Li, L.H.; Martin, D.G. Ecteinascidins 729, 743, 745, 759A, 759B, and 770: potent antitumor agents from the Caribbean tunicate Ecteinascidia turbinata. J. Org. Chem., 1990, 55(15), 4512-4515.
[http://dx.doi.org/10.1021/jo00302a007]
[26]
Demetri, G.D.; von Mehren, M.; Jones, R.L.; Hensley, M.L.; Schuetze, S.M.; Staddon, A.; Milhem, M.; Elias, A.; Ganjoo, K.; Tawbi, H.; Van Tine, B.A.; Spira, A.; Dean, A.; Khokhar, N.Z.; Park, Y.C.; Knoblauch, R.E.; Parekh, T.V.; Maki, R.G.; Patel, S.R. Efficacy and safety of trabectedin or dacarbazine for metastatic liposarcoma or leiomyosarcoma after failure of conventional chemotherapy: Results of a phase iii randomized multicenter clinical trial. J. Clin. Oncol., 2016, 34(8), 786-793.
[http://dx.doi.org/10.1200/JCO.2015.62.4734] [PMID: 26371143]
[27]
Aseyev, O.; Ribeiro, J.M.; Cardoso, F. Review on the clinical use of eribulin mesylate for the treatment of breast cancer. Expert Opin. Pharmacother., 2016, 17(4), 589-600.
[http://dx.doi.org/10.1517/14656566.2016.1146683] [PMID: 26809667]
[28]
Schöffski, P.; Chawla, S.; Maki, R.G.; Italiano, A.; Gelderblom, H.; Choy, E.; Grignani, G.; Camargo, V.; Bauer, S.; Rha, S.Y.; Blay, J.Y.; Hohenberger, P.; D’Adamo, D.; Guo, M.; Chmielowski, B.; Le Cesne, A.; Demetri, G.D.; Patel, S.R. Eribulin versus dacarbazine in previ-ously treated patients with advanced liposarcoma or leiomyosarcoma: a randomised, open-label, multicentre, phase 3 trial. Lancet, 2016, 387(10028), 1629-1637.
[http://dx.doi.org/10.1016/S0140-6736(15)01283-0] [PMID: 26874885]
[29]
Newman, D.J.; Cragg, G.M. Advanced preclinical and clinical trials of natural products and related compounds from marine sources. Curr. Med. Chem., 2004, 11(13), 1693-1713.
[http://dx.doi.org/10.2174/0929867043364982] [PMID: 15279577]
[30]
Lassman, A.B.; Pugh, S.L.; Wang, T.J.; Aldape, K.; Gan, H.K.; Preusser, M.; Vogelbaum, M.A.; Sulman, E.P.; Won, M.; Zhang, P.; Mo-azami, G. Depatuxizumab Mafodotin in EGFR-amplified newly diagnosed glioblastoma: A phase iii randomized clinical trial. Neuro-oncol., 2022, 25(2), 339-350.
[PMID: 35849035]
[31]
Pusztai, L.; Chung, J.; Young, L.; Schrock, A.B.; Hartmaier, R.; Frampton, G.M.; Gay, L.M.; Stephens, P.; Miller, V.A.; Ali, S.M.; Ross, J.S.; Vahdat, L.T.; O’Shaughnessy, J. Genomic profiling of circulating tumor DNA (ctDNA) from patients (pts) with metastatic breast can-cer (mBC). J. Clin. Oncol., 2017, 35(15_suppl), 1016-1016.
[http://dx.doi.org/10.1200/JCO.2017.35.15_suppl.1016]
[32]
Ning, C.; Wang, H.M.D.; Gao, R.; Chang, Y.C.; Hu, F.; Meng, X.; Huang, S.Y. Marine-derived protein kinase inhibitors for neuroinflam-matory diseases. Biomed. Eng. Online, 2018, 17(1), 46.
[http://dx.doi.org/10.1186/s12938-018-0477-5] [PMID: 29690896]
[33]
Butler, M.S.; Robertson, A.A.B.; Cooper, M.A. Natural product and natural product derived drugs in clinical trials. Nat. Prod. Rep., 2014, 31(11), 1612-1661.
[http://dx.doi.org/10.1039/C4NP00064A] [PMID: 25204227]
[34]
Morschhauser, F.; Flinn, I.W.; Advani, R.; Sehn, L.H.; Diefenbach, C.; Kolibaba, K.; Press, O.W.; Salles, G.; Tilly, H.; Chen, A.I.; As-souline, S.; Cheson, B.D.; Dreyling, M.; Hagenbeek, A.; Zinzani, P.L.; Jones, S.; Cheng, J.; Lu, D.; Penuel, E.; Hirata, J.; Wenger, M.; Chu, Y.W.; Sharman, J. Polatuzumab vedotin or pinatuzumab vedotin plus rituximab in patients with relapsed or refractory non-Hodgkin lymphoma: final results from a phase 2 randomised study (ROMULUS). Lancet Haematol., 2019, 6(5), e254-e265.
[http://dx.doi.org/10.1016/S2352-3026(19)30026-2] [PMID: 30935953]
[35]
Rinehart, K.L.; Holt, T.G.; Fregeau, N.L.; Keifer, P.A.; Wilson, G.R.; Perun, T.J., Jr; Sakai, R.; Thompson, A.G.; Stroh, J.G.; Shield, L.S.; Seigler, D.S.; Li, L.H.; Martin, D.G.; Grimmelikhuijzen, C.J.P.; Gäde, G. Bioactive compounds from aquatic and terrestrial sources. J. Nat. Prod., 1990, 53(4), 771-792.
[http://dx.doi.org/10.1021/np50070a001] [PMID: 2095373]
[36]
Izquierdo, M.A.; Bowman, A.; García, M.; Jodrell, D.; Martinez, M.; Pardo, B.; Gómez, J.; López-Martin, J.A.; Jimeno, J.; Germá, J.R.; Smyth, J.F.; Phase, I. Phase I clinical and pharmacokinetic study of plitidepsin as a 1-hour weekly intravenous infusion in patients with advanced solid tumors. Clin. Cancer Res., 2008, 14(10), 3105-3112.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-1652] [PMID: 18483378]
[37]
Gomes, N.; Lefranc, F.; Kijjoa, A.; Kiss, R. Can some marine-derived fungal metabolites become actual anticancer agents? Mar. Drugs, 2015, 13(6), 3950-3991.
[http://dx.doi.org/10.3390/md13063950] [PMID: 26090846]
[38]
Nicholson, B.; Lloyd, G.K.; Miller, B.R.; Palladino, M.A.; Kiso, Y.; Hayashi, Y.; Neuteboom, S.T.C. NPI-2358 is a tubulin depolymerizing agent: in-vitro evidence for activity as a tumor vascular-disrupting agent. Anticancer Drugs, 2006, 17(1), 25-31.
[http://dx.doi.org/10.1097/01.cad.0000182745.01612.8a] [PMID: 16317287]
[39]
Pommier, Y.; Kohlhagen, G.; Bailly, C.; Waring, M.; Mazumder, A.; Kohn, K.W. DNA sequence- and structure-selective alkylation of guanine N2 in the DNA minor groove by ecteinascidin 743, a potent antitumor compound from the Caribbean tunicate Ecteinascidia turbi-nata . Biochemistry, 1996, 35(41), 13303-13309.
[http://dx.doi.org/10.1021/bi960306b] [PMID: 8873596]
[40]
Sehn, L.H.; Herrera, A.F.; Flowers, C.R.; Kamdar, M.K.; McMillan, A.; Hertzberg, M.; Assouline, S.; Kim, T.M.; Kim, W.S.; Ozcan, M.; Hirata, J.; Penuel, E.; Paulson, J.N.; Cheng, J.; Ku, G.; Matasar, M.J. Polatuzumab vedotin in relapsed or refractory diffuse large B-cell lymphoma. J. Clin. Oncol., 2020, 38(2), 155-165.
[http://dx.doi.org/10.1200/JCO.19.00172] [PMID: 31693429]
[41]
Ramasubramanian, V.; Surendran, R.; Bansal, N.; Sridharan, S.; Gopalakrishnan, N.; Prasad, S.; Rahman, M.; Bansal, S. Endemic parasitic disease - Expert group opinion for South Asia for solid-organ transplantation - Leishmaniasis, malaria, toxoplasmosis, filariasis, and strongyloidiasis. Indian J. Transplant, 2022, 16(5), 57.
[http://dx.doi.org/10.4103/ijot.ijot_117_21]
[42]
Torres-Guerrero, E.; Quintanilla-Cedillo, M.R.; Ruiz-Esmenjaud, J.; Arenas, R. Leishmaniasis: a review. F1000 Res., 2017, 6, 750.
[http://dx.doi.org/10.12688/f1000research.11120.1] [PMID: 28649370]
[43]
Roatt, B.M.; de Oliveira Cardoso, J.M.; De Brito, R.C.F.; Coura-Vital, W.; de Oliveira Aguiar-Soares, R.D.; Reis, A.B. Recent advances and new strategies on leishmaniasis treatment. Appl. Microbiol. Biotechnol., 2020, 104(21), 8965-8977.
[http://dx.doi.org/10.1007/s00253-020-10856-w] [PMID: 32875362]
[44]
Heras-Mosteiro, J.; Monge-Maillo, B.; Pinart, M.; Lopez Pereira, P.; Reveiz, L.; Garcia-Carrasco, E.; Campuzano Cuadrado, P.; Royuela, A.; Mendez Roman, I.; López-Vélez, R. Interventions for Old World cutaneous leishmaniasis. Cochrane Libr., 2017, 2017(12), CD005067.
[http://dx.doi.org/10.1002/14651858.CD005067.pub5] [PMID: 29192424]
[45]
Mann, S.; Frasca, K.; Scherrer, S.; Henao-Martínez, A.F.; Newman, S.; Ramanan, P.; Suarez, J.A. A review of leishmaniasis: current knowledge and future directions. Curr. Trop. Med. Rep., 2021, 8(2), 121-132.
[http://dx.doi.org/10.1007/s40475-021-00232-7] [PMID: 33747716]
[46]
Davies-Bolorunduro, O.F.; Osuolale, O.; Saibu, S.; Adeleye, I.A.; Aminah, N.S. Bioprospecting marine actinomycetes for antileishmanial drugs: current perspectives and future prospects. Heliyon, 2021, 7(8), e07710.
[http://dx.doi.org/10.1016/j.heliyon.2021.e07710] [PMID: 34409179]
[47]
Cragg, G.M.; Newman, D.J. Natural products: A continuing source of novel drug leads. Biochim. Biophys. Acta, Gen. Subj., 2013, 1830(6), 3670-3695.
[http://dx.doi.org/10.1016/j.bbagen.2013.02.008] [PMID: 23428572]
[48]
Selim, M.S.M.; Abdelhamid, S.A.; Mohamed, S.S. Secondary metabolites and biodiversity of actinomycetes. J. Genet. Eng. Biotechnol., 2021, 19(1), 72.
[http://dx.doi.org/10.1186/s43141-021-00156-9] [PMID: 33982192]
[49]
Parra, L.L.L.; Bertonha, A.F.; Severo, I.R.M.; Aguiar, A.C.C.; de Souza, G.E.; Oliva, G.; Guido, R.V.C.; Grazzia, N.; Costa, T.R.; Miguel, D.C.; Gadelha, F.R.; Ferreira, A.G.; Hajdu, E.; Romo, D.; Berlinck, R.G.S. Isolation, derivative synthesis, and structure-activity relationships of antiparasitic bromopyrrole alkaloids from the marine sponge Tedania brasiliensis. J. Nat. Prod., 2018, 81(1), 188-202.
[http://dx.doi.org/10.1021/acs.jnatprod.7b00876] [PMID: 29297684]
[50]
Imperatore, C.; Gimmelli, R.; Persico, M.; Casertano, M.; Guidi, A.; Saccoccia, F.; Ruberti, G.; Luciano, P.; Aiello, A.; Parapini, S.; Avunduk, S.; Basilico, N.; Fattorusso, C.; Menna, M. Investigating the antiparasitic potential of the marine sesquiterpene avarone, its reduced form avarol, and the novel semisynthetic thiazinoquinone analogue thiazoavarone. Mar. Drugs, 2020, 18(2), 112.
[http://dx.doi.org/10.3390/md18020112] [PMID: 32075136]
[51]
Nweze, J.A.; Mbaoji, F.N.; Li, Y.M.; Yang, L.Y.; Huang, S.S.; Chigor, V.N.; Eze, E.A.; Pan, L.X.; Zhang, T.; Yang, D.F. Potentials of ma-rine natural products against malaria, leishmaniasis, and trypanosomiasis parasites: a review of recent articles. Infect. Dis. Poverty, 2021, 10(1), 9.
[http://dx.doi.org/10.1186/s40249-021-00796-6] [PMID: 33482912]
[52]
Osei, E.; Kwain, S.; Mawuli, G.; Anang, A.; Owusu, K.; Camas, M.; Camas, A.; Ohashi, M.; Alexandru-Crivac, C.N.; Deng, H.; Jaspars, M. Paenidigyamycin A, Potent antiparasitic imidazole alkaloid from the Ghanaian Paenibacillus sp. DE2SH. Mar. Drugs, 2018, 17(1), 9.
[http://dx.doi.org/10.3390/md17010009] [PMID: 30586918]
[53]
Cartuche, L.; Sifaoui, I.; López-Arencibia, A.; Bethencourt-Estrella, C.J.; San Nicolás-Hernández, D.; Lorenzo-Morales, J.; Piñero, J.E.; Díaz-Marrero, A.R.; Fernández, J.J. Antikinetoplastid Activity of indolocarbazoles from Streptomyces sanyensis. Biomolecules, 2020, 10(4), 657.
[http://dx.doi.org/10.3390/biom10040657] [PMID: 32344693]
[54]
Smyrniotopoulos, V.; Merten, C.; Kaiser, M.; Tasdemir, D. Bifurcatriol, A new antiprotozoal acyclic diterpene from the brown alga Bifur-caria bifurcata. Mar. Drugs, 2017, 15(8), 245.
[http://dx.doi.org/10.3390/md15080245] [PMID: 28767061]
[55]
Chiboub, O.; Sifaoui, I.; Lorenzo-Morales, J.; Abderrabba, M.; Mejri, M.; Fernández, J.J.; Piñero, J.E.; Díaz-Marrero, A.R. Spiralyde A, An antikinetoplastid dolabellane from the brown alga Dictyota spiralis. Mar. Drugs, 2019, 17(3), 192.
[http://dx.doi.org/10.3390/md17030192] [PMID: 30934651]
[56]
Bruno de Sousa, C.; Gangadhar, K.N.; Morais, T.R.; Conserva, G.A.A.; Vizetto-Duarte, C.; Pereira, H.; Laurenti, M.D.; Campino, L.; Levy, D.; Uemi, M.; Barreira, L.; Custódio, L.; Passero, L.F.D.; Lago, J.H.G.; Varela, J. Antileishmanial activity of meroditerpenoids from the macroalgae Cystoseira baccata. Exp. Parasitol., 2017, 174, 1-9.
[http://dx.doi.org/10.1016/j.exppara.2017.01.002] [PMID: 28126391]
[57]
Soares, D.; Szlachta, M.; Teixeira, V.; Soares, A.; Saraiva, E. The brown alga Stypopodium zonale (Dictyotaceae): A potential source of anti-leishmania drugs. Mar. Drugs, 2016, 14(9), 163.
[http://dx.doi.org/10.3390/md14090163] [PMID: 27618071]
[58]
Díaz-Marrero, A.R.; López-Arencibia, A.; Bethencout-Estrella, C.J.; Cen-Pacheco, F.; Sifaoui, I.; Hernández Creus, A.; Duque-Ramírez, M.C.; Souto, M.L.; Hernández Daranas, A.; Lorenzo-Morales, J.; Piñero, J.E.; Fernández, J.J. Antiprotozoal activities of marine polyether triterpenoids. Bioorg. Chem., 2019, 92(103276), 103276.
[http://dx.doi.org/10.1016/j.bioorg.2019.103276] [PMID: 31539745]
[59]
Braun, G.H.; Ramos, H.P.; Candido, A.C.B.B.; Pedroso, R.C.N.; Siqueira, K.A.; Soares, M.A.; Dias, G.M.; Magalhães, L.G.; Ambrósio, S.R.; Januário, A.H.; Pietro, R.C.L.R. Evaluation of antileishmanial activity of harzialactone a isolated from the marine-derived fungus Paecilomyces sp. Nat. Prod. Res., 2021, 35(10), 1644-1647.
[http://dx.doi.org/10.1080/14786419.2019.1619725] [PMID: 31140307]
[60]
Kausar, S.; Said Khan, F.; Ishaq Mujeeb Ur Rehman, M.; Akram, M.; Riaz, M.; Rasool, G.; Hamid Khan, A.; Saleem, I.; Shamim, S.; Malik, A. A review: Mechanism of action of antiviral drugs. Int. J. Immunopathol. Pharmacol., 2021, 35, 20587384211002621.
[http://dx.doi.org/10.1177/20587384211002621] [PMID: 33726557]
[61]
Cheng, S.Y.; Chuang, C.T.; Wang, S.K.; Wen, Z.H.; Chiou, S.F.; Hsu, C.H.; Dai, C.F.; Duh, C.Y. Antiviral and anti-inflammatory diterpenoids from the soft coral Sinularia gyrosa. J. Nat. Prod., 2010, 73(6), 1184-1187.
[http://dx.doi.org/10.1021/np100185a] [PMID: 20499851]
[62]
Mandal, P.; Pujol, C.A.; Carlucci, M.J.; Chattopadhyay, K.; Damonte, E.B.; Ray, B. Anti-herpetic activity of a sulfated xylomannan from Scinaia hatei. Phytochemistry, 2008, 69(11), 2193-2199.
[http://dx.doi.org/10.1016/j.phytochem.2008.05.004] [PMID: 18572208]
[63]
Ghosh, T.; Pujol, C.A.; Damonte, E.B.; Sinha, S.; Ray, B. Sulfated xylomannans from the red seaweed Sebdenia polydactyla: structural features, chemical modification and antiviral activity. Antivir. Chem. Chemother., 2009, 19(6), 235-242.
[http://dx.doi.org/10.1177/095632020901900603] [PMID: 19641232]
[64]
Lira, S.P.; Seleghim, M.H.R.; Williams, D.E.; Marion, F.; Hamill, P.; Jean, F.; Andersen, R.J.; Hajdu, E.; Berlinck, R.G.S. A SARS-coronovirus 3CL protease inhibitor isolated from the marine sponge Axinella cf. corrugata: structure elucidation and synthesis. J. Braz. Chem. Soc., 2007, 18(2), 440-443.
[http://dx.doi.org/10.1590/S0103-50532007000200030]
[65]
Talarico, L.; Duarte, M.; Zibetti, R.; Noseda, M.; Damonte, E. An algal-derived DL-galactan hybrid is an efficient preventing agent for in vitro dengue virus infection. Planta Med., 2007, 73(14), 1464-1468.
[http://dx.doi.org/10.1055/s-2007-990241] [PMID: 17948168]
[66]
Artan, M.; Li, Y.; Karadeniz, F.; Lee, S.H.; Kim, M.M.; Kim, S.K. Anti-HIV-1 activity of phloroglucinol derivative, 6,6′-bieckol, from Ecklonia cava. Bioorg. Med. Chem., 2008, 16(17), 7921-7926.
[http://dx.doi.org/10.1016/j.bmc.2008.07.078] [PMID: 18693022]
[67]
Cirne-Santos, C.C.; Souza, T.M.L.; Teixeira, V.L.; Fontes, C.F.L.; Rebello, M.A.; Castello-Branco, L.R.R.; Abreu, C.M.; Tanuri, A.; Fru-gulhetti, I.C.P.P.; Bou-Habib, D.C. The dolabellane diterpene Dolabelladienetriol is a typical noncompetitive inhibitor of HIV-1 reverse transcriptase enzyme. Antiviral Res., 2008, 77(1), 64-71.
[http://dx.doi.org/10.1016/j.antiviral.2007.08.006] [PMID: 17888523]
[68]
Plaza, A.; Gustchina, E.; Baker, H.L.; Kelly, M.; Bewley, C.A. Mirabamides A-D, depsipeptides from the sponge Siliquariaspongia mirabi-lis that inhibit HIV-1 fusion. J. Nat. Prod., 2007, 70(11), 1753-1760.
[http://dx.doi.org/10.1021/np070306k] [PMID: 17963357]
[69]
Lu, C.X.; Li, J.; Sun, Y.X.; Qi, X.; Wang, Q.J.; Xin, X.L.; Geng, M.Y. Sulfated polymannuroguluronate, a novel anti-AIDS drug candidate, inhibits HIV-1 Tat-induced angiogenesis in Kaposi’s sarcoma cells. Biochem. Pharmacol., 2007, 74(9), 1330-1339.
[http://dx.doi.org/10.1016/j.bcp.2007.06.012] [PMID: 17868650]
[70]
Ankisetty, S.; Khan, S.; Avula, B.; Gochfeld, D.; Khan, I.; Slattery, M. Chlorinated didemnins from the tunicate Trididemnum solidum. Mar. Drugs, 2013, 11(11), 4478-4486.
[http://dx.doi.org/10.3390/md11114478] [PMID: 24284424]
[71]
Erwin, P.M.; López-Legentil, S.; Schuhmann, P.W. The pharmaceutical value of marine biodiversity for anti-cancer drug discovery. Ecol. Econ., 2010, 70(2), 445-451.
[http://dx.doi.org/10.1016/j.ecolecon.2010.09.030]
[72]
Vignesh, S.; Raja, A.; Arthur Jam, R. Marine drugs: Implication and future studies. Int. J. Pharmacol., 2010, 7(1), 22-30.
[http://dx.doi.org/10.3923/ijp.2011.22.30]
[73]
Tortorella, E.; Tedesco, P.; Palma Esposito, F.; January, G.; Fani, R.; Jaspars, M.; de Pascale, D. Antibiotics from deep-sea microorganisms: Current discoveries and perspectives. Mar. Drugs, 2018, 16(10), 355.
[http://dx.doi.org/10.3390/md16100355] [PMID: 30274274]
[74]
Vinothkumar, S.; Parameswaran, P.S. Recent advances in marine drug research. Biotechnol. Adv., 2013, 31(8), 1826-1845.
[http://dx.doi.org/10.1016/j.biotechadv.2013.02.006] [PMID: 23500952]
[75]
Alves, C.; Silva, J.; Pinteus, S.; Gaspar, H.; Alpoim, M.C.; Botana, L.M.; Pedrosa, R. From marine origin to therapeutics: The antitumor potential of marine algae-derived compounds. Front. Pharmacol., 2018, 9, 777.
[http://dx.doi.org/10.3389/fphar.2018.00777] [PMID: 30127738]
[76]
Zhou, Q.; Hotta, K.; Deng, Y.; Yuan, R.; Quan, S.; Chen, X. Advances in biosynthesis of natural products from marine microorganisms. Microorganisms, 2021, 9(12), 2551.
[http://dx.doi.org/10.3390/microorganisms9122551] [PMID: 34946152]
[77]
Malve, H. Exploring the ocean for new drug developments: Marine pharmacology. J. Pharm. Bioallied Sci., 2016, 8(2), 83-91.
[http://dx.doi.org/10.4103/0975-7406.171700] [PMID: 27134458]
[78]
De Vita, S.; Terracciano, S.; Bruno, I.; Chini, M.G. From natural compounds to bioactive molecules through NMR and in silico methodol-ogies. Eur. J. Org. Chem., 2020, 2020(40), 6297-6317.
[http://dx.doi.org/10.1002/ejoc.202000469]
[79]
Demetri, G.D.; Chawla, S.P.; von Mehren, M.; Ritch, P.; Baker, L.H.; Blay, J.Y.; Hande, K.R.; Keohan, M.L.; Samuels, B.L.; Schuetze, S.; Lebedinsky, C.; Elsayed, Y.A.; Izquierdo, M.A.; Gómez, J.; Park, Y.C.; Le Cesne, A. Efficacy and safety of trabectedin in patients with advanced or metastatic liposarcoma or leiomyosarcoma after failure of prior anthracyclines and ifosfamide: results of a randomized phase II study of two different schedules. J. Clin. Oncol., 2009, 27(25), 4188-4196.
[http://dx.doi.org/10.1200/JCO.2008.21.0088] [PMID: 19652065]
[80]
Mahbub, A.; Le Maitre, C.; Haywood-Small, S.; Cross, N.; Jordan-Mahy, N. Dietary polyphenols influence antimetabolite agents: methotrexate, 6-mercaptopurine and 5-fluorouracil in leukemia cell lines. Oncotarget, 2017, 8(62), 104877-104893.
[http://dx.doi.org/10.18632/oncotarget.20501] [PMID: 29285220]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy