Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Aging and Diabetic Kidney Disease: Emerging Pathogenetic Mechanisms and Clinical Implications

Author(s): Yi Chen, Yashpal S. Kanwar, Xueqin Chen and Ming Zhan*

Volume 31, Issue 6, 2024

Published on: 14 July, 2023

Page: [697 - 725] Pages: 29

DOI: 10.2174/0929867330666230621112215

Price: $65

Abstract

Diabetic kidney disease (DKD) is one of the leading causes of chronic kidney disease (CKD) and end-stage renal disease (ESRD) worldwide. With the overpowering trend of aging, the prevalence of DKD in the elderly is progressively increasing. Genetic factors, abnormal glucose metabolism, inflammation, mitochondrial dysregulation, and oxidative stress all contribute to the development of DKD. Conceivably, during aging, these pathobiological processes are likely to be intensified, and this would further exacerbate the deterioration of renal functions in elderly patients, ultimately leading to ESRD. Currently, the pathogenesis of DKD in the elderly is not very well-understood. This study describes an appraisal of the relationship between diabetic nephropathy and aging while discussing the structural and functional changes in the aged kidney, the impact of related mechanisms on the outcome of DKD, and the latest advances in targeted therapies.

[1]
Heald, A.H.; Stedman, M.; Davies, M.; Livingston, M.; Alshames, R.; Lunt, M.; Rayman, G.; Gadsby, R. Estimating life years lost to diabetes: Outcomes from analysis of National Diabetes Audit and Office of National Statistics data. Cardiovasc. Endocrinol. Metab., 2020, 9(4), 183-185.
[http://dx.doi.org/10.1097/XCE.0000000000000210] [PMID: 33225235]
[2]
Cho, N.H.; Shaw, J.E.; Karuranga, S.; Huang, Y.; da Rocha Fernandes, J.D.; Ohlrogge, A.W.; Malanda, B. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res. Clin. Pract., 2018, 138, 271-281.
[http://dx.doi.org/10.1016/j.diabres.2018.02.023] [PMID: 29496507]
[3]
Sun, H.; Saeedi, P.; Karuranga, S.; Pinkepank, M.; Ogurtsova, K.; Duncan, B.B.; Stein, C.; Basit, A.; Chan, J.C.N.; Mbanya, J.C.; Pavkov, M.E.; Ramachandaran, A.; Wild, S.H.; James, S.; Herman, W.H.; Zhang, P.; Bommer, C.; Kuo, S.; Boyko, E.J.; Magliano, D.J. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res. Clin. Pract., 2022, 183, 109119.
[http://dx.doi.org/10.1016/j.diabres.2021.109119] [PMID: 34879977]
[4]
Williams, R.; Karuranga, S.; Malanda, B.; Saeedi, P.; Basit, A.; Besançon, S.; Bommer, C.; Esteghamati, A.; Ogurtsova, K.; Zhang, P.; Colagiuri, S. Global and regional estimates and projections of diabetes-related health expenditure: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res Clin Pract, 2020, 162, 108072.
[http://dx.doi.org/10.1016/j.diabres.2020.108072] [PMID: 32061820]
[5]
Bridges, C.C.; Zalups, R.K. The aging kidney and the nephrotoxic effects of mercury. J. Toxicol. Environ. Health B Crit. Rev., 2017, 20(2), 55-80.
[http://dx.doi.org/10.1080/10937404.2016.1243501] [PMID: 28339347]
[6]
Barutta, F.; Bellini, S.; Corbetta, B.; Durazzo, M.; Gruden, G. The future of diabetic kidney disease management: What to expect from the experimental studies? J. Nephrol., 2020, 33(6), 1151-1161.
[http://dx.doi.org/10.1007/s40620-020-00724-1] [PMID: 32221858]
[7]
Deng, Y.; Li, N.; Wu, Y.; Wang, M.; Yang, S.; Zheng, Y.; Deng, X.; Xiang, D.; Zhu, Y.; Xu, P.; Zhai, Z.; Zhang, D.; Dai, Z.; Gao, J. Global, regional, and national burden of diabetes-related chronic kidney disease from 1990 to 2019. Front. Endocrinol. (Lausanne), 2021, 12, 672350.
[http://dx.doi.org/10.3389/fendo.2021.672350] [PMID: 34276558]
[8]
Burrows, N.R.; Li, Y.; Geiss, L.S. Incidence of treatment for end-stage renal disease among individuals with diabetes in the U.S. continues to decline. Diabetes Care, 2010, 33(1), 73-77.
[http://dx.doi.org/10.2337/dc09-0343] [PMID: 20040673]
[9]
Guo, J.; Zheng, H.J.; Zhang, W.; Lou, W.; Xia, C.; Han, X.T.; Huang, W.J.; Zhang, F.; Wang, Y.; Liu, W.J. Accelerated kidney aging in diabetes mellitus. Oxid. Med. Cell. Longev., 2020, 2020, 1-24.
[http://dx.doi.org/10.1155/2020/1234059] [PMID: 32774664]
[10]
Denic, A.; Glassock, R.J.; Rule, A.D. Structural and functional changes with the aging kidney. Adv. Chronic Kidney Dis., 2016, 23(1), 19-28.
[http://dx.doi.org/10.1053/j.ackd.2015.08.004] [PMID: 26709059]
[11]
Roseman, D.A.; Hwang, S.J.; Oyama-Manabe, N.; Chuang, M.L.; O’Donnell, C.J.; Manning, W.J.; Fox, C.S. Clinical associations of total kidney volume: the Framingham Heart Study. Nephrol. Dial. Transplant., 2017, 32(8), 1344-1350.
[PMID: 27325252]
[12]
Tauchi, H.; Tsuboi, K.; Okutomi, J. Age changes in the human kidney of the different races. Gerontology, 1971, 17(2), 87-97.
[http://dx.doi.org/10.1159/000211811] [PMID: 5093734]
[13]
Wang, X.; Vrtiska, T.J.; Avula, R.T.; Walters, L.R.; Chakkera, H.A.; Kremers, W.K.; Lerman, L.O.; Rule, A.D. Age, kidney function, and risk factors associate differently with cortical and medullary volumes of the kidney. Kidney Int., 2014, 85(3), 677-685.
[http://dx.doi.org/10.1038/ki.2013.359] [PMID: 24067437]
[14]
Rule, A.D.; Sasiwimonphan, K.; Lieske, J.C.; Keddis, M.T.; Torres, V.E.; Vrtiska, T.J. Characteristics of renal cystic and solid lesions based on contrast-enhanced computed tomography of potential kidney donors. Am. J. Kidney Dis., 2012, 59(5), 611-618.
[http://dx.doi.org/10.1053/j.ajkd.2011.12.022] [PMID: 22398108]
[15]
Lorenz, E.C.; Vrtiska, T.J.; Lieske, J.C.; Dillon, J.J.; Stegall, M.D.; Li, X.; Bergstralh, E.J.; Rule, A.D. Prevalence of renal artery and kidney abnormalities by computed tomography among healthy adults. Clin. J. Am. Soc. Nephrol., 2010, 5(3), 431-438.
[http://dx.doi.org/10.2215/CJN.07641009] [PMID: 20089492]
[16]
Denic, A.; Alexander, M.P.; Kaushik, V.; Lerman, L.O.; Lieske, J.C.; Stegall, M.D.; Larson, J.J.; Kremers, W.K.; Vrtiska, T.J.; Chakkera, H.A.; Poggio, E.D.; Rule, A.D. Detection and clinical patterns of nephron hypertrophy and nephrosclerosis among apparently healthy adults. Am. J. Kidney Dis., 2016, 68(1), 58-67.
[http://dx.doi.org/10.1053/j.ajkd.2015.12.029] [PMID: 26857648]
[17]
Rule, A.D.; Amer, H.; Cornell, L.D.; Taler, S.J.; Cosio, F.G.; Kremers, W.K.; Textor, S.C.; Stegall, M.D. The association between age and nephrosclerosis on renal biopsy among healthy adults. Ann. Intern. Med., 2010, 152(9), 561-567.
[http://dx.doi.org/10.7326/0003-4819-152-9-201005040-00006] [PMID: 20439574]
[18]
Takazakura, E.; Sawabu, N.; Handa, A.; Takada, A.; Shinoda, A.; Takeuchi, J. Intrarenal vascular changes with age and disease. Kidney Int., 1972, 2(4), 224-230.
[http://dx.doi.org/10.1038/ki.1972.98] [PMID: 4657923]
[19]
Hoang, K.; Tan, J.C.; Derby, G.; Blouch, K.L.; Masek, M.; Ma, I.; Lemley, K.V.; Myers, B.D. Determinants of glomerular hypofiltration in aging humans. Kidney Int., 2003, 64(4), 1417-1424.
[http://dx.doi.org/10.1046/j.1523-1755.2003.00207.x] [PMID: 12969161]
[20]
Fioretto, P.; Steffes, M.W.; Brown, D.M.; Mauer, S.M. An overview of renal pathology in insulin-dependent diabetes mellitus in relationship to altered glomerular hemodynamics. Am. J. Kidney Dis., 1992, 20(6), 549-558.
[http://dx.doi.org/10.1016/S0272-6386(12)70217-2] [PMID: 1462981]
[21]
Tervaert, T.W.C.; Mooyaart, A.L.; Amann, K.; Cohen, A.H.; Cook, H.T.; Drachenberg, C.B.; Ferrario, F.; Fogo, A.B.; Haas, M.; de Heer, E.; Joh, K.; Noël, L.H.; Radhakrishnan, J.; Seshan, S.V.; Bajema, I.M.; Bruijn, J.A. Pathologic classification of diabetic nephropathy. J. Am. Soc. Nephrol., 2010, 21(4), 556-563.
[http://dx.doi.org/10.1681/ASN.2010010010] [PMID: 20167701]
[22]
Friedman, E.A. Renal syndromes in diabetes. Endocrinol. Metab. Clin. North Am., 1996, 25(2), 293-324.
[http://dx.doi.org/10.1016/S0889-8529(05)70326-1] [PMID: 8799702]
[23]
Sobamowo, H.; Prabhakar, S.S. The kidney in aging. Prog. Mol. Biol. Transl. Sci., 2017, 146, 303-340.
[http://dx.doi.org/10.1016/bs.pmbts.2016.12.018] [PMID: 28253989]
[24]
Tan, J.C.; Busque, S.; Workeneh, B.; Ho, B.; Derby, G.; Blouch, K.L.; Graham Sommer, F.; Edwards, B.; Myers, B.D. Effects of aging on glomerular function and number in living kidney donors. Kidney Int., 2010, 78(7), 686-692.
[http://dx.doi.org/10.1038/ki.2010.128] [PMID: 20463656]
[25]
Denic, A.; Lieske, J.C.; Chakkera, H.A.; Poggio, E.D.; Alexander, M.P.; Singh, P.; Kremers, W.K.; Lerman, L.O.; Rule, A.D. The substantial loss of nephrons in healthy human kidneys with aging. J. Am. Soc. Nephrol., 2017, 28(1), 313-320.
[http://dx.doi.org/10.1681/ASN.2016020154] [PMID: 27401688]
[26]
Zhou, X.J.; Rakheja, D.; Yu, X.; Saxena, R.; Vaziri, N.D.; Silva, F.G. The aging kidney. Kidney Int., 2008, 74(6), 710-720.
[http://dx.doi.org/10.1038/ki.2008.319] [PMID: 18614996]
[27]
Coresh, J.; Astor, B.C.; Greene, T.; Eknoyan, G.; Levey, A.S. Prevalence of chronic kidney disease and decreased kidney function in the adult US population: Third national health and nutrition examination survey. Am. J. Kidney Dis., 2003, 41(1), 1-12.
[http://dx.doi.org/10.1053/ajkd.2003.50007] [PMID: 12500213]
[28]
Wiggins, J.E.; Goyal, M.; Sanden, S.K.; Wharram, B.L.; Shedden, K.A.; Misek, D.E.; Kuick, R.D.; Wiggins, R.C. Podocyte hypertrophy, “adaptation,” and “decompensation” associated with glomerular enlargement and glomerulosclerosis in the aging rat: prevention by calorie restriction. J. Am. Soc. Nephrol., 2005, 16(10), 2953-2966.
[http://dx.doi.org/10.1681/ASN.2005050488] [PMID: 16120818]
[29]
Esposito, C.; Dal Canton, A. Functional changes in the aging kidney. J. Nephrol., 2010, 23(Suppl. 15), S41-S45.
[PMID: 20872370]
[30]
Huber, T.B.; Edelstein, C.L.; Hartleben, B.; Inoki, K.; Jiang, M.; Koya, D.; Kume, S.; Lieberthal, W.; Pallet, N.; Quiroga, A.; Ravichandran, K.; Susztak, K.; Yoshida, S.; Dong, Z. Emerging role of autophagy in kidney function, diseases and aging. Autophagy, 2012, 8(7), 1009-1031.
[http://dx.doi.org/10.4161/auto.19821] [PMID: 22692002]
[31]
Wiggins, J.E. Aging in the glomerulus. J. Gerontol. A Biol. Sci. Med. Sci., 2012, 67(12), 1358-1364.
[http://dx.doi.org/10.1093/gerona/gls157] [PMID: 22843670]
[32]
Martin, J.E.; Sheaff, M.T. Renal ageing. J. Pathol., 2007, 211(2), 198-205.
[http://dx.doi.org/10.1002/path.2111] [PMID: 17200944]
[33]
Abdelhafiz, A.H. Diabetic kidney disease in older people with type 2 diabetes mellitus: Improving prevention and treatment options. Drugs Aging, 2020, 37(8), 567-584.
[http://dx.doi.org/10.1007/s40266-020-00773-y] [PMID: 32495289]
[34]
Plante, G.E. Impact of aging on the body’s vascular system. Metabolism, 2003, 52(10)(Suppl. 2), 31-35.
[http://dx.doi.org/10.1016/S0026-0495(03)00299-3] [PMID: 14577061]
[35]
Murata, K.; Horiuchi, Y. Age-dependent distribution of acidic glycosaminoglycans in human kidney tissue. Nephron J., 1978, 20(2), 111-118.
[http://dx.doi.org/10.1159/000181203] [PMID: 622208]
[36]
Merker, L. Nephropathy in diabetes. MMW Fortschr. Med., 2021, 163(8), 48-51.
[http://dx.doi.org/10.1007/s15006-021-9782-1] [PMID: 33904093]
[37]
Campbell, R.C.; Ruggenenti, P.; Remuzzi, G. Proteinuria in diabetic nephropathy: Treatment and evolution. Curr. Diab. Rep., 2003, 3(6), 497-504.
[http://dx.doi.org/10.1007/s11892-003-0014-0] [PMID: 14611747]
[38]
Baldea, A.J. Effect of aging on renal function plus monitoring and support. Surg. Clin. North Am., 2015, 95(1), 71-83.
[http://dx.doi.org/10.1016/j.suc.2014.09.003] [PMID: 25459543]
[39]
A/L B Vasanth Rao, VR; Tan, S.H.; Candasamy, M.; Bhattamisra, S.K. Diabetic nephropathy: An update on pathogenesis and drug development. Diabetes Metab. Syndr., 2019, 13(1), 754-762.
[http://dx.doi.org/10.1016/j.dsx.2018.11.054] [PMID: 30641802]
[40]
Najafian, B.; Fogo, A.B.; Lusco, M.A.; Alpers, C.E. AJKD atlas of renal pathology: Diabetic nephropathy. Am. J. Kidney dis., 2015, 66(5), e37-e38.
[http://dx.doi.org/10.1053/j.ajkd.2015.08.010] [PMID: 26498421]
[41]
Najafian, B.; Alpers, C.E.; Fogo, A.B. Pathology of human diabetic nephropathy. Contrib. Nephrol., 2011, 170, 36-47.
[http://dx.doi.org/10.1159/000324942] [PMID: 21659756]
[42]
Hong, D.; Zheng, T.; Jia-qing, S.; Jian, W.; Zhi-hong, L.; Lei-shi, L. Nodular glomerular lesion: A later stage of diabetic nephropathy? Diabetes Res. Clin. Pract., 2007, 78(2), 189-195.
[http://dx.doi.org/10.1016/j.diabres.2007.03.024] [PMID: 17683824]
[43]
An, X.; Zhang, L.; Yuan, Y.; Wang, B.; Yao, Q.; Li, L.; Zhang, J.; He, M.; Zhang, J. Hyperoside pre-treatment prevents glomerular basement membrane damage in diabetic nephropathy by inhibiting podocyte heparanase expression. Sci. Rep., 2017, 7(1), 6413.
[http://dx.doi.org/10.1038/s41598-017-06844-2] [PMID: 28743882]
[44]
Maezawa, Y.; Takemoto, M.; Yokote, K. Cell biology of diabetic nephropathy: Roles of endothelial cells, tubulointerstitial cells and podocytes. J. Diabetes Investig., 2015, 6(1), 3-15.
[http://dx.doi.org/10.1111/jdi.12255] [PMID: 25621126]
[45]
Bakris, G.L.; Fonseca, V.A.; Sharma, K.; Wright, E.M. Renal sodium–glucose transport: role in diabetes mellitus and potential clinical implications. Kidney Int., 2009, 75(12), 1272-1277.
[http://dx.doi.org/10.1038/ki.2009.87] [PMID: 19357717]
[46]
Gronda, E.; Jessup, M.; Iacoviello, M.; Palazzuoli, A.; Napoli, C. Glucose metabolism in the kidney: Neurohormonal activation and heart failure development. J. Am. Heart Assoc., 2020, 9(23), e018889.
[http://dx.doi.org/10.1161/JAHA.120.018889] [PMID: 33190567]
[47]
Gilbert, R.E.; Cooper, M.E. The tubulointerstitium in progressive diabetic kidney disease: More than an aftermath of glomerular injury? Kidney Int., 1999, 56(5), 1627-1637.
[http://dx.doi.org/10.1046/j.1523-1755.1999.00721.x] [PMID: 10571771]
[48]
Russo, G.T.; De Cosmo, S.; Viazzi, F.; Mirijello, A.; Ceriello, A.; Guida, P.; Giorda, C.; Cucinotta, D.; Pontremoli, R.; Fioretto, P. Diabetic kidney disease in the elderly: prevalence and clinical correlates. BMC Geriatr., 2018, 18(1), 38.
[http://dx.doi.org/10.1186/s12877-018-0732-4] [PMID: 29394888]
[49]
Kanwar, Y.S.; Sun, L.; Xie, P.; Liu, F.; Chen, S. A glimpse of various pathogenetic mechanisms of diabetic nephropathy. Annu. Rev. Pathol., 2011, 6(1), 395-423.
[http://dx.doi.org/10.1146/annurev.pathol.4.110807.092150] [PMID: 21261520]
[50]
Xiong, Y.; Zhou, L. The signaling of cellular senescence in diabetic nephropathy. Oxid. Med. Cell. Longev., 2019, 2019, 1-16.
[http://dx.doi.org/10.1155/2019/7495629] [PMID: 31687085]
[51]
Kato, M.; Natarajan, R. Epigenetics and epigenomics in diabetic kidney disease and metabolic memory. Nat. Rev. Nephrol., 2019, 15(6), 327-345.
[http://dx.doi.org/10.1038/s41581-019-0135-6] [PMID: 30894700]
[52]
Reddy, M.A.; Zhang, E.; Natarajan, R. Epigenetic mechanisms in diabetic complications and metabolic memory. Diabetologia, 2015, 58(3), 443-455.
[http://dx.doi.org/10.1007/s00125-014-3462-y] [PMID: 25481708]
[53]
Siddiqi, F.S.; Majumder, S.; Thai, K.; Abdalla, M.; Hu, P.; Advani, S.L.; White, K.E.; Bowskill, B.B.; Guarna, G.; dos Santos, C.C.; Connelly, K.A.; Advani, A. The histone methyltransferase enzyme enhancer of zeste homolog 2 protects against podocyte oxidative stress and renal injury in diabetes. J. Am. Soc. Nephrol., 2016, 27(7), 2021-2034.
[http://dx.doi.org/10.1681/ASN.2014090898] [PMID: 26534922]
[54]
Sifuentes-Franco, S.; Padilla-Tejeda, D.E.; Carrillo-Ibarra, S.; Miranda-Díaz, A.G. Oxidative stress, apoptosis, and mitochondrial function in diabetic nephropathy. Int. J. Endocrinol., 2018, 2018, 1-13.
[http://dx.doi.org/10.1155/2018/1875870] [PMID: 29808088]
[55]
Zhan, M.; Kanwar, Y.S. An enigma: does a high-protein diet accelerate renal damage in humans? Lessons from diabetic animal models. Am. J. Physiol. Renal Physiol., 2020, 318(4), F979-F981.
[http://dx.doi.org/10.1152/ajprenal.00076.2020] [PMID: 32174145]
[56]
Koya, D.; Jirousek, M.R.; Lin, Y.W.; Ishii, H.; Kuboki, K.; King, G.L. Characterization of protein kinase C beta isoform activation on the gene expression of transforming growth factor-beta, extracellular matrix components, and prostanoids in the glomeruli of diabetic rats. J. Clin. Invest., 1997, 100(1), 115-126.
[http://dx.doi.org/10.1172/JCI119503] [PMID: 9202063]
[57]
Schena, F.P.; Gesualdo, L. Pathogenetic mechanisms of diabetic nephropathy. J. Am. Soc. Nephrol., 2005, 16(3_suppl_1)(Suppl. 1), S30-S33.
[http://dx.doi.org/10.1681/ASN.2004110970] [PMID: 15938030]
[58]
Grabias, B.M.; Konstantopoulos, K. The physical basis of renal fibrosis: Effects of altered hydrodynamic forces on kidney homeostasis. Am. J. Physiol. Renal Physiol., 2014, 306(5), F473-F485.
[http://dx.doi.org/10.1152/ajprenal.00503.2013] [PMID: 24352503]
[59]
Coward, R.J.M.; Welsh, G.I.; Yang, J.; Tasman, C.; Lennon, R.; Koziell, A.; Satchell, S.; Holman, G.D.; Kerjaschki, D.; Tavaré, J.M.; Mathieson, P.W.; Saleem, M.A. The human glomerular podocyte is a novel target for insulin action. Diabetes, 2005, 54(11), 3095-3102.
[http://dx.doi.org/10.2337/diabetes.54.11.3095] [PMID: 16249431]
[60]
Rogacka, D.; Piwkowska, A.; Audzeyenka, I.; Angielski, S.; Jankowski, M. Involvement of the AMPK–PTEN pathway in insulin resistance induced by high glucose in cultured rat podocytes. Int. J. Biochem. Cell Biol., 2014, 51, 120-130.
[http://dx.doi.org/10.1016/j.biocel.2014.04.008] [PMID: 24747132]
[61]
Piwkowska, A.; Rogacka, D.; Jankowski, M.; Dominiczak, M.H.; Stępiński, J.K.; Angielski, S. Metformin induces suppression of NAD(P)H oxidase activity in podocytes. Biochem. Biophys. Res. Commun., 2010, 393(2), 268-273.
[http://dx.doi.org/10.1016/j.bbrc.2010.01.119] [PMID: 20123087]
[62]
Rogacka, D.; Piwkowska, A.; Jankowski, M.; Kocbuch, K.; Dominiczak, M.H.; Stępiński, J.K.; Angielski, S. Expression of GFAT1 and OGT in podocytes: Transport of glucosamine and the implications for glucose uptake into these cells. J. Cell. Physiol., 2010, 225(2), 577-584.
[http://dx.doi.org/10.1002/jcp.22242] [PMID: 20506529]
[63]
Rogacka, D.; Piwkowska, A.; Audzeyenka, I.; Angielski, S.; Jankowski, M. SIRT1-AMPK crosstalk is involved in high glucose-dependent impairment of insulin responsiveness in primary rat podocytes. Exp. Cell Res., 2016, 349(2), 328-338.
[http://dx.doi.org/10.1016/j.yexcr.2016.11.005] [PMID: 27836811]
[64]
Welsh, G.I.; Hale, L.J.; Eremina, V.; Jeansson, M.; Maezawa, Y.; Lennon, R.; Pons, D.A.; Owen, R.J.; Satchell, S.C.; Miles, M.J.; Caunt, C.J.; McArdle, C.A.; Pavenstädt, H.; Tavaré, J.M.; Herzenberg, A.M.; Kahn, C.R.; Mathieson, P.W.; Quaggin, S.E.; Saleem, M.A.; Coward, R.J.M. Insulin signaling to the glomerular podocyte is critical for normal kidney function. Cell Metab., 2010, 12(4), 329-340.
[http://dx.doi.org/10.1016/j.cmet.2010.08.015] [PMID: 20889126]
[65]
Jiang, W.; Xiao, T.; Han, W.; Xiong, J.; He, T.; Liu, Y.; Huang, Y.; Yang, K.; Bi, X.; Xu, X.; Yu, Y.; Li, Y.; Gu, J.; Zhang, J.; Huang, Y.; Zhang, B.; Zhao, J. Klotho inhibits PKCα/p66SHC-mediated podocyte injury in diabetic nephropathy. Mol. Cell. Endocrinol., 2019, 494, 110490.
[http://dx.doi.org/10.1016/j.mce.2019.110490] [PMID: 31207271]
[66]
Liu, L.; Yang, L.; Chang, B.; Zhang, J.; Guo, Y.; Yang, X. The protective effects of rapamycin on cell autophagy in the renal tissues of rats with diabetic nephropathy via mTOR-S6K1-LC3II signaling pathway. Ren. Fail., 2018, 40(1), 492-497.
[http://dx.doi.org/10.1080/0886022X.2018.1489287] [PMID: 30200803]
[67]
Kimura, T.; Isaka, Y.; Yoshimori, T. Autophagy and kidney inflammation. Autophagy, 2017, 13(6), 997-1003.
[http://dx.doi.org/10.1080/15548627.2017.1309485] [PMID: 28441075]
[68]
Allen, D.A.; Harwood, S.M.; Varagunam, M.; Raftery, M.J.; Yaqoob, M.M. High glucose-induced oxidative stress causes apoptosis in proximal tubular epithelial cells and is mediated by multiple caspases. FASEB J., 2003, 17(8), 1-21.
[http://dx.doi.org/10.1096/fj.02-0130fje] [PMID: 12670885]
[69]
Igarashi, M.; Wakasaki, H.; Takahara, N.; Ishii, H.; Jiang, Z.Y.; Yamauchi, T.; Kuboki, K.; Meier, M.; Rhodes, C.J.; King, G.L. Glucose or diabetes activates p38 mitogen-activated protein kinase via different pathways. J. Clin. Invest., 1999, 103(2), 185-195.
[http://dx.doi.org/10.1172/JCI3326] [PMID: 9916130]
[70]
Adhikary, L.; Chow, F.; Nikolic-Paterson, D.J.; Stambe, C.; Dowling, J.; Atkins, R.C.; Tesch, G.H. Abnormal p38 mitogen-activated protein kinase signalling in human and experimental diabetic nephropathy. Diabetologia, 2004, 47(7), 1210-1222.
[http://dx.doi.org/10.1007/s00125-004-1437-0] [PMID: 15232685]
[71]
Meldrum, K.K.; Meldrum, D.R.; Hile, K.L.; Yerkes, E.B.; Ayala, A.; Cain, M.P.; Rink, R.C.; Casale, A.J.; Kaefer, M.A. p38 MAPK mediates renal tubular cell TNF-α production and TNF-α-dependent apoptosis during simulated ischemia. Am. J. Physiol. Cell Physiol., 2001, 281(2), C563-C570.
[http://dx.doi.org/10.1152/ajpcell.2001.281.2.C563] [PMID: 11443055]
[72]
Zhou, L.; Xu, D.; Sha, W.; Shen, L.; Lu, G.; Yin, X.; Wang, M. High glucose induces renal tubular epithelial injury via Sirt1/NF-kappaB/microR-29/Keap1 signal pathway. J. Transl. Med., 2015, 13(1), 352.
[http://dx.doi.org/10.1186/s12967-015-0710-y] [PMID: 26552447]
[73]
Garagliano, J.M.; Katsurada, A.; Miyata, K.; Derbenev, A.V.; Zsombok, A.; Navar, L.G.; Satou, R. Advanced glycation end products stimulate angiotensinogen production in renal proximal tubular cells. Am. J. Med. Sci., 2019, 357(1), 57-66.
[http://dx.doi.org/10.1016/j.amjms.2018.10.008] [PMID: 30466736]
[74]
Forbes, J.M.; Thallas, V.; Thomas, M.C.; Founds, H.W.; Burns, W.C.; Jerums, G.; Cooper, M.E. The breakdown of pre-existing advanced glycation end products is associated with reduced renal fibrosis in experimental diabetes. FASEB J., 2003, 17(12), 1762-1764.
[http://dx.doi.org/10.1096/fj.02-1102fje] [PMID: 12958202]
[75]
Curran, C.S.; Kopp, J.B. RAGE pathway activation and function in chronic kidney disease and COVID-19. Front. Med. (Lausanne), 2022, 9, 970423.
[http://dx.doi.org/10.3389/fmed.2022.970423] [PMID: 36017003]
[76]
Suryavanshi, S.V.; Kulkarni, Y.A. NF-κβ: A potential target in the management of vascular complications of diabetes. Front. Pharmacol., 2017, 8, 798.
[http://dx.doi.org/10.3389/fphar.2017.00798] [PMID: 29163178]
[77]
Zatz, R.; Dunn, B.R.; Meyer, T.W.; Anderson, S.; Rennke, H.G.; Brenner, B.M. Prevention of diabetic glomerulopathy by pharmacological amelioration of glomerular capillary hypertension. J. Clin. Invest., 1986, 77(6), 1925-1930.
[http://dx.doi.org/10.1172/JCI112521] [PMID: 3011862]
[78]
Hostetter, T.H.; Troy, J.L.; Brenner, B.M. Glomerular hemodynamics in experimental diabetes mellitus. Kidney Int., 1981, 19(3), 410-415.
[http://dx.doi.org/10.1038/ki.1981.33] [PMID: 7241881]
[79]
Singh, R.; Singh, A.K.; Alavi, N.; Leehey, D.J. Mechanism of increased angiotensin II levels in glomerular mesangial cells cultured in high glucose. J. Am. Soc. Nephrol., 2003, 14(4), 873-880.
[http://dx.doi.org/10.1097/01.ASN.0000060804.40201.6E] [PMID: 12660321]
[80]
Dandona, P.; Dhindsa, S.; Ghanim, H.; Chaudhuri, A. Angiotensin II and inflammation: The effect of angiotensin-converting enzyme inhibition and angiotensin II receptor blockade. J. Hum. Hypertens., 2007, 21(1), 20-27.
[http://dx.doi.org/10.1038/sj.jhh.1002101] [PMID: 17096009]
[81]
Vidotti, D.B.; Casarini, D.E.; Cristovam, P.C.; Leite, C.A.; Schor, N.; Boim, M.A. High glucose concentration stimulates intracellular renin activity and angiotensin II generation in rat mesangial cells. Am. J. Physiol. Renal Physiol., 2004, 286(6), F1039-F1045.
[http://dx.doi.org/10.1152/ajprenal.00371.2003] [PMID: 14722017]
[82]
Satirapoj, B. Nephropathy in diabetes. Adv. Exp. Med. Biol., 2013, 771, 107-122.
[http://dx.doi.org/10.1007/978-1-4614-5441-0_11] [PMID: 23393675]
[83]
He, W.; Miao, F.J.P.; Lin, D.C.H.; Schwandner, R.T.; Wang, Z.; Gao, J.; Chen, J.L.; Tian, H.; Ling, L. Citric acid cycle intermediates as ligands for orphan G-protein-coupled receptors. Nature, 2004, 429(6988), 188-193.
[http://dx.doi.org/10.1038/nature02488] [PMID: 15141213]
[84]
Vallon, V.; Komers, R. Pathophysiology of the diabetic kidney. Compr. Physiol., 2011, 1(3), 1175-1232.
[http://dx.doi.org/10.1002/cphy.c100049] [PMID: 23733640]
[85]
Vallon, V.; Blantz, R.C.; Thomson, S. Glomerular hyperfiltration and the salt paradox in early [corrected] type 1 diabetes mellitus: a tubulo-centric view. J. Am. Soc. Nephrol., 2003, 14(2), 530-537.
[http://dx.doi.org/10.1097/01.ASN.0000051700.07403.27] [PMID: 12538755]
[86]
Abbate, M.; Remuzzi, G. Proteinuria as a mediator of tubulointerstitial injury. Kidney Blood Press. Res., 1999, 22(1-2), 37-46.
[http://dx.doi.org/10.1159/000025907] [PMID: 10352406]
[87]
Forbes, J.M.; Coughlan, M.T.; Cooper, M.E. Oxidative stress as a major culprit in kidney disease in diabetes. Diabetes, 2008, 57(6), 1446-1454.
[http://dx.doi.org/10.2337/db08-0057] [PMID: 18511445]
[88]
Susztak, K.; Raff, A.C.; Schiffer, M.; Böttinger, E.P. Glucose-induced reactive oxygen species cause apoptosis of podocytes and podocyte depletion at the onset of diabetic nephropathy. Diabetes, 2006, 55(1), 225-233.
[http://dx.doi.org/10.2337/diabetes.55.01.06.db05-0894] [PMID: 16380497]
[89]
Kashihara, N.; Haruna, Y.; Kondeti, V.K.; Kanwar, Y.S. Oxidative stress in diabetic nephropathy. Curr. Med. Chem., 2010, 17(34), 4256-4269.
[http://dx.doi.org/10.2174/092986710793348581] [PMID: 20939814]
[90]
Kumar, S.; Kim, Y.R.; Vikram, A.; Naqvi, A.; Li, Q.; Kassan, M.; Kumar, V.; Bachschmid, M.M.; Jacobs, J.S.; Kumar, A.; Irani, K. Sirtuin1-regulated lysine acetylation of p66Shc governs diabetes-induced vascular oxidative stress and endothelial dysfunction. Proc. Natl. Acad. Sci. USA, 2017, 114(7), 1714-1719.
[http://dx.doi.org/10.1073/pnas.1614112114] [PMID: 28137876]
[91]
Lee, E.A.; Seo, J.Y.; Jiang, Z.; Yu, M.R.; Kwon, M.K.; Ha, H.; Lee, H.B. Reactive oxygen species mediate high glucose–induced plasminogen activator inhibitor-1 up-regulation in mesangial cells and in diabetic kidney. Kidney Int., 2005, 67(5), 1762-1771.
[http://dx.doi.org/10.1111/j.1523-1755.2005.00274.x] [PMID: 15840023]
[92]
Zhan, M.; Brooks, C.; Liu, F.; Sun, L.; Dong, Z. Mitochondrial dynamics: regulatory mechanisms and emerging role in renal pathophysiology. Kidney Int., 2013, 83(4), 568-581.
[http://dx.doi.org/10.1038/ki.2012.441] [PMID: 23325082]
[93]
Zhan, M.; Usman, I.; Yu, J.; Ruan, L.; Bian, X.; Yang, J.; Yang, S.; Sun, L.; Kanwar, Y.S. Perturbations in mitochondrial dynamics by p66Shc lead to renal tubular oxidative injury in human diabetic nephropathy. Clin. Sci. (Lond.), 2018, 132(12), 1297-1314.
[http://dx.doi.org/10.1042/CS20180005] [PMID: 29760122]
[94]
Zhan, M.; Usman, I.M.; Sun, L.; Kanwar, Y.S. Disruption of renal tubular mitochondrial quality control by Myo-inositol oxygenase in diabetic kidney disease. J. Am. Soc. Nephrol., 2015, 26(6), 1304-1321.
[http://dx.doi.org/10.1681/ASN.2014050457] [PMID: 25270067]
[95]
Goldfine, A.B.; Shoelson, S.E. Therapeutic approaches targeting inflammation for diabetes and associated cardiovascular risk. J. Clin. Invest., 2017, 127(1), 83-93.
[http://dx.doi.org/10.1172/JCI88884] [PMID: 28045401]
[96]
Zhang, H.; Nair, V.; Saha, J.; Atkins, K.B.; Hodgin, J.B.; Saunders, T.L.; Myers, M.G., Jr; Werner, T.; Kretzler, M.; Brosius, F.C. Podocyte-specific JAK2 overexpression worsens diabetic kidney disease in mice. Kidney Int., 2017, 92(4), 909-921.
[http://dx.doi.org/10.1016/j.kint.2017.03.027] [PMID: 28554737]
[97]
Toth-Manikowski, S.; Atta, M.G. Diabetic kidney disease: Pathophysiology and therapeutic targets. J. Diabetes Res., 2015, 2015, 1-16.
[http://dx.doi.org/10.1155/2015/697010] [PMID: 26064987]
[98]
García-García, P.M.; Getino-Melián, M.A.; Domínguez-Pimentel, V.; Navarro-González, J.F. Inflammation in diabetic kidney disease. World J. Diabetes, 2014, 5(4), 431-443.
[http://dx.doi.org/10.4239/wjd.v5.i4.431] [PMID: 25126391]
[99]
Donate-Correa, J.; Martín-Núñez, E.; Muros-de-Fuentes, M.; Mora-Fernández, C.; Navarro-González, J.F. Inflammatory cytokines in diabetic nephropathy. J. Diabetes Res., 2015, 2015, 1-9.
[http://dx.doi.org/10.1155/2015/948417] [PMID: 25785280]
[100]
Weigert, C.; Sauer, U.; Brodbeck, K.; Pfeiffer, A.; Häring, H.U.; Schleicher, E.D. AP-1 proteins mediate hyperglycemia-induced activation of the human TGF-beta1 promoter in mesangial cells. J. Am. Soc. Nephrol., 2000, 11(11), 2007-2016.
[http://dx.doi.org/10.1681/ASN.V11112007] [PMID: 11053476]
[101]
Gruden, G.; Zonca, S.; Hayward, A.; Thomas, S.; Maestrini, S.; Gnudi, L.; Viberti, G.C. Mechanical stretch-induced fibronectin and transforming growth factor-beta1 production in human mesangial cells is p38 mitogen-activated protein kinase-dependent. Diabetes, 2000, 49(4), 655-661.
[http://dx.doi.org/10.2337/diabetes.49.4.655] [PMID: 10871205]
[102]
Wada, J.; Makino, H. Innate immunity in diabetes and diabetic nephropathy. Nat. Rev. Nephrol., 2016, 12(1), 13-26.
[http://dx.doi.org/10.1038/nrneph.2015.175] [PMID: 26568190]
[103]
Tang, S.C.W.; Yiu, W.H. Innate immunity in diabetic kidney disease. Nat. Rev. Nephrol., 2020, 16(4), 206-222.
[http://dx.doi.org/10.1038/s41581-019-0234-4] [PMID: 31942046]
[104]
Hong, J.N.; Li, W.W.; Wang, L.L.; Guo, H.; Jiang, Y.; Gao, Y.J.; Tu, P.F.; Wang, X.M. Jiangtang decoction ameliorate diabetic nephropathy through the regulation of PI3K/Akt-mediated NF-κB pathways in KK-Ay mice. Chin. Med., 2017, 12(1), 13.
[http://dx.doi.org/10.1186/s13020-017-0134-0] [PMID: 28529539]
[105]
Fu, J.; Akat, K.M.; Sun, Z.; Zhang, W.; Schlondorff, D.; Liu, Z.; Tuschl, T.; Lee, K.; He, J.C. Single-cell RNA profiling of glomerular cells shows dynamic changes in experimental diabetic kidney disease. J. Am. Soc. Nephrol., 2019, 30(4), 533-545.
[http://dx.doi.org/10.1681/ASN.2018090896] [PMID: 30846559]
[106]
Wang, X.; Yao, B.; Wang, Y.; Fan, X.; Wang, S.; Niu, A.; Yang, H.; Fogo, A.; Zhang, M.Z.; Harris, R.C. Macrophage cyclooxygenase-2 protects against development of diabetic nephropathy. Diabetes, 2017, 66(2), 494-504.
[http://dx.doi.org/10.2337/db16-0773] [PMID: 27815317]
[107]
Sun, H.; Tian, J.; Xian, W.; Xie, T.; Yang, X. Pentraxin-3 attenuates renal damage in diabetic nephropathy by promoting M2 macrophage differentiation. Inflammation, 2015, 38(5), 1739-1747.
[http://dx.doi.org/10.1007/s10753-015-0151-z] [PMID: 25761429]
[108]
Tang, P.M.K.; Zhang, Y.; Xiao, J.; Tang, P.C.T.; Chung, J.Y.F.; Li, J.; Xue, V.W.; Huang, X.R.; Chong, C.C.N.; Ng, C.F.; Lee, T.L.; To, K.F.; Nikolic-Paterson, D.J.; Lan, H.Y. Neural transcription factor Pou4f1 promotes renal fibrosis via macrophage–myofibroblast transition. Proc. Natl. Acad. Sci. USA, 2020, 117(34), 20741-20752.
[http://dx.doi.org/10.1073/pnas.1917663117] [PMID: 32788346]
[109]
Tang, P.M.K.; Nikolic-Paterson, D.J.; Lan, H.Y. Macrophages: Versatile players in renal inflammation and fibrosis. Nat. Rev. Nephrol., 2019, 15(3), 144-158.
[http://dx.doi.org/10.1038/s41581-019-0110-2] [PMID: 30692665]
[110]
Awad, A.S.; You, H.; Gao, T.; Cooper, T.K.; Nedospasov, S.A.; Vacher, J.; Wilkinson, P.F.; Farrell, F.X.; Brian Reeves, W. Macrophage-derived tumor necrosis factor-α mediates diabetic renal injury. Kidney Int., 2015, 88(4), 722-733.
[http://dx.doi.org/10.1038/ki.2015.162] [PMID: 26061548]
[111]
Moriwaki, Y.; Inokuchi, T.; Yamamoto, A.; Ka, T.; Tsutsumi, Z.; Takahashi, S.; Yamamoto, T. Effect of TNF-α inhibition on urinary albumin excretion in experimental diabetic rats. Acta Diabetol., 2007, 44(4), 215-218.
[http://dx.doi.org/10.1007/s00592-007-0007-6] [PMID: 17767370]
[112]
Pavkov, M.E.; Weil, E.J.; Fufaa, G.D.; Nelson, R.G.; Lemley, K.V.; Knowler, W.C.; Niewczas, M.A.; Krolewski, A.S. Tumor necrosis factor receptors 1 and 2 are associated with early glomerular lesions in type 2 diabetes. Kidney Int., 2016, 89(1), 226-234.
[http://dx.doi.org/10.1038/ki.2015.278] [PMID: 26398493]
[113]
Huang, K.; Huang, J.; Xie, X.; Wang, S.; Chen, C.; Shen, X.; Liu, P.; Huang, H. Sirt1 resists advanced glycation end products-induced expressions of fibronectin and TGF-β1 by activating the Nrf2/ARE pathway in glomerular mesangial cells. Free Radic. Biol. Med., 2013, 65, 528-540.
[http://dx.doi.org/10.1016/j.freeradbiomed.2013.07.029] [PMID: 23891678]
[114]
Chen, Y.; Liang, Y.; Hu, T.; Wei, R.; Cai, C.; Wang, P.; Wang, L.; Qiao, W.; Feng, L. Endogenous Nampt upregulation is associated with diabetic nephropathy inflammatory-fibrosis through the NF-κB p65 and Sirt1 pathway; NMN alleviates diabetic nephropathy inflammatory-fibrosis by inhibiting endogenous Nampt. Exp. Ther. Med., 2017, 14(5), 4181-4193.
[http://dx.doi.org/10.3892/etm.2017.5098] [PMID: 29104634]
[115]
Shao, Y.; Lv, C.; Wu, C.; Zhou, Y.; Wang, Q. Mir-217 promotes inflammation and fibrosis in high glucose cultured rat glomerular mesangial cells via Sirt1/HIF-1α signaling pathway. Diabetes Metab. Res. Rev., 2016, 32(6), 534-543.
[http://dx.doi.org/10.1002/dmrr.2788] [PMID: 26891083]
[116]
Wada, J.; Makino, H. Inflammation and the pathogenesis of diabetic nephropathy. Clin. Sci. (Lond.), 2013, 124(3), 139-152.
[http://dx.doi.org/10.1042/CS20120198] [PMID: 23075333]
[117]
Navarro-González, J.F.; Mora-Fernández, C. The role of inflammatory cytokines in diabetic nephropathy. J. Am. Soc. Nephrol., 2008, 19(3), 433-442.
[http://dx.doi.org/10.1681/ASN.2007091048] [PMID: 18256353]
[118]
Alicic, R.Z.; Johnson, E.J.; Tuttle, K.R. Inflammatory mechanisms as new biomarkers and therapeutic targets for diabetic kidney disease. Adv. Chronic Kidney Dis., 2018, 25(2), 181-191.
[http://dx.doi.org/10.1053/j.ackd.2017.12.002] [PMID: 29580582]
[119]
Wada, T.; Furuichi, K.; Sakai, N.; Iwata, Y.; Yoshimoto, K.; Shimizu, M.; Takeda, S.I.; Takasawa, K.; Yoshimura, M.; Kida, H.; Kobayashi, K.I.; Mukaida, N.; Naito, T.; Matsushima, K.; Yokoyama, H. Up-regulation of monocyte chemoattractant protein-1 in tubulointerstitial lesions of human diabetic nephropathy. Kidney Int., 2000, 58(4), 1492-1499.
[http://dx.doi.org/10.1046/j.1523-1755.2000.00311.x] [PMID: 11012884]
[120]
Guzik, T.J.; Harrison, D.G. Endothelial NF-kappaB as a mediator of kidney damage: the missing link between systemic vascular and renal disease? Circ. Res., 2007, 101(3), 227-229.
[http://dx.doi.org/10.1161/CIRCRESAHA.107.158295] [PMID: 17673681]
[121]
Tang, P.M.K.; Zhang, Y.Y.; Hung, J.S.C.; Chung, J.Y.F.; Huang, X.R.; To, K.F.; Lan, H.Y. DPP4/CD32b/NF-κB circuit: A novel druggable target for inhibiting crp-driven diabetic nephropathy. Mol. Ther., 2021, 29(1), 365-375.
[http://dx.doi.org/10.1016/j.ymthe.2020.08.017] [PMID: 32956626]
[122]
Wang, W.J.; Cai, G.Y.; Chen, X.M. Cellular senescence, senescence-associated secretory phenotype, and chronic kidney disease. Oncotarget, 2017, 8(38), 64520-64533.
[http://dx.doi.org/10.18632/oncotarget.17327] [PMID: 28969091]
[123]
Prattichizzo, F.; De Nigris, V.; Mancuso, E.; Spiga, R.; Giuliani, A.; Matacchione, G.; Lazzarini, R.; Marcheselli, F.; Recchioni, R.; Testa, R.; La Sala, L.; Rippo, M.R.; Procopio, A.D.; Olivieri, F.; Ceriello, A. Short-term sustained hyperglycaemia fosters an archetypal senescence-associated secretory phenotype in endothelial cells and macrophages. Redox Biol., 2018, 15, 170-181.
[http://dx.doi.org/10.1016/j.redox.2017.12.001] [PMID: 29253812]
[124]
Tchkonia, T.; Zhu, Y.; van Deursen, J.; Campisi, J.; Kirkland, J.L. Cellular senescence and the senescent secretory phenotype: Therapeutic opportunities. J. Clin. Invest., 2013, 123(3), 966-972.
[http://dx.doi.org/10.1172/JCI64098] [PMID: 23454759]
[125]
Ovadya, Y.; Krizhanovsky, V. Senescent cells: SASPected drivers of age-related pathologies. Biogerontology, 2014, 15(6), 627-642.
[http://dx.doi.org/10.1007/s10522-014-9529-9] [PMID: 25217383]
[126]
López-Otín, C.; Blasco, M.A.; Partridge, L.; Serrano, M.; Kroemer, G. The hallmarks of aging. Cell, 2013, 153(6), 1194-1217.
[http://dx.doi.org/10.1016/j.cell.2013.05.039] [PMID: 23746838]
[127]
Ohashi, S.; Abe, H.; Takahashi, T.; Yamamoto, Y.; Takeuchi, M.; Arai, H.; Nagata, K.; Kita, T.; Okamoto, H.; Yamamoto, H.; Doi, T. Advanced glycation end products increase collagen-specific chaperone protein in mouse diabetic nephropathy. J. Biol. Chem., 2004, 279(19), 19816-19823.
[http://dx.doi.org/10.1074/jbc.M310428200] [PMID: 15004023]
[128]
Yamagishi, S.; Nakamura, N.; Suematsu, M.; Kaseda, K.; Matsui, T. Advanced glycation end products: A molecular target for vascular complications in diabetes. Mol Med, 2015(1), S32-S40.
[http://dx.doi.org/10.2119/molmed.2015.00067] [PMID: 26605646]
[129]
Paneni, F.; Costantino, S.; Battista, R.; Castello, L.; Capretti, G.; Chiandotto, S.; Scavone, G.; Villano, A.; Pitocco, D.; Lanza, G.; Volpe, M.; Lüscher, T.F.; Cosentino, F. Adverse epigenetic signatures by histone methyltransferase Set7 contribute to vascular dysfunction in patients with type 2 diabetes mellitus. Circ. Cardiovasc. Genet., 2015, 8(1), 150-158.
[http://dx.doi.org/10.1161/CIRCGENETICS.114.000671] [PMID: 25472959]
[130]
Chung, H.Y.; Sung, B.; Jung, K.J.; Zou, Y.; Yu, B.P. The molecular inflammatory process in aging. Antioxid. Redox Signal., 2006, 8(3-4), 572-581.
[http://dx.doi.org/10.1089/ars.2006.8.572] [PMID: 16677101]
[131]
Stenvinkel, P.; Larsson, T.E. Chronic kidney disease: A clinical model of premature aging. Am. J. Kidney Dis., 2013, 62(2), 339-351.
[http://dx.doi.org/10.1053/j.ajkd.2012.11.051] [PMID: 23357108]
[132]
Hayden, M.S.; Ghosh, S. Shared principles in NF-kappaB signaling. Cell, 2008, 132(3), 344-362.
[http://dx.doi.org/10.1016/j.cell.2008.01.020] [PMID: 18267068]
[133]
Yeung, F.; Hoberg, J.E.; Ramsey, C.S.; Keller, M.D.; Jones, D.R.; Frye, R.A.; Mayo, M.W. Modulation of NF-κB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J., 2004, 23(12), 2369-2380.
[http://dx.doi.org/10.1038/sj.emboj.7600244] [PMID: 15152190]
[134]
Satoh, A.; Brace, C.S.; Rensing, N.; Cliften, P.; Wozniak, D.F.; Herzog, E.D.; Yamada, K.A.; Imai, S. Sirt1 extends life span and delays aging in mice through the regulation of Nk2 homeobox 1 in the DMH and LH. Cell Metab., 2013, 18(3), 416-430.
[http://dx.doi.org/10.1016/j.cmet.2013.07.013] [PMID: 24011076]
[135]
Zhao, Y.; Banerjee, S.; Dey, N.; LeJeune, W.S.; Sarkar, P.S.; Brobey, R.; Rosenblatt, K.P.; Tilton, R.G.; Choudhary, S. Klotho depletion contributes to increased inflammation in kidney of the db/db mouse model of diabetes via RelA (serine)536 phosphorylation. Diabetes, 2011, 60(7), 1907-1916.
[http://dx.doi.org/10.2337/db10-1262] [PMID: 21593200]
[136]
O’Sullivan, E.D.; Hughes, J.; Ferenbach, D.A. Renal aging: Causes and consequences. J. Am. Soc. Nephrol., 2017, 28(2), 407-420.
[http://dx.doi.org/10.1681/ASN.2015121308] [PMID: 28143966]
[137]
Mizushima, N.; Levine, B.; Cuervo, A.M.; Klionsky, D.J. Autophagy fights disease through cellular self-digestion. Nature, 2008, 451(7182), 1069-1075.
[http://dx.doi.org/10.1038/nature06639] [PMID: 18305538]
[138]
Kroemer, G.; Mariño, G.; Levine, B. Autophagy and the integrated stress response. Mol. Cell, 2010, 40(2), 280-293.
[http://dx.doi.org/10.1016/j.molcel.2010.09.023] [PMID: 20965422]
[139]
Ding, Y.; Kim, S.; Lee, S.Y.; Koo, J.K.; Wang, Z.; Choi, M.E. Autophagy regulates TGF-β expression and suppresses kidney fibrosis induced by unilateral ureteral obstruction. J. Am. Soc. Nephrol., 2014, 25(12), 2835-2846.
[http://dx.doi.org/10.1681/ASN.2013101068] [PMID: 24854279]
[140]
Condon, K.J.; Sabatini, D.M. Nutrient regulation of mTORC1 at a glance. J. Cell Sci., 2019, 132(21), jcs222570.
[http://dx.doi.org/10.1242/jcs.222570] [PMID: 31722960]
[141]
Li, Y.; Chen, Y. AMPK and autophagy. Adv. Exp. Med. Biol., 2019, 1206, 85-108.
[http://dx.doi.org/10.1007/978-981-15-0602-4_4] [PMID: 31776981]
[142]
Fang, L.; Zhou, Y.; Cao, H.; Wen, P.; Jiang, L.; He, W.; Dai, C.; Yang, J. Autophagy attenuates diabetic glomerular damage through protection of hyperglycemia-induced podocyte injury. PLoS One, 2013, 8(4), e60546.
[http://dx.doi.org/10.1371/journal.pone.0060546] [PMID: 23593240]
[143]
Catrina, S.B.; Zheng, X. Hypoxia and hypoxia-inducible factors in diabetes and its complications. Diabetologia, 2021, 64(4), 709-716.
[http://dx.doi.org/10.1007/s00125-021-05380-z] [PMID: 33496820]
[144]
Yeo, E.J. Hypoxia and aging. Exp. Mol. Med., 2019, 51(6), 1-15.
[PMID: 31221957]
[145]
Yamamoto, T.; Takabatake, Y.; Kimura, T.; Takahashi, A.; Namba, T.; Matsuda, J.; Minami, S.; Kaimori, J.; Matsui, I.; Kitamura, H.; Matsusaka, T.; Niimura, F.; Yanagita, M.; Isaka, Y.; Rakugi, H. Time-dependent dysregulation of autophagy: Implications in aging and mitochondrial homeostasis in the kidney proximal tubule. Autophagy, 2016, 12(5), 801-813.
[http://dx.doi.org/10.1080/15548627.2016.1159376] [PMID: 26986194]
[146]
Jiang, N.; Zhao, H.; Han, Y.; Li, L.; Xiong, S.; Zeng, L.; Xiao, Y.; Wei, L.; Xiong, X.; Gao, P.; Yang, M.; Liu, Y.; Sun, L. HIF-1α ameliorates tubular injury in diabetic nephropathy via HO-1–mediated control of mitochondrial dynamics. Cell Prolif., 2020, 53(11), e12909.
[http://dx.doi.org/10.1111/cpr.12909] [PMID: 32975326]
[147]
Bellot, G.; Garcia-Medina, R.; Gounon, P.; Chiche, J.; Roux, D.; Pouysségur, J.; Mazure, N.M. Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains. Mol. Cell. Biol., 2009, 29(10), 2570-2581.
[http://dx.doi.org/10.1128/MCB.00166-09] [PMID: 19273585]
[148]
Kume, S.; Uzu, T.; Horiike, K.; Chin-Kanasaki, M.; Isshiki, K.; Araki, S.; Sugimoto, T.; Haneda, M.; Kashiwagi, A.; Koya, D. Calorie restriction enhances cell adaptation to hypoxia through Sirt1-dependent mitochondrial autophagy in mouse aged kidney. J. Clin. Invest., 2010, 120(4), 1043-1055.
[http://dx.doi.org/10.1172/JCI41376] [PMID: 20335657]
[149]
Liu, W.J.; Huang, W.F.; Ye, L.; Chen, R.H.; Yang, C.; Wu, H.L.; Pan, Q.J.; Liu, H.F. The activity and role of autophagy in the pathogenesis of diabetic nephropathy. Eur. Rev. Med. Pharmacol. Sci., 2018, 22(10), 3182-3189. [PMID:29863264].
[PMID: 29863264]
[150]
Naguib, M.; Rashed, L.A. Serum level of the autophagy biomarker Beclin-1 in patients with diabetic kidney disease. Diabetes Res. Clin. Pract., 2018, 143, 56-61.
[http://dx.doi.org/10.1016/j.diabres.2018.06.022] [PMID: 29959950]
[151]
Shiels, P.G.; McGuinness, D.; Eriksson, M.; Kooman, J.P.; Stenvinkel, P. The role of epigenetics in renal ageing. Nat. Rev. Nephrol., 2017, 13(8), 471-482.
[http://dx.doi.org/10.1038/nrneph.2017.78] [PMID: 28626222]
[152]
Sugita, E.; Hayashi, K.; Hishikawa, A.; Itoh, H. Epigenetic alterations in podocytes in diabetic nephropathy. Front. Pharmacol., 2021, 12, 759299.
[http://dx.doi.org/10.3389/fphar.2021.759299] [PMID: 34630127]
[153]
Hayashi, K.; Sasamura, H.; Nakamura, M.; Sakamaki, Y.; Azegami, T.; Oguchi, H.; Tokuyama, H.; Wakino, S.; Hayashi, K.; Itoh, H. Renin-angiotensin blockade resets podocyte epigenome through Kruppel-like Factor 4 and attenuates proteinuria. Kidney Int., 2015, 88(4), 745-753.
[http://dx.doi.org/10.1038/ki.2015.178] [PMID: 26108068]
[154]
Wan, F.; Tang, Y.W.; Tang, X.L.; Li, Y.Y.; Yang, R.C. TET2 mediated demethylation is involved in the protective effect of triptolide on podocytes. Am. J. Transl. Res., 2021, 13(3), 1233-1244.
[PMID: 33841652]
[155]
Hasegawa, K.; Wakino, S.; Simic, P.; Sakamaki, Y.; Minakuchi, H.; Fujimura, K.; Hosoya, K.; Komatsu, M.; Kaneko, Y.; Kanda, T.; Kubota, E.; Tokuyama, H.; Hayashi, K.; Guarente, L.; Itoh, H. Renal tubular Sirt1 attenuates diabetic albuminuria by epigenetically suppressing Claudin-1 overexpression in podocytes. Nat. Med., 2013, 19(11), 1496-1504.
[http://dx.doi.org/10.1038/nm.3363] [PMID: 24141423]
[156]
Young, G.H.; Wu, V.C. Klotho methylation is linked to uremic toxins and chronic kidney disease. Kidney Int., 2012, 81(7), 611-612.
[http://dx.doi.org/10.1038/ki.2011.461] [PMID: 22419041]
[157]
Verzola, D.; Gandolfo, M.T.; Gaetani, G.; Ferraris, A.; Mangerini, R.; Ferrario, F.; Villaggio, B.; Gianiorio, F.; Tosetti, F.; Weiss, U.; Traverso, P.; Mji, M.; Deferrari, G.; Garibotto, G. Accelerated senescence in the kidneys of patients with type 2 diabetic nephropathy. Am. J. Physiol. Renal Physiol., 2008, 295(5), F1563-F1573.
[http://dx.doi.org/10.1152/ajprenal.90302.2008] [PMID: 18768588]
[158]
Westhoff, J.H.; Schildhorn, C.; Jacobi, C.; Hömme, M.; Hartner, A.; Braun, H.; Kryzer, C.; Wang, C.; von Zglinicki, T.; Kränzlin, B.; Gretz, N.; Melk, A. Telomere shortening reduces regenerative capacity after acute kidney injury. J. Am. Soc. Nephrol., 2010, 21(2), 327-336.
[http://dx.doi.org/10.1681/ASN.2009010072] [PMID: 19959722]
[159]
Cheng, H.; Fan, X.; Lawson, W.E.; Paueksakon, P.; Harris, R.C. Telomerase deficiency delays renal recovery in mice after ischemia–reperfusion injury by impairing autophagy. Kidney Int., 2015, 88(1), 85-94.
[http://dx.doi.org/10.1038/ki.2015.69] [PMID: 25760322]
[160]
Sharma, K.; Karl, B.; Mathew, A.V.; Gangoiti, J.A.; Wassel, C.L.; Saito, R.; Pu, M.; Sharma, S.; You, Y.H.; Wang, L.; Diamond-Stanic, M.; Lindenmeyer, M.T.; Forsblom, C.; Wu, W.; Ix, J.H.; Ideker, T.; Kopp, J.B.; Nigam, S.K.; Cohen, C.D.; Groop, P.H.; Barshop, B.A.; Natarajan, L.; Nyhan, W.L.; Naviaux, R.K. Metabolomics reveals signature of mitochondrial dysfunction in diabetic kidney disease. J. Am. Soc. Nephrol., 2013, 24(11), 1901-1912.
[http://dx.doi.org/10.1681/ASN.2013020126] [PMID: 23949796]
[161]
Wauer, T.; Simicek, M.; Schubert, A.; Komander, D. Mechanism of phospho-ubiquitin-induced PARKIN activation. Nature, 2015, 524(7565), 370-374.
[http://dx.doi.org/10.1038/nature14879] [PMID: 26161729]
[162]
Lazarou, M.; Sliter, D.A.; Kane, L.A.; Sarraf, S.A.; Wang, C.; Burman, J.L.; Sideris, D.P.; Fogel, A.I.; Youle, R.J. The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature, 2015, 524(7565), 309-314.
[http://dx.doi.org/10.1038/nature14893] [PMID: 26266977]
[163]
Chen, K.; Dai, H.; Yuan, J.; Chen, J.; Lin, L.; Zhang, W.; Wang, L.; Zhang, J.; Li, K.; He, Y. Optineurin-mediated mitophagy protects renal tubular epithelial cells against accelerated senescence in diabetic nephropathy. Cell Death Dis., 2018, 9(2), 105.
[http://dx.doi.org/10.1038/s41419-017-0127-z] [PMID: 29367621]
[164]
Sun, C.Y.; Cheng, M.L.; Pan, H.C.; Lee, J.H.; Lee, C.C. Protein-bound uremic toxins impaired mitochondrial dynamics and functions. Oncotarget, 2017, 8(44), 77722-77733.
[http://dx.doi.org/10.18632/oncotarget.20773] [PMID: 29100420]
[165]
Shimizu, H.; Bolati, D.; Adijiang, A.; Enomoto, A.; Nishijima, F.; Dateki, M.; Niwa, T. Senescence and dysfunction of proximal tubular cells are associated with activated p53 expression by indoxyl sulfate. Am. J. Physiol. Cell Physiol., 2010, 299(5), C1110-C1117.
[http://dx.doi.org/10.1152/ajpcell.00217.2010] [PMID: 20720180]
[166]
Liochev, S.I. Reactive oxygen species and the free radical theory of aging. Free Radic. Biol. Med., 2013, 60, 1-4.
[http://dx.doi.org/10.1016/j.freeradbiomed.2013.02.011] [PMID: 23434764]
[167]
Böger, R.H.; Bode-Böger, S.M.; Szuba, A.; Tsao, P.S.; Chan, J.R.; Tangphao, O.; Blaschke, T.F.; Cooke, J.P. Asymmetric dimethylarginine (ADMA): A novel risk factor for endothelial dysfunction: its role in hypercholesterolemia. Circulation, 1998, 98(18), 1842-1847.
[http://dx.doi.org/10.1161/01.CIR.98.18.1842] [PMID: 9799202]
[168]
Beckman, K.B.; Ames, B.N. The free radical theory of aging matures. Physiol. Rev., 1998, 78(2), 547-581.
[http://dx.doi.org/10.1152/physrev.1998.78.2.547] [PMID: 9562038]
[169]
Pérez-Gallardo, R.V.; Noriega-Cisneros, R.; Esquivel-Gutiérrez, E.; Calderón-Cortés, E.; Cortés-Rojo, C.; Manzo-Avalos, S.; Campos-García, J.; Salgado-Garciglia, R.; Montoya-Pérez, R.; Boldogh, I.; Saavedra-Molina, A. Effects of diabetes on oxidative and nitrosative stress in kidney mitochondria from aged rats. J. Bioenerg. Biomembr., 2014, 46(6), 511-518.
[http://dx.doi.org/10.1007/s10863-014-9594-4] [PMID: 25425473]
[170]
Lieber, M.R.; Karanjawala, Z.E. Ageing, repetitive genomes and DNA damage. Nat. Rev. Mol. Cell Biol., 2004, 5(1), 69-75.
[http://dx.doi.org/10.1038/nrm1281] [PMID: 14708011]
[171]
Dërmaku-Sopjani, M.; Kolgeci, S.; Abazi, S.; Sopjani, M. Significance of the anti-aging protein klotho. Mol. Membr. Biol., 2013, 30(8), 369-385.
[http://dx.doi.org/10.3109/09687688.2013.837518] [PMID: 24124751]
[172]
Kim, J.H.; Hwang, K.H.; Park, K.S.; Kong, I.D.; Cha, S.K. Biological role of anti-aging protein klotho. J. Lifestyle Med., 2015, 5(1), 1-6.
[http://dx.doi.org/10.15280/jlm.2015.5.1.1] [PMID: 26528423]
[173]
Drew, D.A.; Katz, R.; Kritchevsky, S.; Ix, J.; Shlipak, M.; Gutiérrez, O.M.; Newman, A.; Hoofnagle, A.; Fried, L.; Semba, R.D.; Sarnak, M. Association between soluble klotho and change in kidney function: The health aging and body composition study. J. Am. Soc. Nephrol., 2017, 28(6), 1859-1866.
[http://dx.doi.org/10.1681/ASN.2016080828] [PMID: 28104822]
[174]
Xu, Y.; Sun, Z. Molecular basis of klotho: From gene to function in aging. Endocr. Rev., 2015, 36(2), 174-193.
[http://dx.doi.org/10.1210/er.2013-1079] [PMID: 25695404]
[175]
Ohnishi, M.; Razzaque, M.S. Dietary and genetic evidence for phosphate toxicity accelerating mammalian aging. FASEB J., 2010, 24(9), 3562-3571.
[http://dx.doi.org/10.1096/fj.09-152488] [PMID: 20418498]
[176]
Asai, O.; Nakatani, K.; Tanaka, T.; Sakan, H.; Imura, A.; Yoshimoto, S.; Samejima, K.; Yamaguchi, Y.; Matsui, M.; Akai, Y.; Konishi, N.; Iwano, M.; Nabeshima, Y.; Saito, Y. Decreased renal α-Klotho expression in early diabetic nephropathy in humans and mice and its possible role in urinary calcium excretion. Kidney Int., 2012, 81(6), 539-547.
[http://dx.doi.org/10.1038/ki.2011.423] [PMID: 22217880]
[177]
Miao, J.; Huang, J.; Luo, C.; Ye, H.; Ling, X.; Wu, Q.; Shen, W.; Zhou, L. Klotho retards renal fibrosis through targeting mitochondrial dysfunction and cellular senescence in renal tubular cells. Physiol. Rep., 2021, 9(2), e14696.
[http://dx.doi.org/10.14814/phy2.14696] [PMID: 33463897]
[178]
Zhou, D.; Tan, R.J.; Fu, H.; Liu, Y. Wnt/β-catenin signaling in kidney injury and repair: A double-edged sword. Lab. Invest., 2016, 96(2), 156-167.
[http://dx.doi.org/10.1038/labinvest.2015.153] [PMID: 26692289]
[179]
He, W.; Dai, C.; Li, Y.; Zeng, G.; Monga, S.P.; Liu, Y. Wnt/beta-catenin signaling promotes renal interstitial fibrosis. J. Am. Soc. Nephrol., 2009, 20(4), 765-776.
[http://dx.doi.org/10.1681/ASN.2008060566] [PMID: 19297557]
[180]
Zhou, L.; Li, Y.; Hao, S.; Zhou, D.; Tan, R.J.; Nie, J.; Hou, F.F.; Kahn, M.; Liu, Y. Multiple genes of the renin-angiotensin system are novel targets of Wnt/β-catenin signaling. J. Am. Soc. Nephrol., 2015, 26(1), 107-120.
[http://dx.doi.org/10.1681/ASN.2014010085] [PMID: 25012166]
[181]
Luo, C.; Zhou, S.; Zhou, Z.; Liu, Y.; Yang, L.; Liu, J.; Zhang, Y.; Li, H.; Liu, Y.; Hou, F.F.; Zhou, L. Wnt9a promotes renal fibrosis by accelerating cellular senescence in tubular epithelial cells. J. Am. Soc. Nephrol., 2018, 29(4), 1238-1256.
[http://dx.doi.org/10.1681/ASN.2017050574] [PMID: 29440280]
[182]
Kitada, M.; Kume, S.; Takeda-Watanabe, A.; Kanasaki, K.; Koya, D. Sirtuins and renal diseases: Relationship with aging and diabetic nephropathy. Clin. Sci. (Lond.), 2013, 124(3), 153-164.
[http://dx.doi.org/10.1042/CS20120190] [PMID: 23075334]
[183]
Ogura, Y.; Kitada, M.; Koya, D. Sirtuins and renal oxidative stress. Antioxidants, 2021, 10(8), 1198.
[http://dx.doi.org/10.3390/antiox10081198] [PMID: 34439446]
[184]
Tanaka, Y.; Kume, S.; Kitada, M.; Kanasaki, K.; Uzu, T.; Maegawa, H.; Koya, D. Autophagy as a therapeutic target in diabetic nephropathy. Exp. Diabetes Res., 2012, 2012, 1-12.
[http://dx.doi.org/10.1155/2012/628978] [PMID: 22028701]
[185]
Chuang, P.Y.; Cai, W.; Li, X.; Fang, L.; Xu, J.; Yacoub, R.; He, J.C.; Lee, K. Reduction in podocyte SIRT1 accelerates kidney injury in aging mice. Am. J. Physiol. Renal Physiol., 2017, 313(3), F621-F628.
[http://dx.doi.org/10.1152/ajprenal.00255.2017] [PMID: 28615249]
[186]
Kume, S.; Kitada, M.; Kanasaki, K.; Maegawa, H.; Koya, D. Anti-aging molecule, Sirt1: A novel therapeutic target for diabetic nephropathy. Arch. Pharm. Res., 2013, 36(2), 230-236.
[http://dx.doi.org/10.1007/s12272-013-0019-4] [PMID: 23361587]
[187]
Ledford, H. Sirtuin protein linked to longevity in mammals. Nature, 2012.
[http://dx.doi.org/10.1038/nature.2012.10074]
[188]
Someya, S.; Yu, W.; Hallows, W.C.; Xu, J.; Vann, J.M.; Leeuwenburgh, C.; Tanokura, M.; Denu, J.M.; Prolla, T.A. Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction. Cell, 2010, 143(5), 802-812.
[http://dx.doi.org/10.1016/j.cell.2010.10.002] [PMID: 21094524]
[189]
Cai, J.; Liu, Z.; Huang, X.; Shu, S.; Hu, X.; Zheng, M.; Tang, C.; Liu, Y.; Chen, G.; Sun, L.; Liu, H.; Liu, F.; Cheng, J.; Dong, Z. The deacetylase sirtuin 6 protects against kidney fibrosis by epigenetically blocking β-catenin target gene expression. Kidney Int., 2020, 97(1), 106-118.
[http://dx.doi.org/10.1016/j.kint.2019.08.028] [PMID: 31787254]
[190]
Bonafè, M.; Sabbatinelli, J.; Olivieri, F. Exploiting the telomere machinery to put the brakes on inflamm-aging. Ageing Res. Rev., 2020, 59, 101027.
[http://dx.doi.org/10.1016/j.arr.2020.101027] [PMID: 32068123]
[191]
Tennen, R.I.; Chua, K.F. Chromatin regulation and genome maintenance by mammalian SIRT6. Trends Biochem. Sci., 2011, 36(1), 39-46.
[http://dx.doi.org/10.1016/j.tibs.2010.07.009] [PMID: 20729089]
[192]
Ji, L.; Chen, Y.; Wang, H.; Zhang, W.; He, L.; Wu, J.; Liu, Y. Overexpression of Sirt6 promotes M2 macrophage transformation, alleviating renal injury in diabetic nephropathy. Int. J. Oncol., 2019, 55(1), 103-115.
[http://dx.doi.org/10.3892/ijo.2019.4800] [PMID: 31115579]
[193]
Hasegawa, K.; Wakino, S.; Yoshioka, K.; Tatematsu, S.; Hara, Y.; Minakuchi, H.; Washida, N.; Tokuyama, H.; Hayashi, K.; Itoh, H. Sirt1 protects against oxidative stress-induced renal tubular cell apoptosis by the bidirectional regulation of catalase expression. Biochem. Biophys. Res. Commun., 2008, 372(1), 51-56.
[http://dx.doi.org/10.1016/j.bbrc.2008.04.176] [PMID: 18485895]
[194]
Guilherme, A.; Virbasius, J.V.; Puri, V.; Czech, M.P. Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nat. Rev. Mol. Cell Biol., 2008, 9(5), 367-377.
[http://dx.doi.org/10.1038/nrm2391] [PMID: 18401346]
[195]
Ryan, A.S. Insulin resistance with aging: Effects of diet and exercise. Sports Med., 2000, 30(5), 327-346.
[http://dx.doi.org/10.2165/00007256-200030050-00002] [PMID: 11103847]
[196]
Engfeldt, P.; Arner, P. Lipolysis in human adipocytes, effects of cell size, age and of regional differences. Horm. Metab. Res. Suppl., 1988, 19, 26-29.
[PMID: 3069692]
[197]
Han, L.L.; Bai, X.J.; Lin, H.L.; Sun, X.F.; Chen, X.M. Association between kidney and cardiac diastolic function in Chinese subjects without overt disease: Correlation with ageing and inflammatory markers. Eur. J. Clin. Invest., 2011, 41(10), 1077-1086.
[http://dx.doi.org/10.1111/j.1365-2362.2011.02503.x] [PMID: 21413979]
[198]
Matoba, K.; Takeda, Y.; Nagai, Y.; Kawanami, D.; Utsunomiya, K.; Nishimura, R. Unraveling the role of inflammation in the pathogenesis of diabetic kidney disease. Int. J. Mol. Sci., 2019, 20(14), 3393.
[http://dx.doi.org/10.3390/ijms20143393] [PMID: 31295940]
[199]
Satirapoj, B.; Dispan, R.; Radinahamed, P.; Kitiyakara, C. Urinary epidermal growth factor, monocyte chemoattractant protein-1 or their ratio as predictors for rapid loss of renal function in type 2 diabetic patients with diabetic kidney disease. BMC Nephrol., 2018, 19(1), 246.
[http://dx.doi.org/10.1186/s12882-018-1043-x] [PMID: 30241508]
[200]
Yang, X.; Liu, S.; Zhang, R.; Sun, B.; Zhou, S.; Chen, R.; Yu, P. Microribonucleic acid-192 as a specific biomarker for the early diagnosis of diabetic kidney disease. J. Diabetes Investig., 2018, 9(3), 602-609.
[http://dx.doi.org/10.1111/jdi.12753] [PMID: 28940849]
[201]
Wu, C.; Wang, Q.; Lv, C.; Qin, N.; Lei, S.; Yuan, Q.; Wang, G. The changes of serum sKlotho and NGAL levels and their correlation in type 2 diabetes mellitus patients with different stages of urinary albumin. Diabetes Res. Clin. Pract., 2014, 106(2), 343-350.
[http://dx.doi.org/10.1016/j.diabres.2014.08.026] [PMID: 25263500]
[202]
Fountoulakis, N.; Maltese, G.; Gnudi, L.; Karalliedde, J. Reduced levels of anti-ageing hormone klotho predict renal function decline in type 2 diabetes. J. Clin. Endocrinol. Metab., 2018, 103(5), 2026-2032.
[http://dx.doi.org/10.1210/jc.2018-00004] [PMID: 29509906]
[203]
Ruggenenti, P.; Abbate, M.; Ruggiero, B.; Rota, S.; Trillini, M.; Aparicio, C.; Parvanova, A.; Petrov Iliev, I.; Pisanu, G.; Perna, A.; Russo, A.; Diadei, O.; Martinetti, D.; Cannata, A.; Carrara, F.; Ferrari, S.; Stucchi, N.; Remuzzi, G.; Fontana, L. Renal and systemic effects of calorie restriction in patients with type 2 diabetes with abdominal obesity: A randomized controlled trial. Diabetes, 2017, 66(1), 75-86.
[http://dx.doi.org/10.2337/db16-0607] [PMID: 27634224]
[204]
Chu, S.H.; Yang, D.; Wang, Y.; Yang, R.; Qu, L.; Zeng, H. Effect of resveratrol on the repair of kidney and brain injuries and its regulation on klotho gene in d-galactose-induced aging mice. Bioorg. Med. Chem. Lett., 2021, 40, 127913.
[http://dx.doi.org/10.1016/j.bmcl.2021.127913] [PMID: 33705905]
[205]
Fouque, D.; Pelletier, S.; Mafra, D.; Chauveau, P. Nutrition and chronic kidney disease. Kidney Int., 2011, 80(4), 348-357.
[http://dx.doi.org/10.1038/ki.2011.118] [PMID: 21562470]
[206]
Kume, S.; Koya, D. Autophagy: A novel therapeutic target for diabetic nephropathy. Diabetes Metab. J., 2015, 39(6), 451-460.
[http://dx.doi.org/10.4093/dmj.2015.39.6.451] [PMID: 26706914]
[207]
Liu, C.; Liu, H.; Fang, Y.; Jiang, S.; Zhu, J.; Ding, X. Rapamycin reduces renal hypoxia, interstitial inflammation and fibrosis in a rat model of unilateral ureteral obstruction. Clin. Invest. Med., 2014, 37(3), 142.
[http://dx.doi.org/10.25011/cim.v37i3.21381] [PMID: 24895989]
[208]
Liu, Y. Rapamycin and chronic kidney disease: Beyond the inhibition of inflammation. Kidney Int., 2006, 69(11), 1925-1927.
[http://dx.doi.org/10.1038/sj.ki.5001543] [PMID: 16724087]
[209]
Houde, V.P.; Brûlé, S.; Festuccia, W.T.; Blanchard, P.G.; Bellmann, K.; Deshaies, Y.; Marette, A. Chronic rapamycin treatment causes glucose intolerance and hyperlipidemia by upregulating hepatic gluconeogenesis and impairing lipid deposition in adipose tissue. Diabetes, 2010, 59(6), 1338-1348.
[http://dx.doi.org/10.2337/db09-1324] [PMID: 20299475]
[210]
You, H.; Gao, T.; Cooper, T.K.; Brian Reeves, W.; Awad, A.S. Macrophages directly mediate diabetic renal injury. Am. J. Physiol. Renal Physiol., 2013, 305(12), F1719-F1727.
[http://dx.doi.org/10.1152/ajprenal.00141.2013] [PMID: 24173355]
[211]
Sharma, D.; Bhattacharya, P.; Kalia, K.; Tiwari, V. Diabetic nephropathy: New insights into established therapeutic paradigms and novel molecular targets. Diabetes Res. Clin. Pract., 2017, 128, 91-108.
[http://dx.doi.org/10.1016/j.diabres.2017.04.010] [PMID: 28453961]
[212]
Bolignano, D.; Cernaro, V.; Gembillo, G.; Baggetta, R.; Buemi, M.; D’Arrigo, G. Antioxidant agents for delaying diabetic kidney disease progression: A systematic review and meta-analysis. PLoS One, 2017, 12(6), e0178699.
[http://dx.doi.org/10.1371/journal.pone.0178699] [PMID: 28570649]
[213]
Zhao, Y.; Zhang, W.; Jia, Q.; Feng, Z.; Guo, J.; Han, X.; Liu, Y.; Shang, H.; Wang, Y.; Liu, W.J. High dose vitamin E attenuates diabetic nephropathy via alleviation of autophagic stress. Front. Physiol., 2019, 9, 1939.
[http://dx.doi.org/10.3389/fphys.2018.01939] [PMID: 30719008]
[214]
Aghadavod, E.; Soleimani, A.; Hamidi, G.; Keneshlou, F.; Heidari, A.; Asemi, Z. Effects of high-dose vitamin E supplementation on markers of cardiometabolic risk and oxidative stress in patients with diabetic nephropathy: A randomized double-blinded controlled trial. Iran. J. Kidney Dis., 2018, 12(3), 156-162.
[PMID: 29891745]
[215]
Wu, C.; Qin, N.; Ren, H.; Yang, M.; Liu, S.; Wang, Q. Metformin regulating mir-34a pathway to inhibit egr1 in rat mesangial cells cultured with high glucose. Int. J. Endocrinol., 2018, 2018, 1-15.
[http://dx.doi.org/10.1155/2018/6462793] [PMID: 29681936]
[216]
Perkovic, V.; Jardine, M.J.; Neal, B.; Bompoint, S.; Heerspink, H.J.L.; Charytan, D.M.; Edwards, R.; Agarwal, R.; Bakris, G.; Bull, S.; Cannon, C.P.; Capuano, G.; Chu, P.L.; de Zeeuw, D.; Greene, T.; Levin, A.; Pollock, C.; Wheeler, D.C.; Yavin, Y.; Zhang, H.; Zinman, B.; Meininger, G.; Brenner, B.M.; Mahaffey, K.W. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N. Engl. J. Med., 2019, 380(24), 2295-2306.
[http://dx.doi.org/10.1056/NEJMoa1811744] [PMID: 30990260]
[217]
Vallon, V.; Gerasimova, M.; Rose, M.A.; Masuda, T.; Satriano, J.; Mayoux, E.; Koepsell, H.; Thomson, S.C.; Rieg, T. SGLT2 inhibitor empagliflozin reduces renal growth and albuminuria in proportion to hyperglycemia and prevents glomerular hyperfiltration in diabetic Akita mice. Am. J. Physiol. Renal Physiol., 2014, 306(2), F194-F204.
[http://dx.doi.org/10.1152/ajprenal.00520.2013] [PMID: 24226524]
[218]
Jayarathne, H.S.M.; Debarba, L.K.; Jaboro, J.J.; Ginsburg, B.C.; Miller, R.A.; Sadagurski, M. Neuroprotective effects of Canagliflozin: Lessons from aged genetically diverse UM-HET3 mice. Aging Cell, 2022, 21(7), e13653.
[http://dx.doi.org/10.1111/acel.13653] [PMID: 35707855]
[219]
Miller, R.A.; Harrison, D.E.; Allison, D.B.; Bogue, M.; Debarba, L.; Diaz, V.; Fernandez, E.; Galecki, A.; Garvey, W.T.; Jayarathne, H.; Kumar, N.; Javors, M.A.; Ladiges, W.C.; Macchiarini, F.; Nelson, J.; Reifsnyder, P.; Rosenthal, N.A.; Sadagurski, M.; Salmon, A.B.; Smith, D.L., Jr; Snyder, J.M.; Lombard, D.B.; Strong, R. Canagliflozin extends life span in genetically heterogeneous male but not female mice. JCI Insight, 2020, 5(21), e140019.
[http://dx.doi.org/10.1172/jci.insight.140019] [PMID: 32990681]
[220]
Snyder, J.M.; Casey, K.M.; Galecki, A.; Harrison, D.E.; Jayarathne, H.; Kumar, N.; Macchiarini, F.; Rosenthal, N.; Sadagurski, M.; Salmon, A.B.; Strong, R.; Miller, R.A.; Ladiges, W. Canagliflozin retards age-related lesions in heart, kidney, liver, and adrenal gland in genetically heterogenous male mice. Geroscience, 2023, 45(1), 385-397.
[http://dx.doi.org/10.1007/s11357-022-00641-0] [PMID: 35974129]
[221]
Kröller-Schön, S.; Knorr, M.; Hausding, M.; Oelze, M.; Schuff, A.; Schell, R.; Sudowe, S.; Scholz, A.; Daub, S.; Karbach, S.; Kossmann, S.; Gori, T.; Wenzel, P.; Schulz, E.; Grabbe, S.; Klein, T.; Münzel, T.; Daiber, A. Glucose-independent improvement of vascular dysfunction in experimental sepsis by dipeptidyl-peptidase 4 inhibition. Cardiovasc. Res., 2012, 96(1), 140-149.
[http://dx.doi.org/10.1093/cvr/cvs246] [PMID: 22843705]
[222]
Rodríguez-Iturbe, B.; Quiroz, Y.; Shahkarami, A.; Li, Z.; Vaziri, N.D. Mycophenolate mofetil ameliorates nephropathy in the obese Zucker rat. Kidney Int., 2005, 68(3), 1041-1047.
[http://dx.doi.org/10.1111/j.1523-1755.2005.00496.x] [PMID: 16105034]
[223]
Kawahara, T.L.A.; Michishita, E.; Adler, A.S.; Damian, M.; Berber, E.; Lin, M.; McCord, R.A.; Ongaigui, K.C.L.; Boxer, L.D.; Chang, H.Y.; Chua, K.F. SIRT6 links histone H3 lysine 9 deacetylation to NF-kappaB-dependent gene expression and organismal life span. Cell, 2009, 136(1), 62-74.
[http://dx.doi.org/10.1016/j.cell.2008.10.052] [PMID: 19135889]
[224]
Han, S.J.; Kim, H.J.; Kim, D.J.; Sheen, S.S.; Chung, C.H.; Ahn, C.W.; Kim, S.H.; Cho, Y.W.; Park, S.W.; Kim, S.K.; Kim, C.S.; Kim, K.W.; Lee, K.W. Effects of pentoxifylline on proteinuria and glucose control in patients with type 2 diabetes: A prospective randomized double-blind multicenter study. Diabetol. Metab. Syndr., 2015, 7(1), 64.
[http://dx.doi.org/10.1186/s13098-015-0060-1] [PMID: 26300986]
[225]
Gu, Y.Y.; Lu, F.H.; Huang, X.R.; Zhang, L.; Mao, W.; Yu, X.Q.; Liu, X.S.; Lan, H.Y. Non-coding RNAs as biomarkers and therapeutic targets for diabetic kidney disease. Front. Pharmacol., 2021, 11, 583528.
[http://dx.doi.org/10.3389/fphar.2020.583528] [PMID: 33574750]
[226]
Esmaeili, S.; Motamedrad, M.; Hemmati, M.; Mehrpour, O.; Khorashadizadeh, M. Prevention of kidney cell damage in hyperglycaemia condition by adiponectin. Cell Biochem. Funct., 2019, 37(3), 148-152.
[http://dx.doi.org/10.1002/cbf.3380] [PMID: 30908696]
[227]
Hickson, L.J.; Langhi Prata, L.G.P.; Bobart, S.A.; Evans, T.K.; Giorgadze, N.; Hashmi, S.K.; Herrmann, S.M.; Jensen, M.D.; Jia, Q.; Jordan, K.L.; Kellogg, T.A.; Khosla, S.; Koerber, D.M.; Lagnado, A.B.; Lawson, D.K.; LeBrasseur, N.K.; Lerman, L.O.; McDonald, K.M.; McKenzie, T.J.; Passos, J.F.; Pignolo, R.J.; Pirtskhalava, T.; Saadiq, I.M.; Schaefer, K.K.; Textor, S.C.; Victorelli, S.G.; Volkman, T.L.; Xue, A.; Wentworth, M.A.; Wissler Gerdes, E.O.; Zhu, Y.; Tchkonia, T.; Kirkland, J.L. Senolytics decrease senescent cells in humans: Preliminary report from a clinical trial of Dasatinib plus Quercetin in individuals with diabetic kidney disease. EBioMedicine, 2019, 47, 446-456.
[http://dx.doi.org/10.1016/j.ebiom.2019.08.069] [PMID: 31542391]
[228]
Zhang, D.; Ma, M.; Liu, Y. Protective effects of incretin against age-related diseases. Curr. Drug Deliv., 2019, 16(9), 793-806.
[http://dx.doi.org/10.2174/1567201816666191010145029] [PMID: 31622202]
[229]
Coppolino, G.; Leporini, C.; Rivoli, L.; Ursini, F.; di Paola, E.D.; Cernaro, V.; Arturi, F.; Bolignano, D.; Russo, E.; De Sarro, G.; Andreucci, M. Exploring the effects of DPP-4 inhibitors on the kidney from the bench to clinical trials. Pharmacol. Res., 2018, 129, 274-294.
[http://dx.doi.org/10.1016/j.phrs.2017.12.001] [PMID: 29223646]
[230]
Shi, J.X.; Huang, Q. Glucagon-like peptide-1 protects mouse podocytes against high glucose-induced apoptosis, and suppresses reactive oxygen species production and proinflammatory cytokine secretion, through sirtuin 1 activation in vitro. Mol. Med. Rep., 2018, 18(2), 1789-1797.
[http://dx.doi.org/10.3892/mmr.2018.9085] [PMID: 29845208]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy