Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Research Article

Development and Evaluation of Sulfobutylether-β-cyclodextrin Inclusion Complexes of Etoricoxib for Enhancing Dissolution

Author(s): Vivekanand Vishvakarma, Malkiet Kaur, Manju Nagpal* and Paramjot Maman

Volume 20, Issue 4, 2024

Published on: 19 July, 2023

Article ID: e190623218085 Pages: 12

DOI: 10.2174/1573407219666230619125557

Price: $65

conference banner
Abstract

Introduction: Etoricoxib is a BCS class II drug with poor aqueous solubility and analgesic and anti-inflammatory properties. Complexation with cyclodextrins is one of the widely used methods, amongst others, for enhancing the solubility and bioavailability of drugs. In current research work, inclusion complexes of etoricoxib using modified forms of cyclodextrin, i.e., captisol were prepared using kneading, evaporation, and freeze-drying methods to improve the solubility and dissolution characteristics.

Methods: Etoricoxib inclusion complexes (ratio 1:1) were formulated using kneading, evaporation, and freeze-drying methods. The formulated inclusion complexes were evaluated for phase solubility, equilibrium solubility studies, Fourier transform infrared spectroscopy, powder X-ray diffraction, scanning electron microscopy, differential scanning calorimetry studies, in vitro drug release, similarity factor and in vivo studies.

Results: The freeze-drying method produced inclusion complexes with the highest equilibrium solubility (ten times that of the pure drug). Fourier transform infrared spectroscopy studies showed no drug-polymer interaction. Differential scanning calorimetry and scanning electron microscopy studies suggested the incorporation of the drug into inclusion complexes of cyclodextrin. In vitro dissolution studies of kneading, evaporation and freeze-drying method inclusion complexes showed 66.53%, 79.13% and 88% drug release, respectively, in 3h, whereas pure drug exhibited 61.77% drug release in 3 h. The f1 value obtained was less than 50, which is indicative of a significant difference in release characteristics of kneading, evaporation and freeze-drying methods with that of the marketed formulation. In vivo studies indicated that inclusion complexes formulated by the freeze-drying method showed better analgesic and anti-inflammatory effects in comparison to formulations prepared by kneading and evaporation methods.

Conclusion: It is concluded that the formulation prepared by the freeze-drying method led to a significant enhancement of dissolution and solubility rate of etoricoxib in comparison to the formulation prepared by the kneading method and evaporation method.

Graphical Abstract

[1]
Brooks, P.; Kubler, P. Etoricoxib for arthritis and pain management. Ther. Clin. Risk Manag., 2006, 2(1), 45-57.
[PMID: 18360581]
[2]
Savjani, K.T.; Gajjar, A.K.; Savjani, J.K. Drug solubility: Importance and enhancement techniques. ISRN Pharm., 2012, 2012, 1-10.
[http://dx.doi.org/10.5402/2012/195727] [PMID: 22830056]
[3]
Fukuda, M.; Miller, D.A.; Peppas, N.A.; McGinity, J.W. Influence of sulfobutyl ether β-cyclodextrin (Captisol®) on the dissolution properties of a poorly soluble drug from extrudates prepared by hot-melt extrusion. Int. J. Pharm., 2008, 350(1-2), 188-196.
[http://dx.doi.org/10.1016/j.ijpharm.2007.08.038] [PMID: 17920217]
[4]
Ol’khovich, M.V.; Sharapova, A.V.; Perlovich, G.L.; Skachilova, S.Y.; Zheltukhin, N.K. Inclusion complex of antiasthmatic compound with 2-hydroxypropyl-β-cyclodextrin: Preparation and physicochemical properties. J. Mol. Liq., 2017, 237, 185-192.
[http://dx.doi.org/10.1016/j.molliq.2017.04.098]
[5]
Misiuk, W. Investigation of inclusion complex of HP-γ-cyclodextrin with ceftazidime. J. Mol. Liq., 2016, 224, 387-392.
[http://dx.doi.org/10.1016/j.molliq.2016.10.009]
[6]
Del Valle, E.M.M. Cyclodextrins and their uses: A review. Process Biochem., 2004, 39(9), 1033-1046.
[http://dx.doi.org/10.1016/S0032-9592(03)00258-9]
[7]
Kurkov, S.V.; Loftsson, T. Cyclodextrins. Int. J. Pharm., 2013, 453(1), 167-180.
[http://dx.doi.org/10.1016/j.ijpharm.2012.06.055] [PMID: 22771733]
[8]
Stancanelli, R.; Ficarra, R.; Cannavà, C.; Guardo, M.; Calabrò, M.L.; Ficarra, P.; Ottanà, R.; Maccari, R.; Crupi, V.; Majolino, D.; Venuti, V. UV-vis and FTIR-ATR characterization of 9-fluorenon-2-carboxyester/(2-hydroxypropyl)-β-cyclodextrin inclusion complex. J. Pharm. Biomed. Anal., 2008, 47(4-5), 704-709.
[http://dx.doi.org/10.1016/j.jpba.2008.02.018] [PMID: 18400444]
[9]
Mahapatra, A.K.; Murthy, P.N.; Biswal, S.; Mahapatra, A.P.K.; Pradhan, S.P. Dissolution enhancement and physicochemical characterization of valsartan in solid dispersions with β-CD, HP β-CD, and PVP K-30. Dissolut. Technol., 2011, 18(1), 39-45.
[http://dx.doi.org/10.14227/DT180111P39]
[10]
Caltabiano, A.M. Quantitation of sulfobutyl ether-β-cyclodextrin (Captisol™) in Vestipitant IV solution by liquid chromatography with ultraviolet (UV) detection. J. Pharm. Biomed. Anal., 2016, 118, 276-283.
[http://dx.doi.org/10.1016/j.jpba.2015.10.045] [PMID: 26580825]
[11]
Munir, R.; Hadi, A.; Khan, S.U.; Asghar, S.; Irfan, M.; Khan, I.U.; Hameed, M.; Inam, S.; Islam, N.; Hassan, S.F.; Ishtiaq, M. Solubility and dissolution enhancement of Dexibuprofen with Hydroxypropylbetacyclodextrin (HPβCD) and Poloxamers (188/407) inclusion complexes: Preparation and in vitro characterization. Polymers, 2022, 14(3), 579.
[http://dx.doi.org/10.3390/polym14030579] [PMID: 35160569]
[12]
Hsiung, E.; Celebioglu, A.; Chowdhury, R.; Kilic, M.E.; Durgun, E.; Altier, C.; Uyar, T. Antibacterial nanofibers of pullulan/tetracycline-cyclodextrin inclusion complexes for fast-disintegrating oral drug delivery. J. Colloid Interface Sci., 2022, 610, 321-333.
[http://dx.doi.org/10.1016/j.jcis.2021.12.013] [PMID: 34923270]
[13]
Lorenzo-Veiga, B.; Diaz-Rodriguez, P.; Alvarez-Lorenzo, C.; Loftsson, T.; Sigurdsson, H.H. In vitro and ex vivo evaluation of Nepafenac-based cyclodextrin microparticles for treatment of eye inflammation. Nanomaterials, 2020, 10(4), 709.
[http://dx.doi.org/10.3390/nano10040709] [PMID: 32283583]
[14]
Shah, A.A.; Shah, A.; Lewis, S.; Ghate, V.; Saklani, R.; Narayana Kalkura, S.; Baby, C.; Singh, P.K.; Nayak, Y.; Chourasia, M.K. Cyclodextrin based bone regenerative inclusion complex for resveratrol in postmenopausal osteoporosis. Eur. J. Pharm. Biopharm., 2021, 167, 127-139.
[http://dx.doi.org/10.1016/j.ejpb.2021.07.008] [PMID: 34329710]
[15]
Rescifina, A.; Surdo, E.; Cardile, V.; Avola, R.; Eleonora Graziano, A.C.; Stancanelli, R.; Tommasini, S.; Pistarà, V.; Ventura, C.A. Gemcitabine anticancer activity enhancement by water soluble celecoxib/sulfobutyl ether-β-cyclodextrin inclusion complex. Carbohydr. Polym., 2019, 206, 792-800.
[http://dx.doi.org/10.1016/j.carbpol.2018.11.060] [PMID: 30553385]
[16]
Das, S.K.; Kahali, N.; Bose, A.; Khanam, J. Physicochemical characterization and in vitro dissolution performance of ibuprofen-Captisol® (sulfobutylether sodium salt of β-CD) inclusion complexes. J. Mol. Liq., 2018, 261, 239-249.
[http://dx.doi.org/10.1016/j.molliq.2018.04.007]
[17]
Khalid, Q.; Ahmad, M.; Minhas, M.U.; Batool, F.; Malik, N.S.; Rehman, M. Novel β-cyclodextrin nanosponges by chain growth condensation for solubility enhancement of dexibuprofen: Characterization and acute oral toxicity studies. J. Drug Deliv. Sci. Technol., 2021, 61, 102089.
[http://dx.doi.org/10.1016/j.jddst.2020.102089]
[18]
Alshehri, S.; Imam, S.S.; Altamimi, M.A.; Hussain, A.; Shakeel, F.; Alshehri, A. Stimulatory effects of Soluplus® on flufenamic acid β-cyclodextrin supramolecular complex: Physicochemical characterization and pre-clinical anti-inflammatory assessment. AAPS PharmSciTech, 2020, 21(5), 145.
[http://dx.doi.org/10.1208/s12249-020-01684-2] [PMID: 32430787]
[19]
Rein, S.M.T.; Lwin, W.W.; Tuntarawongsa, S.; Phaechamud, T. Meloxicam-loaded solvent exchange-induced in situ forming beta-cyclodextrin gel and microparticle for periodontal pocket delivery. Mater. Sci. Eng. C, 2020, 117, 111275.
[http://dx.doi.org/10.1016/j.msec.2020.111275] [PMID: 32919639]
[20]
Badr-Eldin, S.M.; Elkheshen, S.A.; Ghorab, M.M. Inclusion complexes of tadalafil with natural and chemically modified β-cyclodextrins. I: Preparation and in-vitro evaluation. Eur. J. Pharm. Biopharm., 2008, 70(3), 819-827.
[http://dx.doi.org/10.1016/j.ejpb.2008.06.024] [PMID: 18655829]
[21]
Singh, I.; Kumar, P.; Pahuja, S.; Tung, V.; Arora, S. Development and pharmacological evaluation of cyclodextrin complexes of etoricoxib. Acta Pol. Pharm., 2011, 68(2), 279-284.
[PMID: 21485302]
[22]
Patel, H.; Suhagia, B.; Shah, S.; Rathod, I.; Parmar, V. Preparation and characterization of etoricoxib-β-cyclodextrin complexes prepared by the kneading method. Acta Pharm., 2007, 57(3), 351-359.
[http://dx.doi.org/10.2478/v10007-007-0028-2] [PMID: 17878114]
[23]
Reddy, M.S.; Rao, N.R. Preparation and evaluation of cyclodextrin complexation of etoricoxib. Int. J. Pharm. Sci. Res., 2012, 3(12), 4938-4944.
[24]
Reddy, M.N.; Rehana, T.; Ramakrishna, S.; Chowdary, K.P.R.; Diwan, P.V. β-cyclodextrin complexes of celecoxib: Molecular-modeling, characterization, and dissolution studies. AAPS PharmSci, 2004, 6(1), 68-76.
[http://dx.doi.org/10.1208/ps060107] [PMID: 15198508]
[25]
Tsinontides, S.C.; Rajniak, P.; Pham, D.; Hunke, W.A.; Placek, J.; Reynolds, S.D. Freeze drying-principles and practice for successful scale-up to manufacturing. Int. J. Pharm., 2004, 280(1-2), 1-16.
[http://dx.doi.org/10.1016/j.ijpharm.2004.04.018] [PMID: 15265542]
[26]
Shah, M.; Karekar, P.; Sancheti, P.; Vyas, V.; Pore, Y. Effect of PVP K30 and/or L-arginine on stability constant of etoricoxib-HPbetaCD inclusion complex: Preparation and characterization of etoricoxib-HPbetaCD binary system. Drug Dev. Ind. Pharm., 2009, 35(1), 118-129.
[http://dx.doi.org/10.1080/03639040802220292] [PMID: 18979307]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy