Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Catalysts For Propargylamines Synthesis Via A3, AHA, and KA2 Coupling - A Review

Author(s): Amina Berrichi*, Redouane Bachir and Sumeya Bedrane

Volume 27, Issue 7, 2023

Published on: 17 July, 2023

Page: [621 - 643] Pages: 23

DOI: 10.2174/1385272827666230614151935

Price: $65

Abstract

Different intermediates are key molecules to synthesize high-added value bioactive and pharmacology molecules such as propargylamines may be synthesized in several ways using catalysts in homogeneous and heterogeneous conditions. This review presents the catalysts which are used in the A3, AHA, and KA2 coupling reactions to afford propargylamines. It also provides a classification of all the propargylamines known up to date in the literature and their reported synthesis conditions.

« Previous
Graphical Abstract

[1]
Weinreb, O.; Amit, T.; Bar-Am, O.; Youdim, M.B.H. Rasagiline: A novel anti-Parkinsonian monoamine oxidase-B inhibitor with neuroprotective activity. Prog. Neurobiol., 2010, 92(3), 330-344.
[http://dx.doi.org/10.1016/j.pneurobio.2010.06.008] [PMID: 20600573]
[2]
Weinreb, O.; Mandel, S.; Bar-Am, O.; Yogev-Falach, M.; Avramovich-Tirosh, Y.; Amit, T.; Youdim, M.B.H. Multifunctional neuroprotective derivatives of rasagiline as anti-Alzheimer’s disease drugs. Neurotherapeutics, 2009, 6(1), 163-174.
[http://dx.doi.org/10.1016/j.nurt.2008.10.030] [PMID: 19110207]
[3]
Magyar, K.; Palfi, M.; Jenei, V.; Szoko, E. Deprenyl: From chemical synthesis to neuroprotection. In: Oxidative Stress and Neuroprotection; Springer: Vienna, 2006; pp. 143-156.
[http://dx.doi.org/10.1007/978-3-211-33328-0_16]
[4]
Youdim, M.B.H.; Kupershmidt, L.; Amit, T.; Weinreb, O. Promises of novel multi-target neuroprotective and neurorestorative drugs for Parkinson’s disease. Parkinsonism Relat. Disord., 2014, 20(Suppl. 1), S132-S136.
[http://dx.doi.org/10.1016/S1353-8020(13)70032-4] [PMID: 24262165]
[5]
Naoi, M.; Maruyama, W.; Youdim, M.B.H.; Yu, P.; Boulton, A.A. Anti-apoptotic function of propargylamine inhibitors of type-B monoamine oxidase. Inflammopharmacology, 2003, 11(2), 175-181.
[http://dx.doi.org/10.1163/156856003765764344] [PMID: 15035819]
[6]
Lauder, K.; Toscani, A.; Scalacci, N.; Castagnolo, D. Synthesis and reactivity of propargylamines in organic chemistry. Chem. Rev., 2017, 117(24), 14091-14200.
[http://dx.doi.org/10.1021/acs.chemrev.7b00343] [PMID: 29166000]
[7]
Samanta, S.; Hajra, A. Divergent synthesis of allenylsulfonamide and Enaminonesulfonamide via In(III)-catalyzed couplings of propargylamine and N-Fluorobenzenesulfonimide. J. Org. Chem., 2018, 83(21), 13157-13165.
[http://dx.doi.org/10.1021/acs.joc.8b01882] [PMID: 30346168]
[8]
Zhu, M.; Fu, W.; Zou, G.; Xun, C.; Deng, D.; Ji, B. An efficient synthesis of 2-trifluoromethyl quinolines via gold-catalyzed cyclization of trifluoromethylated propargylamines. J. Fluor. Chem., 2012, 135(0), 195-199.
[http://dx.doi.org/10.1016/j.jfluchem.2011.11.002]
[9]
Nakamura, H.; Kamakura, T.; Ishikura, M.; Biellmann, J.F. Synthesis of allenes via palladium-catalyzed hydrogen-transfer reactions: Propargylic amines as an allenyl anion equivalent. J. Am. Chem. Soc., 2004, 126(19), 5958-5959.
[http://dx.doi.org/10.1021/ja039175+] [PMID: 15137748]
[10]
Peshkov, V.A.; Pereshivko, O.P.; Nechaev, A.A.; Peshkov, A.A.; Van der Eycken, E.V. Reactions of secondary propargylamines with heteroallenes for the synthesis of diverse heterocycles. Chem. Soc. Rev., 2018, 47(11), 3861-3898.
[http://dx.doi.org/10.1039/C7CS00065K] [PMID: 29546891]
[11]
Teng, S.; Chi, Y.R.; Zhou, J.S. Enantioselective three‐component coupling of heteroarenes, cycloalkenes and propargylic acetates. Angew. Chem. Int. Ed., 2021, 60(9), 4491-4495.
[http://dx.doi.org/10.1002/anie.202014781] [PMID: 33259131]
[12]
Liu, C.; Wang, G.; Wang, Y.; Pereshivko, O.P.; Peshkov, V.A. Copper-catalyzed reaction of secondary propargylamines with ethyl Buta-2,3-dienoate for the synthesis of 1,6-Dihydropyridines. Eur. J. Org. Chem., 2019, 2019(10), 1981-1985.
[http://dx.doi.org/10.1002/ejoc.201801227]
[13]
Beaudegnies, R.; Lamberth, C. A general synthesis of novel acyclic chiral α-tertiary amines. Tetrahedron Lett., 2020, 61(44), 152463.
[http://dx.doi.org/10.1016/j.tetlet.2020.152463]
[14]
Olivi, N.; Spruyt, P.; Peyrat, J.F.; Alami, M.; Brion, J-D. Tandem amine propargylation-Sonogashira reactions: New three-component coupling leading to functionalized substituted propargylic amines. Tetrahedron Lett., 2004, 45(12), 2607-2610.
[http://dx.doi.org/10.1016/j.tetlet.2004.01.141]
[15]
Shehzadi, S.A.; Saeed, A.; Lemière, F.; Maes, B.U.W.; Abbaspour Tehrani, K. Zinc(II)-catalyzed synthesis of propargylamines by coupling aldimines and ketimines with alkynes. Eur. J. Org. Chem., 2018, 2018(1), 78-88.
[http://dx.doi.org/10.1002/ejoc.201701567]
[16]
Teong, S.P.; Yu, D.; Sum, Y.N.; Zhang, Y. Copper catalysed alkynylation of tertiary amines with CaC 2 via sp 3 C–H activation. Green Chem., 2016, 18(12), 3499-3502.
[http://dx.doi.org/10.1039/C6GC00872K]
[17]
Ricker, J.D.; Mohammadrezaei, V.; Crippen, T.J.; Zell, A.M.; Geary, L.M. Nitrous oxide promoted pauson–khand cycloadditions. Organometallics, 2018, 37(24), 4556-4559.
[http://dx.doi.org/10.1021/acs.organomet.8b00810] [PMID: 31363297]
[18]
Rodygin, K.S.; Vikenteva, Y.A.; Ananikov, V.P. Calcium‐based sustainable chemical technologies for total carbon recycling. ChemSusChem, 2019, 12(8), 1483-1516.
[http://dx.doi.org/10.1002/cssc.201802412] [PMID: 30938099]
[19]
Paioti, P.H.S.; Abboud, K.A.; Aponick, A. Incorporation of axial chirality into phosphino-imidazoline ligands for enantioselective catalysis. ACS Catal., 2017, 7(3), 2133-2138.
[http://dx.doi.org/10.1021/acscatal.7b00133]
[20]
Aponick, A; Li, C-Y; Malinge, J; Marques, E.F An extremely facile synthesis of furans, pyrroles, and thiophenes by the dehydrative cyclization of propargyl alcohols. org. lett., 2009, 11(20), 4624-7.
[21]
Liu, Q.; Xu, H.; Li, Y.; Yao, Y.; Zhang, X.; Guo, Y.; Ma, S. Pyrinap ligands for enantioselective syntheses of amines. Nat. Commun., 2021, 12(1), 19.
[http://dx.doi.org/10.1038/s41467-020-20205-0] [PMID: 33397992]
[22]
Kaur, P.; Kumar, B.; Gurjar, K.K.; Kumar, R.; Kumar, V.; Kumar, R. Metal- and solvent-free multicomponent decarboxylative A3-Coupling for the synthesis of propargyl-amines: Experimental, computational, and biological investigations. J. Org. Chem., 2020, 85(4), 2231-2241.
[http://dx.doi.org/10.1021/acs.joc.9b02806] [PMID: 31877044]
[23]
Simonetti, S.O.; Pellegrinet, S.C. Theoretical study of the borono–mannich reaction with pinacol allenylboronate. J. Org. Chem., 2020, 85(11), 7494-7500.
[http://dx.doi.org/10.1021/acs.joc.0c01003] [PMID: 32364384]
[24]
Peshkov, V.A.; Pereshivko, O.P.; Van der Eycken, E.V. A walk around the A3-coupling. Chem. Soc. Rev., 2012, 41(10), 3790-3807.
[http://dx.doi.org/10.1039/c2cs15356d] [PMID: 22422343]
[25]
Jesin, I.; Nandi, G.C. Recent advances in the A3 coupling reactions and their applications. Eur. J. Org. Chem., 2019, 2019(16), 2704-2720.
[http://dx.doi.org/10.1002/ejoc.201900001]
[26]
Manujyothi, R.; Aneeja, T.; Anilkumar, G. Solvent-free synthesis of propargylamines: An overview. RSC Advances, 2021, 11(32), 19433-19449.
[http://dx.doi.org/10.1039/D1RA03324G] [PMID: 35479216]
[27]
Saha, T.K.; Das, R. Progress in synthesis of propargylamine and its derivatives by nanoparticle catalysis via A3coupling: A decade update. ChemistrySelect, 2018, 3(1), 147-169.
[http://dx.doi.org/10.1002/slct.201702454]
[28]
Li, Y.L.; Liu, J.X.; Chen, X.P.; Zhou, Y.; Xiao, Y-C.; Chen, F-E. Asymmetric alkynylation of cyclic N‐Sulfonyl imines using synergistic chiral phosphoric acid/copper catalysis. Adv. Synth. Catal., 2020, 362(15), 3202-3207.
[http://dx.doi.org/10.1002/adsc.202000504]
[29]
Sheng, X.; Chen, K.; Shi, C.; Huang, D. Recent advances in reactions of propargylamines. Synthesis, 2020, 52(1), 1-20.
[http://dx.doi.org/10.1055/s-0039-1690684]
[30]
Shi, L; Tu, YQ; Wang, M; Fan, C-A Microwave-promoted three-component coupling of aldehyde, alkyne, and amine via C−H activation catalyzed by copper in water. org. lett., 2004, 6(6), 1001-3.
[31]
Sreedhar, B.; Reddy, P.S.; Prakash, B.V.; Ravindra, A. Ultrasound-assisted rapid and efficient synthesis of propargylamines. Tetrahedron Lett., 2005, 46(41), 7019-7022.
[http://dx.doi.org/10.1016/j.tetlet.2005.08.047]
[32]
Cimarelli, C.; Navazio, F.; Rossi, F.; Del Bello, F.; Marcantoni, E. Activation of primary amines by Copper(I)-Based lewis acid promoters in the solventless synthesis of secondary propargylamines. Synthesis, 2019, 51(11), 2387-2396.
[http://dx.doi.org/10.1055/s-0037-1612253]
[33]
Saeidian, H.; Kakanejadifard, A.; Abdoli, M. Highly efficient one-pot synthesis of novel propargylamine-based sulfonamides by an A3-Coupling Reaction. Synlett, 2016, 27(17), 2473-2476.
[http://dx.doi.org/10.1055/s-0035-1562602]
[34]
Srivastava, S. Novel ferrocene-labeled propargyl amines via CuI multicomponent amination/alkynylation. New J. Chem., 2019, 43(17), 6469-6471.
[http://dx.doi.org/10.1039/C9NJ00538B]
[35]
Gommermann, N.; Knochel, P. 2-Phenallyl as a versatile protecting group for the asymmetric one-pot three-component synthesis of propargylamines. Chem. Commun., 2005, (33), 4175-4177.
[http://dx.doi.org/10.1039/b507810e] [PMID: 16100594]
[36]
Gommermann, N.; Knochel, P. Preparation of functionalized primary chiral amines and amides via an enantioselective three-component synthesis of propargylamines. Tetrahedron, 2005, 61(48), 11418-11426.
[http://dx.doi.org/10.1016/j.tet.2005.08.064]
[37]
Gurubrahamam, R.; Periasamy, M. Copper(I) halide promoted diastereoselective synthesis of chiral propargylamines and chiral allenes using 2-dialkylaminomethylpyrrolidine, aldehydes, and 1-alkynes. J. Org. Chem., 2013, 78(4), 1463-1470.
[http://dx.doi.org/10.1021/jo302534f] [PMID: 23320792]
[38]
Shehzadi, S.A.; Saeed, A. Cu(I)-catalyzed green synthesis of propargyl amines decorated with carbazole moiety by A3-Coupling. J. Chin. Chem. Soc., 2017, 64(7), 777-785.
[http://dx.doi.org/10.1002/jccs.201700061]
[39]
Sun, L.; Wu, M.; Huang, X.; Wang, J.; Song, G. Three-component hetero-domino cyclization and copper-catalyzed double A3-coupling reaction of ethane-1,2-diamines, formaldehyde, and alkynes to afford 1,3-dipropargylimidazolidines. Chem. Heterocycl. Compd., 2018, 54(3), 355-361.
[http://dx.doi.org/10.1007/s10593-018-2273-3]
[40]
Guo, N.; Ji, J.X. A novel and convenient copper-catalyzed three-component coupling of aldehydes, alkynes, and hydroxylamines leading to propargylamines. Tetrahedron Lett., 2012, 53(36), 4797-4801.
[http://dx.doi.org/10.1016/j.tetlet.2012.03.009]
[41]
Du, W.Q.; Zhang, J.M.; Wu, R.; Liang, Q.; Zhu, S-Z. One-pot preparation of fluorinated propargylamines under microwave irradiation and solvent-free conditions. J. Fluor. Chem., 2008, 129(8), 695-700.
[http://dx.doi.org/10.1016/j.jfluchem.2008.06.015]
[42]
Zhang, Y.; Feng, H.; Liu, X.; Huang, L. A highly chemoselective synthesis of cyclic divalent propargylamines by copper-catalyzed annulation/double A3-Couplings. Eur. J. Org. Chem., 2018, 2018(17), 2039-2046.
[http://dx.doi.org/10.1002/ejoc.201800393]
[43]
Uhlig, N.; Li, C-J. Site-specific modification of amino acids and peptides by aldehyde–alkyne–amine coupling under ambient aqueous conditions. Org. Lett., 2012, 14(12), 3000-3.
[44]
Li, X.; Chen, N.; Xu, J. Microwave-assisted CuCl-catalyzed three-component reactions of alkynes, aldehydes, and amino alcohols; Synth, 2019.
[http://dx.doi.org/10.1055/s-0037-1611536]
[45]
Sagadevan, A.; Pampana, V.K.K.; Hwang, K.C. Copper photoredox catalyzed A3′ coupling of arylamines, terminal alkynes, and alcohols through a hydrogen atom transfer process. Angew. Chem. Int. Ed., 2019, 58(12), 3838-3842.
[http://dx.doi.org/10.1002/anie.201813315] [PMID: 30664324]
[46]
Rokade, B.V.; Barker, J.; Guiry, P.J. Development of and recent advances in asymmetric A3 coupling. Chem. Soc. Rev., 2019, 48(18), 4766-4790.
[http://dx.doi.org/10.1039/C9CS00253G] [PMID: 31465045]
[47]
Shao, Z.; Pu, X.; Li, X.; Fan, B.; Chan, A.S.C. Enantioselective, copper(I)-catalyzed three-component reaction for the synthesis of β,γ-alkynyl α-amino acid derivatives. Tetrahedron Asymmetry, 2009, 20(2), 225-229.
[http://dx.doi.org/10.1016/j.tetasy.2009.01.006]
[48]
Mo, J.N.; Su, J.; Zhao, J. The asymmetric A3(Aldehyde–Alkyne–Amine) coupling: Highly enantioselective access to propargylamines. Molecules, 2019, 24(7), 1216.
[http://dx.doi.org/10.3390/molecules24071216] [PMID: 30925732]
[49]
Angst, C. Stereoselective synthesis of β,γ-unsaturated amino acids. Pure Appl. Chem., 1987, 59(3), 373-380.
[http://dx.doi.org/10.1351/pac198759030373]
[50]
Fan, W.; Ma, S. An easily removable stereo-dictating group for enantioselective synthesis of propargylic amines. Chem. Commun., 2013, 49(86), 10175-10177.
[http://dx.doi.org/10.1039/c3cc45118f] [PMID: 24051867]
[51]
de Oliveira, I.M.; Pimenta, D.C.; Zukerman-Schpector, J.; Stefani, H.A.; Manarin, F. Copper(I)/succinic acid cooperatively catalyzed one-pot synthesis of organoselenium-propargylamines via A3-coupling. New J. Chem., 2018, 42(12), 10118-10123.
[http://dx.doi.org/10.1039/C8NJ01543K]
[52]
Saha, S.; Biswas, K.; Ghosh, P.; Basu, B. New 1,2-dithioether based 2D copper(I) coordination polymer: From synthesis to catalytic application in] A3-coupling reaction. J. Coord. Chem., 2019, 72(11), 1810-1819.
[http://dx.doi.org/10.1080/00958972.2019.1627339]
[53]
Naeimi, H.; Moradian, M. Thioether-based copper(I) Schiff base complex as a catalyst for a direct and asymmetric A3-coupling reaction. Tetrahedron Asymmetry, 2014, 25(5), 429-434.
[http://dx.doi.org/10.1016/j.tetasy.2014.02.002]
[54]
Kashid, V.S.; Balakrishna, M.S. Microwave-assisted copper(I) catalyzed A3-coupling reaction: Reactivity, substrate scope and the structural characterization of two coupling products. Catal. Commun., 2018, 103, 78-82.
[http://dx.doi.org/10.1016/j.catcom.2017.09.020]
[55]
Colombo, F.; Benaglia, M.; Orlandi, S.; Usuelli, F. Asymmetric multicomponent copper catalyzed synthesis of chiral propargylamines. J. Mol. Catal. Chem., 2006, 260(1-2), 128-134.
[http://dx.doi.org/10.1016/j.molcata.2006.07.003]
[56]
Nakamura, S.; Ohara, M.; Nakamura, Y.; Shibata, N.; Toru, T. Copper-catalyzed enantioselective three-component synthesis of optically active propargylamines from aldehydes, amines, and aliphatic alkynes. Chemistry, 2010, 16(8), 2360-2362.
[http://dx.doi.org/10.1002/chem.200903550] [PMID: 20108286]
[57]
Liu, P.; Fang, L.; Lei, X.; Lin, G. Synthesis of imidazo[1,2a]pyridines via three-component reaction of 2-aminopyridines, aldehydes and alkynes. Tetrahedron Lett., 2010, 51(35), 4605-4608.
[http://dx.doi.org/10.1016/j.tetlet.2010.05.139]
[58]
Rasheed, O.K.; Bawn, C.; Davies, D.; Raftery, J.; Vitorica-Yrzebal, I.; Pritchard, R.; Zhou, H.; Quayle, P. The synthesis of group 10 and 11 metal complexes of 3,6,9-Trithia-1-(2,6)-pyridinacyclodecaphane and their use in A3-Coupling reactions. Eur. J. Org. Chem., 2017, 2017(35), 5252-5261.
[http://dx.doi.org/10.1002/ejoc.201701033]
[59]
Cammarata, J.R.; Rivera, R.; Fuentes, F.; Otero, Y.; Ocando-Mavárez, E.; Arce, A.; Garcia, J.M. Single and double A3-coupling (aldehyde-amine-alkyne) reaction catalyzed by an air stable copper(I)-phosphole complex. Tetrahedron Lett., 2017, 58(43), 4078-4081.
[http://dx.doi.org/10.1016/j.tetlet.2017.09.031]
[60]
Bisai, A; Singh, VK Enantioselective one-pot three-component synthesis of propargylamines. org. lett., 2006, 8(11), 2405-8.
[61]
Dhanasekaran, S.; Kannaujiya, V.K.; Biswas, R.G.; Singh, V.K. Enantioselective A3-coupling reaction employing chiral CuI-iPrpyboxdiPh/N-Boc-(L)-proline complex under cooperative catalysis: Application in the synthesis of (Indol-2-yl)methanamines. J. Org. Chem., 2019, 84(6), 3275-3292.
[http://dx.doi.org/10.1021/acs.joc.8b03225] [PMID: 30789265]
[62]
Sharghi, H.; Khoshnood, A.; Khalifeh, R. Three-component synthesis of propargylamine derivatives via 1,4- dihydroxyanthraquinone-copper(II) complexes as an efficient catalyst under solvent-free conditions. Iran. J. Sci. Technol. Trans. A Sci., 2012, 36(A1), 25-35.
[63]
Mahmood Tajbaksh, M.F.; Mardani, H.R. zadeh, R.H.; Sarrafi, Y. Cu(¢ò) salen complex catalyzed synthesis of propargylamines by a three-component coupling reaction. Chin. J. Catal., 2013, 34(12), 2217-2222.
[http://dx.doi.org/10.1016/S1872-2067(12)60683-4]
[64]
Milen, M.; Györke, G.; Dancsó, A.; Volk, B. Study on the A3-coupling reaction catalyzed by readily available copper-containing minerals. Synthesis of propargylamines. Tetrahedron Lett., 2020, 61(10), 151544.
[http://dx.doi.org/10.1016/j.tetlet.2019.151544]
[65]
Xu, Z.; Wu, H.; Li, H.; Du, Z.; Fu, Y. Copper-catalyzed highly efficient acetylene-mannich reaction of secondary amines, paraformaldehyde and terminal alkynes. ChemistrySelect, 2018, 3(48), 13629-13631.
[http://dx.doi.org/10.1002/slct.201803313]
[66]
Feng, H.; Peng, F.; Xi, H.; Zhong, L.; Huang, L. Cu‐catalyzed selective synthesis of propargylamines via A3‐Coupling/Aza‐Michael addition sequence: Amine loading controls the selectivity. Asian J. Org. Chem., 2021, 10(4), 762-765.
[http://dx.doi.org/10.1002/ajoc.202100079]
[67]
Zhu, L.; Li, C. Silver-Mediated Radical Reactions. Silver Catalysis in Organic Synthesis; Wiley Online Library: New Jersey, 2019, pp. 183-269.
[http://dx.doi.org/10.1002/9783527342822.ch4]
[68]
Wei, C; Li, Z; Li, C-J The first silver-catalyzed three-component coupling of aldehyde, alkyne, and amine. org. lett., 2003, 5(23), 4473-5.
[69]
Li, Z.; Wei, C.; Chen, L.; Varma, R.S.; Li, C-J. Three-component coupling of aldehyde, alkyne, and amine catalyzed by silver in ionic liquid. Tetrahedron Lett., 2004, 45(11), 2443-2446.
[http://dx.doi.org/10.1016/j.tetlet.2004.01.044]
[70]
Mohan Reddy, K.; Seshu Babu, N. Suryanarayana, I.; Sai Prasad, P.S.; Lingaiah, N. The silver salt of 12-tungstophosphoric acid: An efficient catalyst for the three-component coupling of an aldehyde, an amine and an alkyne. Tetrahedron Lett., 2006, 47(43), 7563-7566.
[http://dx.doi.org/10.1016/j.tetlet.2006.08.094]
[71]
Zhu, A.; Du, C.; Zhang, Y.; Li, L. Ionic liquid assisted silver-catalyzed one-pot A3-coupling reactions for the synthesis of propargylamines. J. Mol. Liq., 2019, 279, 289-293.
[http://dx.doi.org/10.1016/j.molliq.2019.01.142]
[72]
Trose, M.; Dell’Acqua, M.; Pedrazzini, T.; Pirovano, V.; Gallo, E.; Rossi, E.; Caselli, A.; Abbiati, G. [Silver(I)(pyridine-containing ligand)] complexes as unusual catalysts for A(3)-coupling reactions. J. Org. Chem., 2014, 79(16), 7311-7320.
[http://dx.doi.org/10.1021/jo500981r] [PMID: 25051223]
[73]
Prakash, O.; Joshi, H.; Kumar, U.; Sharma, A.K.; Singh, A.K. Acridine based (S,N,S) pincer ligand: Designing silver(I) complexes for the efficient activation of A 3 (aldehyde, alkyne and amine) coupling. Dalton Trans., 2015, 44(4), 1962-1968.
[http://dx.doi.org/10.1039/C4DT02813A] [PMID: 25494199]
[74]
Beillard, A.; Métro, T.X.; Bantreil, X.; Martinez, J.; Lamaty, F. A3-Coupling Reaction and [Ag(IPr)2]PF6: A successful couple. Eur. J. Org. Chem., 2017, 2017(31), 4642-4647.
[http://dx.doi.org/10.1002/ejoc.201700985]
[75]
Ishida, T.; Haruta, M. Gold catalysts: Towards sustainable chemistry. Angew. Chem. Int. Ed., 2007, 46(38), 7154-7156.
[http://dx.doi.org/10.1002/anie.200701622] [PMID: 17702085]
[76]
Zhao, P.; Feng, X.; Huang, D.; Yang, G.; Astruc, D. Basic concepts and recent advances in nitrophenol reduction by gold- and other transition metal nanoparticles. Coord. Chem. Rev., 2015, 287, 114-136.
[http://dx.doi.org/10.1016/j.ccr.2015.01.002]
[77]
Xiao, F.; Chen, Y.; Liu, Y.; Wang, J. Sequential catalytic process: Synthesis of quinoline derivatives by AuCl3/CuBr-catalyzed three-component reaction of aldehydes, amines, and alkynes. Tetrahedron, 2008, 64(12), 2755-2761.
[http://dx.doi.org/10.1016/j.tet.2008.01.046]
[78]
Kung, K.K.Y.; Li, G.L.; Zou, L.; Chong, H.C.; Leung, Y.C.; Wong, K.H.; Lo, V.K.Y.; Che, C.M.; Wong, M.K. Gold-mediated bifunctional modification of oligosaccharides via a three-component coupling reaction. Org. Biomol. Chem., 2012, 10(5), 925-930.
[http://dx.doi.org/10.1039/C1OB06429K] [PMID: 22076205]
[79]
Srinivas, V.; Koketsu, M. Synthesis of indole-2-, 3-, or 5-substituted propargylamines via gold(III)-catalyzed three component reaction of aldehyde, alkyne, and amine in aqueous medium. Tetrahedron, 2013, 69(37), 8025-8033.
[http://dx.doi.org/10.1016/j.tet.2013.06.098]
[80]
Li, J.; Rudolph, M.; Rominger, F.; Xie, J.; Hashmi, A.S.K. A gold‐catalyzed A3 coupling/cyclization/elimination sequence as versatile tool for the synthesis of furfuryl alcohol derivatives from glyceraldehyde and alkynes. Adv. Synth. Catal., 2016, 358(2), 207-211.
[http://dx.doi.org/10.1002/adsc.201500812]
[81]
Hui, T.W.; Cui, J.F.; Wong, M.K. Modular synthesis of propargylamine modified cyclodextrins by a gold(III)-catalyzed three-component coupling reaction. RSC Advances, 2017, 7(24), 14477-14480.
[http://dx.doi.org/10.1039/C7RA00249A]
[82]
Price, G.A.; Brisdon, A.K.; Flower, K.R.; Pritchard, R.G.; Quayle, P. Solvent effects in gold-catalysed A3-coupling reactions. Tetrahedron Lett., 2014, 55(1), 151-154.
[http://dx.doi.org/10.1016/j.tetlet.2013.10.141]
[83]
Belmonte Sánchez, E.; Iglesias, M.J.; el Hajjouji, H.; Roces, L.; García-Granda, S.; Villuendas, P.; Urriolabeitia, E.P.; López Ortiz, F. Cycloaurated phosphinothioic amide complex as a precursor of gold (I) nanoparticles: Efficient catalysts for A3 synthesis of propargylamines under solvent-free conditions. Organometallics, 2017, 36(10), 1962-1973.
[http://dx.doi.org/10.1021/acs.organomet.7b00102]
[84]
Zhang, F.; Lai, Q.; Shi, X. Triazole-gold (TAAu) catalyzed three-component coupling (A3 reaction) towards the synthesis of 2, 4-disubstituted quinoline derivatives. Chin. Chem. Lett., 2018.
[PMID: 31762583]
[85]
Mariconda, A.; Sirignano, M.; Costabile, C.; Longo, P. New NHC- silver and gold complexes active in A3-coupling (aldehyde-alkyne-amine) reaction. Molecular Catalysis, 2020, 480, 110570.
[http://dx.doi.org/10.1016/j.mcat.2019.110570]
[86]
Adachi, Y.; Kawasaki, H.; Nagata, T.; Obora, Y. Thiolate-protected gold nanoclusters Au 25 (phenylethanethiol) 18 : An efficient catalyst for the synthesis of propargylamines from aldehydes, amines, and alkynes. Chem. Lett., 2016, 45(12), 1457-1459.
[http://dx.doi.org/10.1246/cl.160813]
[87]
Li, Y.Z.; Leong, W.K. A comparative study on atomically precise Au nanoclusters as catalysts for the aldehyde–alkyne–amine (A3)coupling reaction: ligand effects on the nature of the catalysis and efficiency. RSC Advances, 2019, 9(10), 5475-5479.
[http://dx.doi.org/10.1039/C9RA00933G] [PMID: 35515902]
[88]
Li, P.; Zhang, Y.; Wang, L. Iron-catalyzed ligand-free three-component coupling reactions of aldehydes, terminal alkynes, and amines. Chemistry, 2009, 15(9), 2045-2049.
[http://dx.doi.org/10.1002/chem.200802643] [PMID: 19177481]
[89]
Chen, W.W.; Nguyen, R.V.; Li, C.J. Iron-catalyzed three-component coupling of aldehyde, alkyne, and amine under neat conditions in air. Tetrahedron Lett., 2009, 50(24), 2895-2898.
[http://dx.doi.org/10.1016/j.tetlet.2009.03.182]
[90]
Eshghi, H.; Zohuri, G.H.; Damavandi, S. One-pot multicomponent route to propargylamines using ferric hydrogensulfate. Eur. J. Chem., 2011, 2(1), 100-103.
[http://dx.doi.org/10.5155/eurjchem.2.1.100-103.175]
[91]
Kantam, M.L.; Balasubrahmanyam, V.; Kumar, K.B.S.; Venkanna, G.T. Efficient one-pot synthesis of propargylamines using zinc dust. Tetrahedron Lett., 2007, 48(41), 7332-7334.
[http://dx.doi.org/10.1016/j.tetlet.2007.08.020]
[92]
Ramu, E.; Varala, R.; Sreelatha, N.; Adapa, S.R. Zn(OAc)2•2H2O: A versatile catalyst for the one-pot synthesis of propargylamines. Tetrahedron Lett., 2007, 48(40), 7184-7190.
[http://dx.doi.org/10.1016/j.tetlet.2007.07.196]
[93]
Zani, L.; Eichhorn, T.; Bolm, C. Dimethylzinc-mediated, enantioselective synthesis of propargylic amines. Chemistry, 2007, 13(9), 2587-2600.
[http://dx.doi.org/10.1002/chem.200601347] [PMID: 17186561]
[94]
Obst, M.; Srivastava, A.; Baskaran, S.; König, B. Preparation of propargyl amines in a ZnCl2–Dimethylurea deep-eutectic solvent. Synlett, 2018, 29(2), 185-188.
[http://dx.doi.org/10.1055/s-0036-1588571]
[95]
Sakaguchi, S.; Mizuta, T.; Furuwan, M.; Kubo, T.; Ishii, Y. Iridium-catalyzed coupling of simple primary or secondary amines, aldehydes and trimethylsilylacetylene: preparation of propargylic amines. Chem. Commun., 2004, 10(14), 1638-1639.
[http://dx.doi.org/10.1039/b404430d] [PMID: 15263956]
[96]
Pin-Hua, L.; Lei, W. Mercurous chloride catalyzed mannich condensation of terminal alkynes with secondary amines and aldehydes. Chin. J. Chem., 2005, 23(8), 1076-1080.
[http://dx.doi.org/10.1002/cjoc.200591076]
[97]
Bonfield, E.R.; Li, C.J. Efficient ruthenium and copper cocatalzyed five-component coupling to form dipropargyl amines under mild conditions in water. Org. Biomol. Chem., 2007, 5(3), 435-437.
[http://dx.doi.org/10.1039/B613596J] [PMID: 17252122]
[98]
Yadav, J.S.; Subba Reddy, B.V.; Hara Gopal, A.V.; Patil, K.S. InBr3-catalyzed three-component reaction: A facile synthesis of propargyl amines. Tetrahedron Lett., 2009, 50(26), 3493-3496.
[http://dx.doi.org/10.1016/j.tetlet.2009.03.014]
[99]
Zhang, Y.; Li, P.; Wang, M.; Wang, L. Indium-catalyzed highly efficient three-component coupling of aldehyde, alkyne, and amine via C-H bond activation. J. Org. Chem., 2009, 74(11), 4364-4367.
[http://dx.doi.org/10.1021/jo900507v] [PMID: 19422248]
[100]
C P, I.J.; Nandi, G.C. Catalyst-controlled dual reactivity of sulfonimidamides: Synthesis of propargylamines and N-Propargyl sulfonimidamides. Chemistry, 2019, 25(3), 743-749.
[http://dx.doi.org/10.1002/chem.201805000] [PMID: 30395377]
[101]
Zhang, K.; Huang, Y.; Chen, R. A novel efficient method for synthesis of propargylamines via three-component coupling of aryl azide, aldehyde, and alkyne promoted by iron–iodine–copper(I) bromide. Tetrahedron Lett., 2010, 51(41), 5463-5465.
[http://dx.doi.org/10.1016/j.tetlet.2010.08.024]
[102]
Singh, A.; Kumar Narula, A. Highly efficient, iodide catalysed propargylamines synthesis via A3 coupling reaction. Results in Chemistry, 2022, 4, 100279.
[http://dx.doi.org/10.1016/j.rechem.2021.100279]
[103]
Choudary, B.M.; Sridhar, C.; Kantam, M.L.; Sreedhar, B. Hydroxyapatite supported copper catalyst for effective three-component coupling. Tetrahedron Lett., 2004, 45(39), 7319-7321.
[http://dx.doi.org/10.1016/j.tetlet.2004.08.004]
[104]
Sreedhar, B.; Surendra Reddy, P.; Vamsi Krishna, C.S.; Vijaya Babu, P. An efficient synthesis of propargylamines using a silica gel anchored copper chloride catalyst in an aqueous medium. Tetrahedron Lett., 2007, 48(44), 7882-7886.
[http://dx.doi.org/10.1016/j.tetlet.2007.08.116]
[105]
Shore, G.; Yoo, W.J.; Li, C.J.; Organ, M.G. Propargyl amine synthesis catalysed by gold and copper thin films by using microwave-assisted continuous-flow organic synthesis (MACOS). Chemistry, 2010, 16(1), 126-133.
[http://dx.doi.org/10.1002/chem.200902396] [PMID: 19950339]
[106]
Dulle, J.; Thirunavukkarasu, K.; Mittelmeijer-Hazeleger, M.C.; Andreeva, D.V.; Shiju, N.R.; Rothenberg, G. Efficient three-component coupling catalysed by mesoporous copper–aluminum based nanocomposites. Green Chem., 2013, 15(5), 1238-1243.
[http://dx.doi.org/10.1039/c3gc36607c]
[107]
Saeidian, H; Faghfori, M; Abdoli, M Green and efficient synthesis of propargylamines via A3 coupling reaction using a copper (II)–thioamide combination. Iran. Chem. Commun., 2018, 6(4), pp. 325-460), 408-15.
[108]
Fodor, A.; Kiss, Á.; Debreczeni, N.; Hell, Z.; Gresits, I. A simple method for the preparation of propargylamines using molecular sieve modified with copper(ii). Org. Biomol. Chem., 2010, 8(20), 4575-4581.
[http://dx.doi.org/10.1039/c0ob00224k] [PMID: 20740243]
[109]
Li, P.; Regati, S.; Huang, H.C.; Arman, H.D.; Chen, B-L.; Zhao, J. C-G A sulfonate-based Cu(I) metal-organic framework as a highly efficient and reusable catalyst for the synthesis of propargylamines under solvent-free conditions. Chin. Chem. Lett., 2014.
[110]
Reddy, B.R.P.; Reddy, P.V.G.; Shankar, M.V.; Reddy, B.N. CuI supported on protonated trititanate nanotubes: A reusable catalyst for the one-pot synthesis of propargylamines via A3-coupling. Asian J. Org. Chem., 2017, 6(6), 712-719.
[http://dx.doi.org/10.1002/ajoc.201600623]
[111]
Sun, W-J.; Gao, E-Q. MIL-101 supported highly active single-site metal catalysts for tricomponent coupling. Appl. Catal. A., 2019, 569, 110-6.
[112]
Sharghi, H.; Khalifeh, R.; Moeini, F.; Beyzavi, M.H.; Beni, A.S.; Doroodmand, M.M. Mannich reaction of secondary amines, aldehydes and alkynes in water using Cu/C nanoparticles as a heterogeneous catalyst. J. Indian Chem. Soc., 2011, 8(S1), S89-S103.
[http://dx.doi.org/10.1007/BF03254285]
[113]
Ramu, V.G.; Bordoloi, A.; Nagaiah, T.C.; Schuhmann, W.; Muhler, M.; Cabrele, C. Copper nanoparticles stabilized on nitrogen-doped carbon nanotubes as efficient and recyclable catalysts for alkyne/aldehyde/cyclic amine A3-type coupling reactions. Appl. Catal. A Gen., 2012, 431-432, 88-94.
[http://dx.doi.org/10.1016/j.apcata.2012.04.019]
[114]
Albaladejo, M.J.; Alonso, F.; Moglie, Y.; Yus, M. Three-component coupling of aldehydes, amines, and alkynes catalyzed by oxidized copper nanoparticles on Titania. Eur. J. Org. Chem., 2012, 2012(16), 3093-3104.
[http://dx.doi.org/10.1002/ejoc.201200090]
[115]
Yang, J.; Li, P.; Wang, L. Postsynthetic modification of metal–organic framework as a highly efficient and recyclable catalyst for three-component (aldehyde–alkyne–amine) coupling reaction. Catal. Commun., 2012, 27, 58-62.
[http://dx.doi.org/10.1016/j.catcom.2012.06.023]
[116]
Luz, I.; Llabrés i Xamena, F.X.; Corma, A. Bridging homogeneous and heterogeneous catalysis with MOFs: Cu-MOFs as solid catalysts for three-component coupling and cyclization reactions for the synthesis of propargylamines, indoles and imidazopyridines. J. Catal., 2012, 285(1), 285-291.
[http://dx.doi.org/10.1016/j.jcat.2011.10.001]
[117]
Nador, F.; Volpe, M.A.; Alonso, F.; Feldhoff, A.; Kirschning, A.; Radivoy, G. Copper nanoparticles supported on silica coated maghemite as versatile, magnetically recoverable and reusable catalyst for alkyne coupling and cycloaddition reactions. Appl. Catal. A Gen., 2013, 455(0), 39-45.
[http://dx.doi.org/10.1016/j.apcata.2013.01.023]
[118]
Srinivas, M.; Srinivasu, P.; Bhargava, S.K.; Kantam, M.L. Direct synthesis of two-dimensional mesoporous copper silicate as an efficient catalyst for synthesis of propargylamines. Catal. Today, 2013, 208, 66-71.
[http://dx.doi.org/10.1016/j.cattod.2013.02.006]
[119]
Borah, B.J.; Borah, S.J.; Saikia, L.; Dutta, D.K. Efficient three-component coupling reactions catalyzed by Cu 0 -nanoparticles stabilized on modified montmorillonite. Catal. Sci. Technol., 2014, 4(4), 1047-1054.
[http://dx.doi.org/10.1039/C3CY00639E]
[120]
Frindy, S.; El Kadib, A.; Lahcini, M.; Primo, A.; García, H. Copper nanoparticles supported on graphene as an efficient catalyst for A3 coupling of benzaldehydes. Catal. Sci. Technol., 2016, 6(12), 4306-4317.
[http://dx.doi.org/10.1039/C5CY01414J]
[121]
Gholinejad, M.; Saadati, F.; Shaybanizadeh, S.; Pullithadathil, B. Copper nanoparticles supported on starch micro particles as a degradable heterogeneous catalyst for three-component coupling synthesis of propargylamines. RSC Advances, 2016, 6(6), 4983-4991.
[http://dx.doi.org/10.1039/C5RA22292C]
[122]
Cheng, S.; Shang, N.; Feng, C.; Gao, S.; Wang, C.; Wang, Z. Efficient multicomponent synthesis of propargylamines catalyzed by copper nanoparticles supported on metal-organic framework derived nanoporous carbon. Catal. Commun., 2017, 89, 91-95.
[http://dx.doi.org/10.1016/j.catcom.2016.10.030]
[123]
Saadati, F.; Leghaei, V.; Zamani, A. Environmentally benign copper nanoparticles supported on walnut shell as a highly durable nanocatalyst for the synthesis of propargylamines. J. Serb. Chem. Soc., 2017, 82(11), 1211-1221.
[http://dx.doi.org/10.2298/JSC161221081S]
[124]
Shah, A.P.; Sharma, A.S.; Jain, S.; Shimpi, N.G. Microwave assisted one pot three component synthesis of propargylamine, tetra substituted propargylamine and pyr-rolo[1,2- a]quinolines using CuNPs@ZnO–PTh as a heterogeneous catalyst. New J. Chem., 2018, 42(11), 8724-8737.
[http://dx.doi.org/10.1039/C8NJ00410B]
[125]
Sadjadi, S.; Heravi, M.M.; Ebrahimizadeh, M. Synthesis of Cu@Fur-SBA-15 as a novel efficient and heterogeneous catalyst for promoting A3-coupling under green and mild reaction conditions. J. Porous Mater., 2018, 25(3), 779-788.
[http://dx.doi.org/10.1007/s10934-017-0491-1]
[126]
Kumar, A.; Sarmah, B.; Srivastava, R. C-N bond formation by the activation of alkenes and alkynes using Cu present in the framework and extra-framework of alumino-phosphate. Catal. Commun., 2018, 109, 43-49.
[http://dx.doi.org/10.1016/j.catcom.2018.02.007]
[127]
Saadati, F.; Gholinejad, M.; Janmohammadi, H.; Shaybanizadeh, S. Efficient method for the synthesis of propargylamines using a biomaterial containing copper nanoparticles as impressive and reusable nanocatalyst. Lett. Org. Chem., 2018, 15(2), 79-86.
[http://dx.doi.org/10.2174/1570178614666170907144234]
[128]
Cortezano-Arellano, O.; Hernández-Gasca, M.A.; Ángeles-Beltrán, D.; Negrón-Silva, G.E.; Santillan, R. Diastereoselective synthesis of propargylamines catalyzed by Cu-MCM-41. Tetrahedron Lett., 2018, 59(25), 2403-2406.
[http://dx.doi.org/10.1016/j.tetlet.2018.05.010]
[129]
Terra, J.C.S.; Moores, A.; Moura, F.C.C. Amine-functionalized mesoporous silica as a support for on-demand release of copper in the A 3-coupling reaction: Ultralow concentration catalysis and confinement effect. ACS Sustain. Chem.& Eng., 2019, 7(9), 8696-8705.
[http://dx.doi.org/10.1021/acssuschemeng.9b00576]
[130]
Elahimehr, Z.; Nemati, F.; Elhampour, A. Synthesis of a magnetic-based yolk-shell nano-reactor: A new class of monofunctional catalyst by Cu0-nanoparticles and its application as a highly effective and green catalyst for A3 coupling reaction. Arab. J. Chem., 2020, 13(1), 3372-3382.
[http://dx.doi.org/10.1016/j.arabjc.2018.11.011]
[131]
Rafiee, F.; Khavari, P. One-pot three-component synthesis of propargylamines using an efficient and reusable copper bio-functionalized magnetic graphene oxide nanocomposite. Polyhedron, 2020, 177, 114309.
[http://dx.doi.org/10.1016/j.poly.2019.114309]
[132]
Islam, M.M.; Halder, M.; Roy, A.S.; Chatterjee, S.; Bhaumik, A.; Islam, S.M. Copper(II) incorporated functionalized polystyrene catalyzed N-arylation of amides under solvent free condition with broad substrate scope. RSC Advances, 2016, 6(111), 109692-109701.
[http://dx.doi.org/10.1039/C6RA24459A]
[133]
Liu, X.; Lin, B.; Zhang, Z.; Lei, H.; Li, Y. Copper(II) carboxymethylcellulose (CMC-CuII) as an efficient catalyst for aldehyde–alkyne–amine coupling under solvent-free conditions. RSC Advances, 2016, 6(97), 94399-94407.
[http://dx.doi.org/10.1039/C6RA18742K]
[134]
Vinod Kumar, V.; Rajmohan, R.; Vairaprakash, P.; Mariappan, M.; Anthony, S.P. Copper-coordination polymer-controlled Cu@N-rGO and CuO@C nanoparticle formation: Reusable green catalyst for A3-coupling and nitroarene-reduction reactions. Dalton Trans., 2017, 46(35), 11704-11714.
[http://dx.doi.org/10.1039/C7DT02119D] [PMID: 28825760]
[135]
Sharma, A.S.; Kaur, H.; Barot, N. Microwave-assisted facile synthesis of propargylamine library by robust nitro functionalized cross-linked polystyrene resin supported Cu NPs. J. Phys. Org. Chem., 2018, 31(1), e3749.
[http://dx.doi.org/10.1002/poc.3749]
[136]
Li-Hua, W.; Lei, L.; Xin, W. Synthesis, structural characterization and catalytic activity of A Cu (II) coordination polymer constructed from 1, 4-phenylenediacetic acid and 2, 2′-bipyridine. Bull. Chem. React. Eng. Catal., 2017, 12(1), 113-118.
[http://dx.doi.org/10.9767/bcrec.12.1.735.113-118]
[137]
Hu, Q.; Shi, X.L.; Chen, Y.; Wang, F.; Weng, Y.; Duan, P. Fiber-polyquaterniums@Cu(I) as recyclable polymer-supported copper complex catalysts for alkyne coupling and cycloaddition reactions. J. Ind. Eng. Chem., 2019, 69, 387-396.
[http://dx.doi.org/10.1016/j.jiec.2018.09.047]
[138]
Liu, X.; Tan, X.; Zhou, Y.; Li, Y.; Zhang, Z. Cu0NPs@CMC: An efficient recoverable nanocatalyst for decarboxylative A3 and A3 couplings under neat condition. Res. Chem. Intermed., 2019, 45(6), 3359-3378.
[http://dx.doi.org/10.1007/s11164-019-03795-3]
[139]
Rafiee, F.; Karder, F.R. Synthesis and characterization of magnetic glycocyamine-modified chitosan as a biosupport for the copper immobilization and its catalytic activity investigation. React. Funct. Polym., 2020, 146, 104434.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2019.104434]
[140]
Patel, S.B.; Vasava, D.V. Azo functionalized polystyrene supported Copper nanoparticles: An economical and highly efficient catalyst for A3 and KA2 coupling reaction under microwave irradiation. Nano-Structures & Nano-Objects, 2020, 21, 100416.
[http://dx.doi.org/10.1016/j.nanoso.2019.100416]
[141]
Xu, Z.; Xu, J.; Li, Y. CuSO4 nanoparticles loaded on carboxymethylcellulose/polyaniline composites: A highly efficient catalyst with enhanced catalytic activity in the synthesis of propargylamines, benzofurans, and 1,2,3‐triazoles. Appl. Organomet. Chem., 2021, 35(10), e6349.
[http://dx.doi.org/10.1002/aoc.6349]
[142]
Liu, Z.; Yuan, D.; Su, Y. A novel and versatile copper- nanomagnetic catalyst for synthesis of propargylamines and diaryl sulfides. Catal. Lett., 2022, 1-15.
[143]
Lakshmi Kantam, M.; Laha, S.; Yadav, J.; Bhargava, S. An efficient synthesis of propargylamines via three-component coupling of aldehydes, amines and alkynes catalyzed by nanocrystalline copper(II) oxide. Tetrahedron Lett., 2008, 49(19), 3083-3086.
[http://dx.doi.org/10.1016/j.tetlet.2008.03.053]
[144]
Srivastava, R.; Anu Prathap, M.U.; Kore, R. Morphologically controlled synthesis of copper oxides and their catalytic applications in the synthesis of propargylamine and oxidative degradation of methylene blue. Colloids Surf. A Physicochem. Eng. Asp., 2011, 392(1), 271-282.
[http://dx.doi.org/10.1016/j.colsurfa.2011.10.004]
[145]
Nasrollahzadeh, M.; Mohammad Sajadi, S.; Rostami-Vartooni, A. Green synthesis of CuO nanoparticles by aqueous extract of Anthemis nobilis flowers and their catalytic activity for the A3 coupling reaction. J. Colloid Interface Sci., 2015, 459, 183-188.
[http://dx.doi.org/10.1016/j.jcis.2015.08.020] [PMID: 26291574]
[146]
Hosseini-Sarvari, M.; Moeini, F. Nano copper(I) oxide–zinc oxide catalyzed coupling of aldehydes or ketones, secondary amines, and terminal alkynes in solvent-free conditions. New J. Chem., 2014, 38(2), 624-635.
[http://dx.doi.org/10.1039/C3NJ01146A]
[147]
Sasikala, R.; Subash, B.; Jayamoorthy, K.; Rani, S.K. Synthesis, characterization and recyclable cerium loaded CuO nanocatalyst for the synthesis of 1, 4- Disubstituted 1, 2, 3-Triazoles and propargylamines. Silicon, 2018, 10(3), 1095-1101.
[http://dx.doi.org/10.1007/s12633-017-9576-3]
[148]
Nakhate, A.V.; Yadav, G.D. Cu2O nanoparticles supported hydrothermal carbon microspheres as catalyst for propargylamine synthesis. Molecular Catalysis, 2018, 451, 209-219.
[http://dx.doi.org/10.1016/j.mcat.2018.01.013]
[149]
Pandi, M.; Kumar, P.S.; Savarimuthu Philip, A. Fabricating Cu, Cu2O and hybrid Cu-Cu2O nanoparticles in carbon matrix and exploring catalytic activity of oxygen and hydrogen evolution and green A3-coupling reaction. Mater. Res. Express, 2019, 6(2), 025518.
[150]
Karkeabadi, M.; Nemati, F.; Elhampour, A.; Nahzomi, H.T. Cu2O modified g-C3N4 as an effective catalyst for the synthesis of propargylamines: Experimental, quantum mechanical mechanistic and kinetic study. React. Kinet. Mech. Catal., 2019, 126(1), 265-282.
[http://dx.doi.org/10.1007/s11144-018-1491-0]
[151]
Sotoudehnia, Z.; Albadi, J.; Momeni, A.R. Solvent-free synthesis of propargylamines catalyzed by an efficient recyclable ZnO-supported CuO/Al2O3 nanocatalyst. Appl. Organomet. Chem., 2019, 33(1), e4625.
[http://dx.doi.org/10.1002/aoc.4625]
[152]
Hekmati, M. Application of biosynthesized CuO nanoparticles using rosa canina fruit extract as a recyclable and heterogeneous nanocatalyst for alkyne/aldehyde/amine A3 coupling reactions. Catal. Lett., 2019, 149(8), 2325-2331.
[http://dx.doi.org/10.1007/s10562-019-02833-4]
[153]
Dabiri, M.; Nikbakht, R.; Movahed, S.K. Copper oxide nanoparticles decorated on nitrogen doped carbon hollow and their catalytic activities in synthesis of propargyl-amines and reduction of nitroarenes. React. Kinet. Mech. Catal., 2021, 134(2), 793-810.
[http://dx.doi.org/10.1007/s11144-021-02091-9]
[154]
Mesguich, D.; Moumaneix, L.; Henri, V.; Legnani, M.; Collière, V.; Esvan, J.; Ouali, A.; Fau, P. Grafting copper atoms and nanoparticles on double-walled carbon nanotubes: Application to catalytic synthesis of propargylamine. Langmuir, 2022, 38(28), 8545-8554.
[http://dx.doi.org/10.1021/acs.langmuir.2c00771] [PMID: 35793138]
[155]
Agrahari, B.; Layek, S.; Ganguly, R.; Pathak, D.D. Synthesis and crystal structures of salen-type Cu(II) and Ni(II) Schiff base complexes: application in [3+2]-cycloaddition and A 3 -coupling reactions. New J. Chem., 2018, 42(16), 13754-13762.
[http://dx.doi.org/10.1039/C8NJ01718B]
[156]
Amini, M.; Nikkhoo, M.; Tekantappeh, S.B.; Farnia, S.M.F.; Mahmoudi, G.; Büyükgüngör, O. Synthesis, characterization and catalytic properties of a copper complex containing decavanadate nanocluster, Na 2 [Cu(H2O)6]2V10O28•4H2O. Inorg. Chem. Commun., 2017, 77, 72-76.
[http://dx.doi.org/10.1016/j.inoche.2017.02.001]
[157]
Naeimi, H.; Moradian, M. Encapsulation of copper(I)-Schiff base complex in NaY nanoporosity: An efficient and reusable catalyst in the synthesis of propargylamines via A3-coupling (aldehyde-amine-alkyne) reactions. Appl. Catal. A Gen., 2013, 467(0), 400-406.
[http://dx.doi.org/10.1016/j.apcata.2013.03.008]
[158]
Kodicherla, B.; Perumgani, P.C.; Mandapati, M.R. Polymer-anchored copper(II) complex: an efficient reusable catalyst for the synthesis of propargylamines. Appl. Organomet. Chem., 2014, 28(10), 756-759.
[http://dx.doi.org/10.1002/aoc.3193]
[159]
Tajbakhsh, M.; Farhang, M.; Baghbanian, S.M.; Hosseinzadeh, R.; Tajbakhsh, M. Nano magnetite supported metal ions as robust, efficient and recyclable catalysts for green synthesis of propargylamines and 1,4-disubstituted 1,2,3-triazoles in water. New J. Chem., 2015, 39(3), 1827-1839.
[http://dx.doi.org/10.1039/C4NJ01866D]
[160]
Rangraz, Y.; Nemati, F.; Elhampour, A. Design, synthesis, and characterization of a novel magnetically recoverable copper nanocatalyst containing organoselenium ligand and its application in the A3 coupling reaction. Ind. Eng. Chem. Res., 2019, 58(37), 17308-17318.
[http://dx.doi.org/10.1021/acs.iecr.9b03843]
[161]
Varyani, M.; Khatri, P.K.; Jain, S.L. Amino acid ionic liquid bound copper Schiff base catalyzed highly efficient three component A3-coupling reaction. Catal. Commun., 2016, 77, 113-117.
[http://dx.doi.org/10.1016/j.catcom.2016.01.020]
[162]
Kumari, S.; Shekhar, A.; Pathak, D.D. Synthesis and characterization of a Cu(II) Schiff base complex immobilized on graphene oxide and its catalytic application in the green synthesis of propargylamines. RSC Advances, 2016, 6(19), 15340-15344.
[http://dx.doi.org/10.1039/C5RA25209A]
[163]
Shouli, A.; Menati, S.; Sayyahi, S. Copper(II) chelate-bonded magnetite nanoparticles: A new magnetically retrievable catalyst for the synthesis of propargylamines. C. R. Chim., 2017, 20(7), 765-772.
[http://dx.doi.org/10.1016/j.crci.2017.03.010]
[164]
Dabiri, M.; Alavioon, S.I.; Movahed, S.K. N-Heterocyclic carbene–copper complex supported on ionic liquid-modified graphene oxide: versatile catalyst for synthesis of (i) 1,2,3-triazole and (ii) propargylamine derivatives. J. Indian Chem. Soc., 2018, 15(11), 2463-2474.
[http://dx.doi.org/10.1007/s13738-018-1435-7]
[165]
Yan, S.; Pan, S.; Osako, T.; Uozumi, Y. Solvent-Free A3 and KA2 coupling reactions with mol ppm level loadings of a polymer-supported Copper(II)–Bipyridine complex for green synthesis of propargylamines. ACS Sustain. Chem.& Eng., 2019, 7(10), 9097-9102.
[http://dx.doi.org/10.1021/acssuschemeng.9b01754]
[166]
Khojastehnezhad, A.; Bakavoli, M.; Javid, A.; Khakzad Siuki, M.M.; Moeinpour, F. Covalently Copper(II) porphyrin cross-linked graphene oxide: Preparation and catalytic activity. Catal. Lett., 2019, 149(3), 713-722.
[http://dx.doi.org/10.1007/s10562-019-02665-2]
[167]
Darroudi, M.; Rouh, H.; Hasanzadeh, M.; Shadjou, N. Cu/SiO2-Pr-NH-Benz as a novel nanocatalyst for the efficient synthesis of 1,4-disubstituted triazoles and propargyl amine derivatives in an aqueous solution. Heliyon, 2021, 7(4), e06766.
[http://dx.doi.org/10.1016/j.heliyon.2021.e06766] [PMID: 33948508]
[168]
Yan, W.; Wang, R.; Xu, Z.; Xu, J.; Lin, L.; Shen, Z.; Zhou, Y. A novel, practical and green synthesis of Ag nanoparticles catalyst and its application in three-component coupling of aldehyde, alkyne, and amine. J. Mol. Catal. Chem., 2006, 255(1-2), 81-85.
[http://dx.doi.org/10.1016/j.molcata.2006.03.055]
[169]
Maggi, R.; Bello, A.; Oro, C.; Sartori, G.; Soldi, L. AgY zeolite as catalyst for the effective three-component synthesis of propargylamines. Tetrahedron, 2008, 64(7), 1435-1439.
[http://dx.doi.org/10.1016/j.tet.2007.11.043]
[170]
Li, P.; Wang, L.; Zhang, Y.; Wang, M. Highly efficient three-component (aldehyde–alkyne–amine) coupling reactions catalyzed by a reusable PS-supported NHC–Ag(I) under solvent-free reaction conditions. Tetrahedron Lett., 2008, 49(47), 6650-6654.
[http://dx.doi.org/10.1016/j.tetlet.2008.09.026]
[171]
He, Y.; Lv, M.; Cai, C. A simple procedure for polymer-supported N-heterocyclic carbene silver complex via click chemistry: an efficient and recyclable catalyst for the one-pot synthesis of propargylamines. Dalton Trans., 2012, 41(40), 12428-12433.
[http://dx.doi.org/10.1039/c2dt31609a] [PMID: 22940886]
[172]
Yong, G.P.; Tian, D.; Tong, H.W.; Liu, S-M. Mesoporous SBA-15 supported silver nanoparticles as environmentally friendly catalysts for three-component reaction of aldehydes, alkynes and amines with glycol as a “green” solvent. J. Mol. Catal. Chem., 2010, 323(1-2), 40-44.
[http://dx.doi.org/10.1016/j.molcata.2010.03.007]
[173]
Mallampati, R.; Valiyaveettil, S. Eggshell membrane-supported recyclable catalytic noble metal nanoparticles for organic reactions. ACS Sustain. Chem.& Eng., 2014, 2(4), 855-859.
[http://dx.doi.org/10.1021/sc4004899]
[174]
Movahedi, F.; Masrouri, H.; Kassaee, M.Z. Immobilized silver on surface-modified ZnO nanoparticles: As an efficient catalyst for synthesis of propargylamines in water. J. Mol. Catal. Chem., 2014, 395(0), 52-57.
[http://dx.doi.org/10.1016/j.molcata.2014.08.007]
[175]
Jeganathan, M.; Dhakshinamoorthy, A.; Pitchumani, K. One-pot synthesis of propargylamines using Ag(I)-exchanged K10 montmorillonite clay as reusable catalyst in water. ACS Sustain. Chem.& Eng., 2014, 2(4), 781-787.
[http://dx.doi.org/10.1021/sc400450t]
[176]
Borah, S.J.; Das, D.K. Modified montmorillonite clay stabilized silver nanoparticles: An active heterogeneous catalytic system for the synthesis of propargylamines. Catal. Lett., 2016, 146(3), 656-665.
[http://dx.doi.org/10.1007/s10562-015-1679-0]
[177]
Salam, N.; Sinha, A.; Roy, A.S.; Mondal, P.; Jana, N.R.; Islam, S.M. Synthesis of silver–graphene nanocomposite and its catalytic application for the one-pot three-component coupling reaction and one-pot synthesis of 1,4-disubstituted 1,2,3-triazoles in water. RSC Advances, 2014, 4(20), 10001-10012.
[http://dx.doi.org/10.1039/c3ra47466f]
[178]
GhavamiNejad A.; Kalantarifard, A.; Yang, G.S.; Kim, C.S. In-situ immobilization of silver nanoparticles on ZSM-5 type zeolite by catechol redox chemistry, a green catalyst for A3-coupling reaction. Microporous Mesoporous Mater., 2016, 225, 296-302.
[http://dx.doi.org/10.1016/j.micromeso.2015.12.050]
[179]
Sun, W.J.; Xi, F.G.; Pan, W.L.; Gao, E-Q. MIL-101(Cr)-SO3Ag: An efficient catalyst for solvent-free A3 coupling reactions. Molecular Catalysis, 2017, 430, 36-42.
[http://dx.doi.org/10.1016/j.molcata.2016.12.008]
[180]
Sharma, K.N.; Sharma, A.K.; Joshi, H.; Singh, A.K. Polymeric complex of 1-Phenylsulfanyl/selenylmethyl-1 H -Benzotriazole with Ag(I): Pre-catalystfor A 3 coupling affording propargylamines on aGram/Lab scale. ChemistrySelect, 2016, 1(13), 3573-3579.
[http://dx.doi.org/10.1002/slct.201600788]
[181]
Chen, J.J.; Gan, Z.L.; Huang, Q.; Yi, X-Y. Well-defined dinuclear silver phosphine complexes based on nitrogen donor ligand and their high efficient catalysis for A3-coupling reaction. Inorg. Chim. Acta, 2017, 466, 93-99.
[http://dx.doi.org/10.1016/j.ica.2017.05.018]
[182]
Trivedi, M.; Singh, G.; Kumar, A.; Rath, N.P. Silver(I) complexes as efficient source for silver oxide nanoparticles with catalytic activity in A3 coupling reactions. Inorg. Chim. Acta, 2015, 438, 255-263.
[http://dx.doi.org/10.1016/j.ica.2015.09.025]
[183]
Li, D.; Dai, X.; Zhang, X.; Zhuo, H.; Jiang, Y.; Yu, Y-B.; Zhang, P.; Huang, X.; Wang, H. Silver nanoparticles encapsulated by metal-organic-framework give the highest turnover frequencies of 10 5 h −1 for three component reaction by microwave-assisted heating. J. Catal., 2017, 348, 276-281.
[http://dx.doi.org/10.1016/j.jcat.2017.02.013]
[184]
Mohamed, Y.M.A.; El Nazer, H.A.; Solum, E.J. Practical synthesis of silyl-protected and functionalized propargylamines using nanostructured Ag/TiO2 and Pt/TiO2 as active recyclable catalysts. Chem. Pap., 2018.
[185]
Patel, S.B.; Vasava, D.V. Carbon nitride-supported silver nanoparticles: Microwave- assisted synthesis of propargylamine and oxidative C-C coupling reaction. ChemistrySelect, 2018, 3(2), 471-480.
[http://dx.doi.org/10.1002/slct.201702268]
[186]
Kumar, G.; Pandey, S.; Gupta, R. Ag-based coordination polymers based on metalloligands and their catalytic performance in multicomponent A3-coupling reactions. Cryst. Growth Des., 2018, 18(9), 5501-5511.
[http://dx.doi.org/10.1021/acs.cgd.8b00833]
[187]
Malmir, M.; Heravi, M.M.; Sadjadi, S.; Hosseinnejad, T. Ultrasonic and bio-assisted synthesis of Ag@HNTs-T as a novel heterogeneous catalyst for the green synthesis of propargylamines: A combination of experimental and computational study. Appl. Organomet. Chem., 2018, 32(4), e4291.
[http://dx.doi.org/10.1002/aoc.4291]
[188]
Veisi, H.; Mohammadi, L.; Hemmati, S.; Tamoradi, T.; Mohammadi, P. In situ immobilized silver nanoparticles on Rubia tinctorum extract-coated ultrasmall iron oxide nanoparticles: An efficient nanocatalyst with magnetic recyclability for synthesis of propargylamines by A3 coupling reaction. ACS Omega, 2019, 4(9), 13991-14003.
[http://dx.doi.org/10.1021/acsomega.9b01720] [PMID: 31497717]
[189]
Veisi, H.; Dadres, N.; Mohammadi, P.; Hemmati, S. Green synthesis of silver nanoparticles based on oil-water interface method with essential oil of orange peel and its application as nanocatalyst for A3 coupling. Mater. Sci. Eng. C, 2019, 105, 110031.
[http://dx.doi.org/10.1016/j.msec.2019.110031] [PMID: 31546457]
[190]
Babaei, B.; Mamaghani, M.; Mokhtary, M. Clean synthesis of propargylamines using novel magnetically recyclable silver nanocatalyst (AgMNPs). Polycycl. Aromat. Compd., 2021, 1-13.
[191]
Kantam, M.L.; Prakash, B.V.; Reddy, C.R.; Sreedhar, B. Layered double hydroxide-supported gold catalyst for three-component aldehyde-amine-alkyne coupling. Synlett, 2005, 2005(15), 2329-2332.
[http://dx.doi.org/10.1055/s-2005-872677]
[192]
Lo, V.K.Y.; Kung, K.K.Y.; Wong, M.K.; Che, C-M. Gold(III) (C^N) complex-catalyzed synthesis of propargylamines via a three-component coupling reaction of aldehydes, amines and alkynes. J. Organomet. Chem., 2009, 694(4), 583-591.
[http://dx.doi.org/10.1016/j.jorganchem.2008.12.008]
[193]
Ko, H.M.; Kung, K.K.Y.; Cui, J.F.; Wong, M.K. Bis-cyclometallated gold(iii) complexes as efficient catalysts for synthesis of propargylamines and alkylated indoles. Chem. Commun., 2013, 49(78), 8869-8871.
[http://dx.doi.org/10.1039/c3cc44828b] [PMID: 23963337]
[194]
Villaverde, G.; Corma, A.; Iglesias, M.; Sánchez, F. Heterogenized gold complexes: Recoverable catalysts for multicomponent reactions of aldehydes, terminal alkynes, and amines. ACS Catal., 2012, 2(3), 399-406.
[http://dx.doi.org/10.1021/cs200601w]
[195]
Chng, L.L.; Yang, J.; Wei, Y.; Ying, J.Y. Semiconductor-gold nanocomposite catalysts for the efficient three-component coupling of aldehyde, amine and alkyne in water. Adv. Synth. Catal., 2009, 351(17), 2887-2896.
[http://dx.doi.org/10.1002/adsc.200900518]
[196]
José Climent, M.; Corma, A.; Iborra, S. Homogeneous and heterogeneous catalysts for multicomponent reactions. RSC Advances, 2012, 2(1), 16-58.
[http://dx.doi.org/10.1039/C1RA00807B]
[197]
Karimi, B.; Gholinejad, M.; Khorasani, M. Highly efficient three-component coupling reaction catalyzed by gold nanoparticles supported on periodic mesoporous organosilica with ionic liquid framework. Chem. Commun., 2012, 48(71), 8961-8963.
[http://dx.doi.org/10.1039/c2cc33320a] [PMID: 22842770]
[198]
Lili, L.; Xin, Z.; Jinsen, G.; Chunming, X. Engineering metal–organic frameworks immobilize gold catalysts for highly efficient one-pot synthesis of propargylamines. Green Chem., 2012, 14(6), 1710-1720.
[http://dx.doi.org/10.1039/c2gc35284b]
[199]
Tai, X.S.; Liu, L.L. Synthesis, Crystal Structure of Mg(II) complex material and its application as catalysts for A3 coupling reaction. Open Mater. Sci. J., 2015, 9(1), 1-5.
[http://dx.doi.org/10.2174/1874088X01509010001]
[200]
Shabbir, S.; Lee, Y.; Rhee, H. Au(III) catalyst supported on a thermoresponsive hydrogel and its application to the A-3 coupling reaction in water. J. Catal., 2015, 322(0), 104-108.
[http://dx.doi.org/10.1016/j.jcat.2014.11.009]
[201]
Cao, J.; Li, P.; Xu, G.; Tao, M.; Ma, N.; Zhang, W. Cooperative N-heterocyclic carbene Au and amino catalysis for continuous synthesis of secondary propargylamines in a fiber supported hydrophilic microenvironment. Chem. Eng. J., 2018, 349, 456-465.
[http://dx.doi.org/10.1016/j.cej.2018.05.046]
[202]
Soengas, R.; Navarro, Y.; Iglesias, M.; López-Ortiz, F. Immobilized gold nanoparticles prepared from gold(III)-containing ionic liquids on silica: Application to the sustainable synthesis of propargylamines. Molecules, 2018, 23(11), 2975.
[http://dx.doi.org/10.3390/molecules23112975] [PMID: 30441851]
[203]
Layek, K.; Chakravarti, R.; Lakshmi Kantam, M.; Maheswaran, H.; Vinu, A. Nanocrystalline magnesium oxide stabilized gold nanoparticles: an advanced nanotechnology based recyclable heterogeneous catalyst platform for the one-pot synthesis of propargylamines. Green Chem., 2011, 13(10), 2878-2887.
[http://dx.doi.org/10.1039/c1gc15518k]
[204]
Borah, B.J.; Borah, S.J.; Saikia, K.; Dutta, D.K. Efficient one-pot synthesis of propargylamines catalysed by gold nanocrystals stabilized on montmorillonite. Catal. Sci. Technol., 2014, 4(11), 4001-4009.
[http://dx.doi.org/10.1039/C4CY00666F]
[205]
Li, Q.; Das, A.; Wang, S.; Chen, Y.; Jin, R. Highly efficient three-component coupling reaction catalysed by atomically precise ligand-protected Au38 (SC2H4Ph)24 nanoclusters. Chem. Commun., 2016, 52(99), 14298-14301.
[http://dx.doi.org/10.1039/C6CC07825G] [PMID: 27882365]
[206]
Zhao, X.B.; Ha, W.; Jiang, K.; Chen, J.; Yang, J-L.; Shi, Y-P. Efficient synthesis of camptothecin propargylamine derivatives in water catalyzed by macroporous adsorption resin-supported gold nanoparticles. Green Chem., 2017, 19(5), 1399-1406.
[http://dx.doi.org/10.1039/C6GC03119F]
[207]
Gholinejad, M.; Zareh, F.; Najera, C. Iron oxide modified with pyridyl-triazole ligand for stabilization of gold nanoparticles: An efficient heterogeneous catalyst for A3 coupling reaction in water. Appl. Organomet. Chem., 2018, 32(9), e4454.
[http://dx.doi.org/10.1002/aoc.4454]
[208]
Moghaddam, F.M.; Ayati, S.E.; Hosseini, S.H.; Pourjavadi, A. Gold immobilized onto poly(ionic liquid) functionalized magnetic nanoparticles: A robust magnetically recoverable catalyst for the synthesis of propargylamine in water. RSC Advances, 2015, 5(43), 34502-34510.
[http://dx.doi.org/10.1039/C5RA02974K]
[209]
Munshi, A.M.; Agarwal, V.; Ho, D.; Raston, C.L.; Saunders, M.; Smith, N.M.; Iyer, K.S. Magnetically directed assembly of nanocrystals for catalytic control of a three-component coupling reaction. Cryst. Growth Des., 2016, 16(9), 4773-4776.
[http://dx.doi.org/10.1021/acs.cgd.6b00582]
[210]
Panwar, V.; Jain, S.L. Ternary hybrid TiO2-PANI-AuNPs for photocatalytic A3-coupling of aldehydes, amines and alkynes: First photochemical synthesis of propargyl amines. Mater. Sci. Eng. C, 2019, 99, 191-201.
[http://dx.doi.org/10.1016/j.msec.2019.01.085] [PMID: 30889691]
[211]
Kidwai, M.; Bansal, V.; Kumar, A.; Mozumdar, S. The first Au-nanoparticles catalyzed green synthesis of propargylamines via a three-component coupling reaction of aldehyde, alkyne and amine. Green Chem., 2007, 9(7), 742-745.
[http://dx.doi.org/10.1039/b702287e]
[212]
Aghahosseini, H.; Tabatabaei Rezaei, S.J.; Tadayyon, M.; Ramazani, A.; Amani, V.; Ahmadi, R.; Abdolahnjadian, D. Highly efficient aqueous synthesis of propargyla-mines through C–H activation catalyzed by magnetic organosilica‐supported gold nanoparticles as an artificial metalloenzyme. Eur. J. Inorg. Chem., 2018, 2018(22), 2589-2598.
[http://dx.doi.org/10.1002/ejic.201800085]
[213]
Bhargava, A.; Jain, N.; Gangopadhyay, S.; Panwar, J. Development of gold nanoparticle-fungal hybrid based heterogeneous interface for catalytic applications. Process Biochem., 2015, 50(8), 1293-1300.
[http://dx.doi.org/10.1016/j.procbio.2015.04.012]
[214]
Feiz, A.; Bazgir, A. Gold nanoparticles supported on mercaptoethanol directly bonded to MCM-41: An efficient catalyst for the synthesis of propargylamines. Catal. Commun., 2016, 73, 88-92.
[http://dx.doi.org/10.1016/j.catcom.2015.09.028]
[215]
Gholinejad, M.; Afrasi, M.; Najera, C. Caffeine gold complex supported on magnetic nanoparticles as a green and high turnover frequency catalyst for room temperature A3 coupling reaction in water. Appl. Organomet. Chem., 2019, 33(4), e4760.
[http://dx.doi.org/10.1002/aoc.4760]
[216]
Zohreh, N.; Hosseini, S.H.; Jahani, M.; Xaba, M.S.; Meijboom, R. Stabilization of Au NPs on symmetrical tridentate NNN-Pincer ligand grafted on magnetic support as water dispersible and recyclable catalyst for coupling reaction of terminal alkyne. J. Catal., 2017, 356, 255-268.
[http://dx.doi.org/10.1016/j.jcat.2017.10.021]
[217]
Gholinejad, M; Hamed, F; Nájera, C Gold nanoparticles supported on polyacrylamide containing a phosphorus ligand as an efficient heterogeneous catalyst for three-component synthesis of propargylamines in water. Synlett., 2016, 27(8), e7-e.
[218]
Abahmane, L.; Köhler, J.M.; Groß, G.A. Gold-nanoparticle-catalyzed synthesis of propargylamines: The traditional A3-multicomponent reaction performed as a two-step flow process. Chemistry, 2011, 17(10), 3005-3010.
[http://dx.doi.org/10.1002/chem.201002043] [PMID: 21284044]
[219]
Liu, L.; Tai, X.; Zhou, X.; Liu, L. Synthesis, post-modification and catalytic properties of metal-organic framework NH2-MIL-53(Al). Chem. Res. Chin. Univ., 2017, 33(2), 231-238.
[http://dx.doi.org/10.1007/s40242-017-6420-7]
[220]
Liu, L.; Tai, X.; Zhou, X.; Xin, C.; Yan, Y. Anchorage of Au3+ into modified isoreticular metal–organic Framework-3 as a heterogeneous catalyst for the synthesis of propargylamines. Sci. Rep., 2017, 7(1), 12709.
[http://dx.doi.org/10.1038/s41598-017-13081-0] [PMID: 28983107]
[221]
Gholinejad, M.; Bonyasi, R.; Najera, C.; Saadati, F.; Bahrami, M.; Dasvarz, N. Gold nanoparticles supported on imidazole-modified bentonite: environmentally benign heterogeneous catalyst for the three-component synthesis of propargylamines in water. ChemPlusChem, 2018, 83(5), 431-438.
[http://dx.doi.org/10.1002/cplu.201800162] [PMID: 31957366]
[222]
Jiang, Y.; Zhang, X.; Dai, X.; Zhang, W.; Sheng, Q.; Zhuo, H.; Xiao, Y.; Wang, H. Microwave-assisted synthesis of ultrafine Au nanoparticles immobilized on MOF-199 in high loading as efficient catalysts for a three-component coupling reaction. Nano Res., 2017, 10(3), 876-889.
[http://dx.doi.org/10.1007/s12274-016-1341-1]
[223]
Uozumi, Y; Osako, T Three-component synthesis of propargylamines with supported Au nanoparticles. Synfacts, 2016, 12(08), 0873.
[224]
Anand, N.; Ramudu, P.; Reddy, K.H.P.; Rao, K.S.R.; Jagadeesh, B.; Babu, V.S.P.; Burri, D.R. Gold nanoparticles immobilized on lipoic acid functionalized SBA-15: Synthesis, characterization and catalytic applications. Appl. Catal. A Gen., 2013, 454(0), 119-126.
[http://dx.doi.org/10.1016/j.apcata.2013.01.006]
[225]
Huang, J.L.; Gray, D.G.; Li, C.J. A3-Coupling catalyzed by robust Au nanoparticles covalently bonded to HS-functionalized cellulose nanocrystalline films. Beilstein J. Org. Chem., 2013, 9, 1388-1396.
[http://dx.doi.org/10.3762/bjoc.9.155] [PMID: 23946833]
[226]
González-Béjar, M.; Peters, K.; Hallett-Tapley, G.L.; Grenier, M.; Scaiano, J.C. Rapid one-pot propargylamine synthesis by plasmon mediated catalysis with gold nano-particles on ZnO under ambient conditions. Chem. Commun., 2013, 49(17), 1732-1734.
[http://dx.doi.org/10.1039/c3cc38287g] [PMID: 23340772]
[227]
Bobadilla, L.F.; Blasco, T.; Odriozola, J.A. Gold(iii) stabilized over ionic liquids grafted on MCM-41 for highly efficient three-component coupling reactions. Phys. Chem. Chem. Phys., 2013, 15(39), 16927-16934.
[http://dx.doi.org/10.1039/c3cp52924j] [PMID: 24002208]
[228]
Moghaddam, F.M.; Pourkaveh, R. Efficient synthesis of propargylamines in aqueous media catalyzed by Au nanoparticles under ambient temperature. ChemistrySelect, 2018, 3(7), 2053-2058.
[http://dx.doi.org/10.1002/slct.201703096]
[229]
Nourmohammadi, M.; Rouhani, S.; Azizi, S.; Maaza, M.; Msagati, T.A.M.; Rostamnia, S.; Hatami, M.; Khaksar, S.; Zarenezhad, E.; Jang, H.W.; Shokouhimehr, M. Magnetic nanocomposite of crosslinked chitosan with 4,6-diacetylresorcinol for gold immobilization (Fe3O4@CS/DAR-Au) as a catalyst for an efficient one-pot synthesis of propargylamine. Mater. Today Commun., 2021, 29, 102798.
[http://dx.doi.org/10.1016/j.mtcomm.2021.102798]
[230]
Sreedhar, B.; Kumar, A.S.; Reddy, P.S. Magnetically separable Fe3O4 nanoparticles: An efficient catalyst for the synthesis of propargylamines. Tetrahedron Lett., 2010, 51(14), 1891-1895.
[http://dx.doi.org/10.1016/j.tetlet.2010.02.016]
[231]
Zeng, T.; Chen, W-W.; Cirtiu, C.M.; Moores, A.; Song, G.; Li, C-J. Fe3O4 nanoparticles: a robust and magnetically recoverable catalyst for three-component coupling of aldehyde, alkyne and amine. Green Chem., 2010, 12(4), 570-573.
[http://dx.doi.org/10.1039/b920000b]
[232]
Kotadia, D.A.; Soni, S.S. Stable mesoporous Fe/TiO2 nanoparticles: A recoverable catalyst for solvent-free synthesis of propargylamine via CH activation. Appl. Catal. A Gen., 2014, 488, 231-238.
[http://dx.doi.org/10.1016/j.apcata.2014.09.044]
[233]
Bhuyan, D.; Saikia, M.; Saikia, L. Magnetically recoverable Fe3O4@SBA-15: An improved catalyst for three component coupling reaction of aldehyde, amine and alkyne. Catal. Commun., 2015, 58, 158-163.
[http://dx.doi.org/10.1016/j.catcom.2014.09.011]
[234]
Mandal, P.; Chattopadhyay, A.P. Excellent catalytic activity of magnetically recoverable Fe3O4–graphene oxide nanocomposites prepared by a simple method. Dalton Trans., 2015, 44(25), 11444-11456.
[http://dx.doi.org/10.1039/C5DT01260K] [PMID: 26028315]
[235]
Kujur, S.; Pathak, D.D. Reduced graphene oxide-immobilized iron nanoparticles Fe(0)@rGO as heterogeneous catalyst for one-pot synthesis of series of propargyla-mines. Res. Chem. Intermed., 2020, 46(1), 369-384.
[http://dx.doi.org/10.1007/s11164-019-03955-5]
[236]
Sadjadi, S.; Malmir, M.; Heravi, M.M. A green approach to the synthesis of Ag doped nano magnetic γ-Fe2O3@SiO2-CD core–shell hollow spheres as an efficient and heterogeneous catalyst for ultrasonic-assisted A3 and KA2 coupling reactions. RSC Advances, 2017, 7(58), 36807-36818.
[http://dx.doi.org/10.1039/C7RA04635A]
[237]
Gharibpour, N.; Abdollahi-Alibeik, M.; Moaddeli, A. Super Paramagnetic, MCM-41-supported, recyclable copper-complexed dendrimer: A novel nanostructured catalyst for propargylamine synthesis under solvent-free conditions. ChemistrySelect, 2017, 2(10), 3137-3146.
[http://dx.doi.org/10.1002/slct.201700180]
[238]
Moaddeli, A.; Abdollahi-Alibeik, M. A nano magnetically mesoporous catalyst for the synthesis of propargylamine derivatives. J. Porous Mater., 2018, 25(1), 147-159.
[http://dx.doi.org/10.1007/s10934-017-0428-8]
[239]
Wang, F.; Feng, H.; Li, H. 1D Fe3O4@ CuSiO3 composites catalyzed decarboxylative A3-coupling for propargylamine synthesis. Chin. Chem. Lett., 2019.
[240]
Shahamat, Z.; Nemati, F.; Elhampour, A. One-pot synthesis of propargylamines using magnetic mesoporous polymelamine formaldehyde/zinc oxide nanocomposite as highly efficient, eco-friendly and durable nanocatalyst: optimization by DOE approach. Mol. Divers., 2019, 1-16.
[PMID: 31359369]
[241]
Mukhopadhyay, C.; Rana, S. Nanopowder zinc titanate in aqueous medium: An expeditious catalyst for the synthesis of propargylamines via C–H bond activation. Catal. Commun., 2009, 11(4), 285-289.
[http://dx.doi.org/10.1016/j.catcom.2009.10.016]
[242]
Satyanarayana, K.V.V.; Ramaiah, P.A.; Murty, Y.L.N.; Chandra, M.R.; Pammi, S.V.N. Recyclable ZnO nano particles: Economical and green catalyst for the synthesis of A3 coupling of propargylamines under solvent free conditions. Catal. Commun., 2012, 25, 50-53.
[http://dx.doi.org/10.1016/j.catcom.2012.03.031]
[243]
Eagalapati, N.P.; Rajack, A.; Murthy, Y.L.N. Nano-size ZnS: A novel, efficient and recyclable catalyst for A3-coupling reaction of propargylamines. J. Mol. Catal. Chem., 2014, 381, 126-131.
[http://dx.doi.org/10.1016/j.molcata.2013.10.009]
[244]
Qiu, Y.; Qin, Y.; Ma, Z.; Xia, W. Chitosan-supported Zinc Nitrate: Preparation and catalyst for condensation reaction of aldehydes, amines, and terminal alkynes leading to the formation of propargylamines. Chem. Lett., 2014, 43(8), 1284-1286.
[http://dx.doi.org/10.1246/cl.140426]
[245]
Zarei, Z.; Akhlaghinia, B. Zn(II) anchored onto the magnetic natural hydroxyapatite (ZnII/HAP/Fe3O4): as a novel, green and recyclable catalyst for A3-coupling reaction towards propargylamine synthesis under solvent-free conditions. RSC Advances, 2016, 6(108), 106473-106484.
[http://dx.doi.org/10.1039/C6RA20501A]
[246]
Mandlimath, T.R.; Sathiyanarayanan, K.I. Facile synthesis of ZnAl2O4 nanoparticles: efficient and reusable porous nano ZnAl2O4 and copper supported on ZnAl2O4 catalysts for one pot green synthesis of propargylamines and imidazo[1,2-a]pyridines by A3 coupling reactions. RSC Advances, 2016, 6(4), 3117-3125.
[http://dx.doi.org/10.1039/C5RA20812B]
[247]
Layek, S.; Agrahari, B.; Kumari, S. Anuradha; Pathak, D.D. [Zn(l-proline)2] catalyzed one-pot synthesis of propargylamines under solvent-free conditions. Catal. Lett., 2018, 148(9), 2675-2682.
[http://dx.doi.org/10.1007/s10562-018-2449-6]
[248]
Song, L.; Wang, Z.; Wang, S.; He, X. Silver nanoparticles supported by novel nickel metal-organic frameworks: An efficient heterogeneous catalyst for an A3 coupling reaction. Synlett, 2009, 2009(3), 447-450.
[http://dx.doi.org/10.1055/s-0028-1087540]
[249]
Katkar, S.V.; Jayaram, R.V. Cu–Ni bimetallic reusable catalyst for synthesis of propargylamines via multicomponent coupling reaction under solvent-free conditions. RSC Advances, 2014, 4(89), 47958-47964.
[http://dx.doi.org/10.1039/C4RA06275B]
[250]
Peng, L.; He, Z.; Xu, X.; Guo, C. Cooperative Ni/Cu‐catalyzed asymmetric propargylic alkylation of aldimine esters. Angew. Chem. Int. Ed., 2020, 59(34), 14270-14274.
[http://dx.doi.org/10.1002/anie.202005019] [PMID: 32419291]
[251]
Nguyen, A.T.; Pham, L.T.; Phan, N.T.S.; Truong, T. Efficient and robust superparamagnetic copper ferrite nanoparticle-catalyzed sequential methylation and C–H activation: aldehyde-free propargylamine synthesis. Catal. Sci. Technol., 2014, 4(12), 4281-4288.
[http://dx.doi.org/10.1039/C4CY00753K]
[252]
Nemati, F.; Elhampour, A.; Farrokhi, H.; Bagheri Natanzi, M. Cu2O/nano-CuFe2O4: A novel and recyclable magnetic catalyst for three-component coupling of carbonyl compounds–alkynes–amines under solvent-free condition. Catal. Commun., 2015, 66, 15-20.
[http://dx.doi.org/10.1016/j.catcom.2015.03.009]
[253]
Shirole, G.; Kadnor, V.; Gaikwad, S.; Kshirsagar, N.; Mhaske, G.; Shelke, S. Iron oxide-supported copper oxide nanoparticles catalyzed synthesis of propargyl amine derivatives via multicomponent approach. Res. Chem. Intermed., 2016, 42(5), 4785-4795.
[http://dx.doi.org/10.1007/s11164-015-2319-4]
[254]
Gulati, U.; Rawat, S.; Rajesh, U.C.; Rawat, D.S. CuO@Fe2O3 catalyzed C1-alkynylation of tetrahydroisoquinolines (THIQs) via A3 coupling and its decarboxylative strategies. New J. Chem., 2017, 41(16), 8341-8346.
[http://dx.doi.org/10.1039/C7NJ01618B]
[255]
Amini, M.; Kafshdouzsani, M.H.; Akbari, A.; Gautam, S.; Shim, C-H.; Chae, K.H. Spinel copper ferrite nanoparticles: Preparation, characterization and catalytic activity. Appl. Organomet. Chem., 2018, 32(9), e4470.
[http://dx.doi.org/10.1002/aoc.4470]
[256]
Daryanavard, M.; Ataei, A.; Sheykhabadi, P.G.; Rafiee, E.; Joshaghani, M. A Novel Recyclable Ni/Cu/Fe termetallic nanocatalyst for the synthesis of Propargylamines through the A3‐Coupling Reactions. ChemistrySelect, 2020, 5(1), 18-27.
[http://dx.doi.org/10.1002/slct.201902617]
[257]
Zhang, J.Y.; Huang, X.; Shen, Q.Y.; Wang, J-Y.; Song, G-H. Room temperature multicomponent synthesis of diverse propargylamines using magnetic CuFe2O4 nanoparticle as an efficient and reusable catalyst. Chin. Chem. Lett., 2018, 29(1), 197-200.
[http://dx.doi.org/10.1016/j.cclet.2017.05.012]
[258]
Marquez, C.; Cirujano, F.G.; Van Goethem, C.; Vankelecom, I.; De Vos, D.; De Baerdemaeker, T. Tunable Prussian blue analogues for the selective synthesis of propargylamines through A3 coupling. Catal. Sci. Technol., 2018, 8(8), 2061-2065.
[http://dx.doi.org/10.1039/C8CY00073E]
[259]
Marquez, C.; Cirujano, F.G.; Smolders, S.; Van Goethem, C.; Vankelecom, I.; De Vos, D.; De Baerdemaeker, T. Metal ion exchange in Prussian blue analogues: Cu(II)-exchanged Zn–Co PBAs as highly selective catalysts for A3 coupling. Dalton Trans., 2019, 48(12), 3946-3954.
[http://dx.doi.org/10.1039/C9DT00388F] [PMID: 30829365]
[260]
Nikkhoo, M.; Amini, M.; Farnia, S.M.F.; Mahdavinia, G.R.; Gautam, S.; Chae, K.H. Preparation and characterization of magnetic chitosan/Cu–Mg–Al layered double hydroxide nanocomposite for the one-pot three-component (A3) coupling of aldehydes, amines and alkynes. J. Inorg. Organomet. Polym. Mater., 2018, 28(5), 2028-2035.
[http://dx.doi.org/10.1007/s10904-018-0861-4]
[261]
Kalbasi, R.J.; Khojastegi, A. Fabrication of Bimetallic Ag-Co nanoparticle deposited on hierarchical ZSM-5 as a selective catalyst for synthesis of propargylamine in water via multicomponent A3 coupling. ChemistrySelect, 2018, 3(44), 12666-12675.
[http://dx.doi.org/10.1002/slct.201803011]
[262]
Chandel, M.; Makkar, P.; Ghosh, B.K.; Moitra, D.; Ghosh, N.N. A facile synthesis methodology for preparation of Ag–Ni-reduced graphene oxide: a magnetically separable versatile nanocatalyst for multiple organic reactions and density functional study of its electronic structures. RSC Advances, 2018, 8(66), 37774-37788.
[http://dx.doi.org/10.1039/C8RA08235A] [PMID: 35558624]
[263]
Yi, R.; Wang, Z.J.; Liang, Z.; Xiao, M.; Xu, X.; Li, N. Expeditious and highly efficient synthesis of propargylamines using a Pd‐Cu nanowires catalyst under solvent‐free conditions. Appl. Organomet. Chem., 2019, 33(6), e4917.
[http://dx.doi.org/10.1002/aoc.4917]
[264]
Hazarika, R.; Garg, A. Chetia, S Magnetically separable ZnFe2O4 nanoparticles: A low cost and sustainable catalyst for propargyl amine and NH-triazole synthesis. Appl. Catal. A, 2021, 625, 118338.
[265]
Bhatte, K.D.; Sawant, D.N.; Deshmukh, K.M.; Bhanage, B.M. Nanosize Co3O4 as a novel, robust, efficient and recyclable catalyst for A3-coupling reaction of propargyla-mines. Catal. Commun., 2011, 16(1), 114-119.
[http://dx.doi.org/10.1016/j.catcom.2011.09.012]
[266]
Kidwai, M.; Jahan, A. Nafion®NR50 catalyzed A3-coupling for the synthesis of propargylamines via C-H activation. J. Indian Chem. Soc., 2011, 8(2), 462-469.
[http://dx.doi.org/10.1007/BF03249079]
[267]
Gajengi, A.L.; Sasaki, T.; Bhanage, B.M. NiO nanoparticles catalyzed three component coupling reaction of aldehyde, amine and terminal alkynes. Catal. Commun., 2015, 72, 174-179.
[http://dx.doi.org/10.1016/j.catcom.2015.09.031]
[268]
Safaei-Ghomi, J.; Nazemzadeh, S.H. Ionic liquid-attached colloidal silica nanoparticles as a new class of silica nanoparticles for the preparation of propargylamines. Catal. Lett., 2017, 147(7), 1696-1703.
[http://dx.doi.org/10.1007/s10562-017-2079-4]
[269]
Alinezhad, H.; Pakzad, K.; Nasrollahzadeh, M. Efficient Sonogashira and A3 coupling reactions catalyzed by biosynthesized magnetic Fe3O4 @Ni nanoparticles from Euphorbia maculata extract. Appl. Organomet. Chem., 2020, 34(4), e5473.
[http://dx.doi.org/10.1002/aoc.5473]
[270]
Shi, X.L.; Sun, B.; Chen, Y.; Hu, Q.; Li, P.; Meng, Y.; Duan, P. Tuning anion species and chain length of ligands grafted on the fiber for an efficient polymer-supported Ni(II) complex catalyst in one-pot multicomponent A3-coupling. J. Catal., 2019, 372, 321-329.
[http://dx.doi.org/10.1016/j.jcat.2019.03.020]
[271]
Moradian, M.; Nazarabi, M. Ultrasmall monodisperse nio nanocrystals as a heterogeneous catalyst for the A3-Coupling reaction toward propargylamines. Acta Chim. Slov., 2021, 68(3), 594-603.
[http://dx.doi.org/10.17344/acsi.2020.6412] [PMID: 34897535]
[272]
Shaabani, A.; Mohammadian, R.; Hashemzadeh, A.; Afshari, R.; Amini, M.M. Amine-functionalized MIL-101(Cr) embedded with Co(II) phthalocyanine as a durable catalyst for one-pot tandem oxidative A3 coupling reactions of alcohols. New J. Chem., 2018, 42(6), 4167-4174.
[http://dx.doi.org/10.1039/C7NJ05132H]
[273]
Hajipour, A.R.; Khorsandi, Z.; Mohammadi, B. Cobalt‐catalyzed three‐component synthesis of propargylamine derivatives and sonogashira reaction: A comparative study between Co‐NPs and Co‐NHC@MWCNTs. ChemistrySelect, 2019, 4(15), 4598-4603.
[http://dx.doi.org/10.1002/slct.201803586]
[274]
Aguilar, D.; Contel, M.; Urriolabeitia, E.P. Mechanistic insights into the one-pot synthesis of propargylamines from terminal alkynes and amines in chlorinated solvents catalyzed by gold compounds and nanoparticles. Chemistry, 2010, 16(30), 9287-9296.
[http://dx.doi.org/10.1002/chem.201000587] [PMID: 20583055]
[275]
Yu, D.; Zhang, Y. Copper-catalyzed three-component coupling of terminal alkyne, dihalomethane and amine to propargylic amines. Adv. Synth. Catal., 2011, 353(1), 163-169.
[http://dx.doi.org/10.1002/adsc.201000691]
[276]
Lin, Z.; Yu, D.; Zhang, Y. Propargylic amines constructed via copper-catalyzed three-component coupling of terminal alkynes, benzal halides and amines. Tetrahedron Lett., 2011, 52(38), 4967-4970.
[http://dx.doi.org/10.1016/j.tetlet.2011.07.099]
[277]
Tang, Y.; Xiao, T.; Zhou, L. Cobalt-catalyzed alkyne–dihalomethane–amine coupling: an efficient route for propargylamines. Tetrahedron Lett., 2012, 53(46), 6199-6201.
[http://dx.doi.org/10.1016/j.tetlet.2012.08.136]
[278]
Gao, J.; Song, Q.W.; He, L.N.; Yang, Z.Z.; Dou, X.Y. Efficient iron(iii)-catalyzed three-component coupling reaction of alkynes, CH2Cl2 and amines to propargylamines. Chem. Commun. (Camb.), 2012, 48(14), 2024-2026.
[http://dx.doi.org/10.1039/c2cc17616e] [PMID: 22234426]
[279]
Lanke, S.R.; Bhanage, B.M. Nickel-catalyzed three-component coupling reaction of terminal alkynes, dihalomethane and amines to propargylamines. Appl. Organomet. Chem., 2013, 27(12), 729-733.
[http://dx.doi.org/10.1002/aoc.3071]
[280]
Chen, X.; Chen, T.; Zhou, Y.; Au, C.T.; Han, L.B.; Yin, S.F. Efficient synthesis of propargylamines from terminal alkynes, dichloromethane and tertiary amines over silver catalysts. Org. Biomol. Chem., 2014, 12(2), 247-250.
[http://dx.doi.org/10.1039/C3OB41878B] [PMID: 24264798]
[281]
Yuan, J.; Yun, Y.; Tao, Z.; Yanan, N.; Li, L.; Sheng, H.; Zhu, M. Atomically precise Cun (n= 3, 6 and 11) Nanocatalysts for Alkyne‐Haloalkane‐Amine (AHA) coupling reaction. Eur. J. Inorg. Chem., 2022, e202200159.
[282]
Rahman, M.; Bagdi, A.K.; Majee, A.; Hajra, A. Nano indium oxide catalyzed efficient synthesis of propargylamines via C–H and C–Cl bond activations. Tetrahedron Lett., 2011, 52(34), 4437-4439.
[http://dx.doi.org/10.1016/j.tetlet.2011.06.067]
[283]
Sharma, R.K.; Sharma, S.; Gaba, G. Silica nanospheres supported diazafluorene iron complex: an efficient and versatile nanocatalyst for the synthesis of propargylamines from terminal alkynes, dihalomethane and amines. RSC Advances, 2014, 4(90), 49198-49211.
[http://dx.doi.org/10.1039/C4RA10384J]
[284]
Berrichi, A.; Bachir, R.; Benabdallah, M.; Choukchou-Braham, N. Supported nano gold catalyzed three-component coupling reactions of amines, dichloromethane and terminal alkynes (AHA). Tetrahedron Lett., 2015, 56(11), 1302-1306.
[http://dx.doi.org/10.1016/j.tetlet.2015.01.132]
[285]
Cao, J.; Tian, H. N-Heterocyclic carbene-protected Ag nanoparticles immobilized on polyacrylonitrile fiber as efficient catalysts for a three-component coupling reaction. Chem. Asian J., 2018, 13(12), 1561-1569.
[http://dx.doi.org/10.1002/asia.201800154] [PMID: 29774978]
[286]
Xu, H.; Wang, J.; Wang, P.; Niu, X.; Luo, Y.; Zhu, L.; Yao, X. Recyclable Cu/C3N4 composite catalyzed AHA/A3 coupling reactions for the synthesis of propargylamines. RSC Advances, 2018, 8(57), 32942-32947.
[http://dx.doi.org/10.1039/C8RA06613B] [PMID: 35547691]
[287]
Mehiaoui, N.; Kibou, Z.; Berrichi, A.; Bachir, R.; Choukchou-Braham, N. Novel synthesis of 3-cyano-2-pyridones derivatives catalyzed by Au–Co/TiO2. Res. Chem. Intermed., 2020, 46(12), 5263-5280.
[http://dx.doi.org/10.1007/s11164-020-04261-1]
[288]
Berrichi, A.; Bachir, R.; Bedrane, S.; Choukchou-Braham, N.; Belkacemi, K. Heterogeneous bimetallic Au–Co nanoparticles as new efficient catalysts for the three-component coupling reactions of amines, alkynes and CH2Cl2. Res. Chem. Intermed., 2019, 45(6), 3481-3495.
[http://dx.doi.org/10.1007/s11164-019-03803-6]
[289]
Bensaad, M.; Berrichi, A.; Bachir, R.; Berrichi, A. Nano and Sub- nano gold–cobalt particles as effective catalysts in the synthesis of propargylamines via AHA coupling. Catal. Lett., 2020, 1-12.
[290]
Berrichi, A.; Bailiche, Z.; Bachir, R. Mesoporous Au/Fe2O3 catalyst for propargylamines synthesis via CH2Cl2 under visible light irradiation. Res. Chem. Intermed., 2022, 48(10), 4119-4134.
[http://dx.doi.org/10.1007/s11164-022-04796-5]
[291]
Drici, M.E.A.; Amina, B.; Redouane, B.; Mohammed, B.; Sumeya, B.; Debdab, M. Iron phosphate nanoparticles as an effective catalyst for propargylamine synthesis. React. Kinet. Mech. Catal., 2023, 136(1), 333-343.
[http://dx.doi.org/10.1007/s11144-023-02345-8]
[292]
Pereshivko, O.P.; Peshkov, V.A. Van der Eycken, EV Unprecedented Cu(I)-catalyzed microwave-assisted three-component coupling of a ketone, an alkyne, and a primary amine. Org. Lett., 2010, 12(11), 2638-41.
[293]
Cheng, M.; Zhang, Q.; Hu, X-Y.; Li, B-G.; Ji, J-X.; Chan, A.S.C. Gold-catalyzed direct intermolecular coupling of ketones, secondary amines, and alkynes: A facile and versatile access to propargylic amines containing a quaternary carbon center. Adv. Synth. Catal., 2011, 353(8), 1274-1278.
[http://dx.doi.org/10.1002/adsc.201000914]
[294]
Pierce, C.J.; Nguyen, M.; Larsen, C.H. Copper/titanium catalysis forms fully substituted carbon centers from the direct coupling of acyclic ketones, amines, and alkynes. Angew. Chem. Int. Ed., 2012, 51(49), 12289-12292.
[http://dx.doi.org/10.1002/anie.201206674] [PMID: 23109121]
[295]
Palchak, Z.L.; Lussier, D.J.; Pierce, C.J.; Larsen, C.H. Synthesis of tetrasubstituted propargylamines from cyclohexanone by solvent-free copper(II) catalysis. Green Chem., 2015, 17(3), 1802-1810.
[http://dx.doi.org/10.1039/C4GC02318H]
[296]
Neofotistos, S.P.; Tzouras, N.V.; Pauze, M.; Gómez-Bengoa, E.; Vougioukalakis, G.C. Manganese‐catalyzed multicomponent synthesis of tetrasubstituted propargyla-mines: System development and theoretical study. Adv. Synth. Catal., 2020, 362(18), 3872-3885.
[http://dx.doi.org/10.1002/adsc.202000566]
[297]
Tzouras, N.V.; Neofotistos, S.P.; Vougioukalakis, G.C. Zn-Catalyzed multicomponent KA2 coupling: One-Pot assembly of propargylamines bearing tetrasubstituted carbon centers. ACS Omega, 2019, 4(6), 10279-10292.
[http://dx.doi.org/10.1021/acsomega.9b01387] [PMID: 31460120]
[298]
Van Beek, WE; Van Stappen, J; Franck, P Copper(I)-catalyzed ketone, amine, and alkyne coupling for the synthesis of 2-Alkynylpyrrolidines and -piperidines. org. lett., 2016, 18(19), 4782-5.
[299]
Perumgani, P.C.; Keesara, S.; Parvathaneni, S.; Mandapati, M.R. Polystyrene supported N-phenylpiperazine–Cu(II) complex: An efficient and reusable catalyst for KA2-coupling reactions under solvent-free conditions. New J. Chem., 2016, 40(6), 5113-5120.
[http://dx.doi.org/10.1039/C5NJ03272E]
[300]
Bosica, G.; Abdilla, R. The KA2 coupling reaction under green, solventless, heterogeneous catalysis. J. Mol. Catal. Chem., 2017, 426, 542-549.
[http://dx.doi.org/10.1016/j.molcata.2016.09.028]
[301]
Sadjadi, S.; Hosseinnejad, T.; Malmir, M.; Heravi, M.M. Cu@furfural imine-decorated halloysite as an efficient heterogeneous catalyst for promoting ultrasonic-assisted A3 and KA2 coupling reactions: A combination of experimental and computational study. New J. Chem., 2017, 41(22), 13935-13951.
[http://dx.doi.org/10.1039/C7NJ02272G]
[302]
Sadjadi, S.; Bahri-Laleh, N. CuI@amine-functionalized halloysite as an efficient heterogeneous catalyst for promoting A3 coupling reaction under ultrasonic irradiation: A combination of experimental and DFT simulation. J. Porous Mater., 2018, 25(3), 821-833.
[http://dx.doi.org/10.1007/s10934-017-0495-x]
[303]
Sadjadi, S.; Heravi, M.M.; Malmir, M.; Noritajer, F. Copper incorporated into 1H-1,2,3-triazole-5-methanol functionalized halloysite nano clay as an efficient and heterogeneous catalyst for promoting green A3 and KA2 coupling reaction: Optimization of reaction variables using response surface methodology. Mater. Chem. Phys., 2019, 223, 380-390.
[http://dx.doi.org/10.1016/j.matchemphys.2018.10.057]
[304]
Elhampour, A.; Nemati, F.; Heravi, M.M. Nano Ag-doped magnetic-Fe3O4@mesoporous TiO2 core–shell hollow spheres: Synthesis and enhanced catalytic activity in A3 and KA2 coupling reactions. Monatsh. Chem., 2017, 148(10), 1793-1805.
[http://dx.doi.org/10.1007/s00706-017-1948-2]
[305]
Xiong, X.; Chen, H.; Liao, X.; Lai, S.; Gao, L. KA 2 -Coupling reaction catalyzed by semi-heterogeneous magnetically graphene oxide supported copper catalyst under microwave condition. ChemistrySelect, 2018, 3(31), 8819-8825.
[http://dx.doi.org/10.1002/slct.201801516]
[306]
Sadjadi, S.; Heravi, M.M.; Malmir, M. Green bio‐based synthesis of Fe2O3 @SiO2‐IL/Ag hollow spheres and their catalytic utility for ultrasonic‐assisted synthesis of propargylamines and benzo[b]furans. Appl. Organomet. Chem., 2018, 32(2), e4029.
[http://dx.doi.org/10.1002/aoc.4029]
[307]
Khakzad Siuki, M.M.; Bakavoli, M.; Eshghi, H. Eco-friendly magnetic clinoptilolite containing Cu(0) nanoparticles (CuNPs/MZN): as a new efficient catalyst for the synthesis of propargylamines via A3 and KA2 coupling reactions. Appl. Organomet. Chem., 2018, 32(4), e4290.
[http://dx.doi.org/10.1002/aoc.4290]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy