Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

One-Pot Multicomponent Reactions in Deep Eutectic Solvents

Author(s): Aslıhan Ayvaz, Sinem Gorkem Demirbaş, Ahmet Demirbaş and Neslihan Demirbaş*

Volume 27, Issue 7, 2023

Published on: 06 June, 2023

Page: [585 - 620] Pages: 36

DOI: 10.2174/1385272827666230427101210

Price: $65

conference banner
Abstract

The increasing environmental pollution and its detrimental impact on the ecosystem made scientists develop new chemical strategies involving eco-friendly chemicals, solvents, catalysts, atom-economical procedures, and alternative energy sources. Among these, deep eutectic solvents (DESs) are primarily low-melting mixtures of quaternary ammonium salt and hydrogen-bond acceptors. Low toxicity, easy preparation, low cost, biodegradability, low vapor pressure, and recyclability are the main advantages of DESs. Multicomponent reactions (MCRs) are efficient procedures for generating new libraries with high structural complexity. MCRs can give one product from at least three components in a single operation with high bond-forming efficiency, shortness, and structural diversity. Compared with conventional methodologies, the structural diversity, the convergent and atom economic character, the easy applicability of a one-pot operation, the accessibility to complex molecules, the minimized waste formation, and high selectivity are the main advantages of one-pot multicomponent reactions. The application of MCRs in eutectic solvents not only simplifies procedures but also displays more positive effects on the protection of the ecosystem.

Graphical Abstract

[1]
Dekamin, M.G.; Peyman, S.Z.; Karimi, Z.; Javanshir, S.; Naimi-Jamal, M.R.; Barikani, M. Sodium alginate: An efficient biopolymeric catalyst for green synthesis of 2-amino-4H-pyran derivatives. Int. J. Biol. Macromol., 2016, 87, 172-179.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.01.080] [PMID: 26845480]
[2]
Zarnegar, Z.; Safari, J. Heterogenization of an imidazolium ionic liquid based on magnetic carbon nanotubes as a novel organocatalyst for the synthesis of 2-amino-chromenes via a microwave-assisted multicomponent strategy. New J. Chem., 2016, 40(9), 7986-7995.
[http://dx.doi.org/10.1039/C6NJ01631F]
[3]
Alza, E.; Rodríguez-Escrich, C.; Sayalero, S.; Bastero, A.; Pericàs, M.A. A solid-supported organocatalyst for highly stereoselective, batch, and continuous-flow Mannich reactions. Chemistry, 2009, 15(39), 10167-10172.
[http://dx.doi.org/10.1002/chem.200901310] [PMID: 19688793]
[4]
Chate, A.V.; Rudrawar, P.P.; Bondle, G.M.; Sangeshetti, J.N. 2-Aminoethanesulfonic acid: An efficient organocatalyst for green synthesis of spirooxindole dihydroquinazolinones and novel 1,2-(dihydroquinazolin-3(4 H)isonicotinamides in water. Synth. Commun., 2020, 50(2), 226-242.
[http://dx.doi.org/10.1080/00397911.2019.1692868]
[5]
Dekamin, M.G.; Karimi, Z.; Latifidoost, Z.; Ilkhanizadeh, S.; Daemi, H.; Naimi-Jamal, M.R.; Barikani, M. Alginic acid: A mild and renewable bifunctional heterogeneous biopolymeric organocatalyst for efficient and facile synthesis of polyhydroquinolines. Int. J. Biol. Macromol., 2018, 108, 1273-1280.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.11.050] [PMID: 29137997]
[6]
Vispute, T.P.; Zhang, H.; Sanna, A.; Xiao, R.; Huber, G.W. Renewable chemical commodity feedstocks from integrated catalytic processing of pyrolysis oils. Science, 2010, 330(6008), 1222-1227.
[http://dx.doi.org/10.1126/science.1194218] [PMID: 21109668]
[7]
Khan, M.M. Saigal, Khan, S.; Shareef, S.; Danish, M. Organocatalyzed synthesis and antifungal activity of fully substituted 1, 4-dihydropyridines. Chem. Select, 2018, 3(24), 6830-6835.
[8]
Mohamadpour, F. Catalyst-free, visible light irradiation promoted synthesis of spiroacenaphthylenes and 1H-pyrazolo [1,2-b]phthalazine-5,10-diones in aqueous ethyl lactate. J. Photochem. Photobiol. Chem., 2021, 407, 113041.
[http://dx.doi.org/10.1016/j.jphotochem.2020.113041]
[9]
Mohamadpour, F. Catalyst-free and solvent-free visible light irradiation-assisted Knoevenagel-Michael cyclocondensation of aryl aldehydes, malononitrile, and resorcinol at room temperature. Monatsh. Chem., 2021, 152(5), 507-512.
[http://dx.doi.org/10.1007/s00706-021-02763-1]
[10]
Varma, R.S. “Greener” chemical syntheses using mechanochemical mixing or microwave and ultrasound irradiation. Green Chem. Lett. Rev., 2007, 1(1), 37-45.
[http://dx.doi.org/10.1080/17518250701756991]
[11]
Demirbas, N.; Demirbas, A. New developments in the quinolone class of antibacterial drugs. Front. Nat. Prod. Chem., 2020, 6(65), 43-107.
[http://dx.doi.org/10.2174/9789811448461120060004]
[12]
Dove, A.P. Chaining up carbon dioxide. Nat. Chem., 2014, 6(4), 276-277.
[http://dx.doi.org/10.1038/nchem.1907] [PMID: 24651191]
[13]
Demirbas, N.; Demirbas, A. Organocatalyzed heterocyclic transformations in green media: A rewiev. Curr. Organocatal., 2021, 8(1), 27-71.
[http://dx.doi.org/10.2174/2213337207999200805115813]
[14]
Demirbas, N.; Mermer, A.; Demirbas, A. Green methodologies leading to formation of new c-c and c-heteroatom bond; Chembridge Scholars Publishing: England, 2022, pp. 1-30.
[15]
Khandelwal, S.; Tailor, Y. K.; Rushell, E.; Kumar, M. Use of sustainable organic transformations in the construction of heterocyclic scaffolds. Green App. Med. Chem. Sus. Drug Des., 2020, 245-352.
[16]
Jessop, P.G. Homogeneous catalysis using supercritical fluids: Recent trends and systems studied. J. Supercrit. Fluids, 2006, 38(2), 211-231.
[http://dx.doi.org/10.1016/j.supflu.2005.11.025]
[17]
Hong, M.; Cai, C.; Yi, W.B. Hafnium (IV) bis (perfluorooctanesulfonyl)imide complex catalyzed synthesis of polyhydroquinoline derivatives via unsymmetrical Hantzsch reaction in fluorous medium. J. Fluor. Chem., 2010, 131(1), 111-114.
[http://dx.doi.org/10.1016/j.jfluchem.2009.10.009]
[18]
Petkovic, M.; Seddon, K.R.; Rebelo, L.P.N.; Silva Pereira, C. Ionic liquids: A pathway to environmental acceptability. Chem. Soc. Rev., 2011, 40(3), 1383-1403.
[http://dx.doi.org/10.1039/C004968A] [PMID: 21116514]
[19]
Shaik, B.B.; Seboletswe, P.; Mohite, S.B.; Katari, N.K.; Bala, M.D.; Karpoormath, R.; Singh, P. Lemon juice: A versatile biocatalyst and green solvent in organic transformations. Chem. Select, 2022, 7(5), 1-16.
[http://dx.doi.org/10.1002/slct.202103701]
[20]
Borse, B.N.; Shukla, S.R.; Sonawane, Y.A. Simple, efficient, and green method for synthesis of trisubstituted electrophilic alkenes using lipase as a biocatalyst. Synth. Commun., 2012, 42(3), 412-423.
[http://dx.doi.org/10.1080/00397911.2010.525334]
[21]
Salehi, N.; Mirjalili, B.B.F. Nano-ovalbumin: A green biocatalyst for biomimetic synthesis of tetrahydrodipyrazolo pyridines in water. Res. Chem. Intermed., 2018, 44(11), 7065-7077.
[http://dx.doi.org/10.1007/s11164-018-3542-6]
[22]
Villanueva-Bermejo, D.; Reglero, G.; Fornari, T. Recent advances in the processing of green tea biomolecules using ethyl lactate. A review. Trends Food Sci. Technol., 2017, 62, 1-12.
[http://dx.doi.org/10.1016/j.tifs.2016.12.009]
[23]
Clark, J.H.; Tavener, S.J. Alternative solvents: Shades of green. Org. Process Res. Dev., 2007, 11(1), 149-155.
[http://dx.doi.org/10.1021/op060160g]
[24]
Zhang, Q.; Zhang, S.; Deng, Y. Recent advances in ionic liquid catalysis. Green Chem., 2011, 13(10), 2619.
[http://dx.doi.org/10.1039/c1gc15334j]
[25]
Romero, A.; Santos, A.; Tojo, J.; Rodríguez, A. Toxicity and biodegradability of imidazolium ionic liquids. J. Hazard. Mater., 2008, 151(1), 268-273.
[http://dx.doi.org/10.1016/j.jhazmat.2007.10.079] [PMID: 18063302]
[26]
Durand, E.; Lecomte, J.; Villeneuve, P. Deep eutectic solvents: Synthesis, application, and focus on lipase‐catalyzed reactions. Eur. J. Lipid Sci. Technol., 2013, 115(4), 379-385.
[http://dx.doi.org/10.1002/ejlt.201200416]
[27]
Zhao, D.; Liao, Y.; Zhang, Z. Toxicity of ionic liquids. Clean, 2007, 35(1), 42-48.
[http://dx.doi.org/10.1002/clen.200600015]
[28]
El-Harbawi, M. Toxicity measurement of imidazolium ionic liquids using acute toxicity test. Procedia Chem., 2014, 9, 40-52.
[http://dx.doi.org/10.1016/j.proche.2014.05.006]
[29]
Hallett, J.P.; Welton, T. Room-temperature ionic liquids: Solvents for synthesis and catalysis. 2. Chem. Rev., 2011, 111(5), 3508-3576.
[http://dx.doi.org/10.1021/cr1003248] [PMID: 21469639]
[30]
Isambert, N.; Duque, M.M.S.; Plaquevent, J.C.; Génisson, Y.; Rodriguez, J.; Constantieux, T. Multicomponent reactions and ionic liquids: A perfect synergy for eco-compatible heterocyclic synthesis. Chem. Soc. Rev., 2011, 40(3), 1347-1357.
[http://dx.doi.org/10.1039/C0CS00013B] [PMID: 20963207]
[31]
Smith, E.L.; Abbott, A.P.; Ryder, K.S. Deep Eutectic Solvents (DESs) and their applications. Chem. Rev., 2014, 114(21), 11060-11082.
[http://dx.doi.org/10.1021/cr300162p] [PMID: 25300631]
[32]
Plechkova, N.V.; Seddon, K.R. Applications of ionic liquids in the chemical industry. Chem. Soc. Rev., 2008, 37(1), 123-150.
[http://dx.doi.org/10.1039/B006677J] [PMID: 18197338]
[33]
Thuy Pham, T.P.; Cho, C.W.; Yun, Y.S. Environmental fate and toxicity of ionic liquids: A review. Water Res., 2010, 44(2), 352-372.
[http://dx.doi.org/10.1016/j.watres.2009.09.030] [PMID: 19854462]
[34]
Austen Angell, C.; Ansari, Y.; Zhao, Z. Ionic Liquids: Past, present and future. Faraday Discuss., 2012, 154, 9-27.
[http://dx.doi.org/10.1039/C1FD00112D] [PMID: 22455011]
[35]
Zhang, Q.; De Oliveira Vigier, K.; Royer, S.; Jérôme, F. Deep eutectic solvents: Syntheses, properties and applications. Chem. Soc. Rev., 2012, 41(21), 7108-7146.
[http://dx.doi.org/10.1039/c2cs35178a] [PMID: 22806597]
[36]
Abbott, A.P.; Harris, R.C.; Ryder, K.S.; D’Agostino, C.; Gladden, L.F.; Mantle, M.D. Glycerol eutectics as sustainable solvent systems. Green Chem., 2011, 13(1), 82-90.
[http://dx.doi.org/10.1039/C0GC00395F]
[37]
Ruß, C.; König, B. Low melting mixtures in organic synthesis-an alternative to ionic liquids? Green Chem., 2012, 14(11), 2969.
[http://dx.doi.org/10.1039/c2gc36005e]
[38]
Maugeri, Z.; Domínguez de María, P. Novel choline-chloride-based deep-eutectic-solvents with renewable hydrogen bond donors: Levulinic acid and sugar-based polyols. RSC Advances, 2012, 2(2), 421-425.
[http://dx.doi.org/10.1039/C1RA00630D]
[39]
Abbott, A.P.; Capper, G.; Davies, D.L.; Rasheed, R.K.; Tambyrajah, V. Novel solvent properties of choline chloride/urea mixtures. Chem. Commun., 2003, (1), 70-71.
[http://dx.doi.org/10.1039/b210714g] [PMID: 12610970]
[40]
Yue, S.; Jin, X.; Dong, X.; Qu, C. Extraction rate of total flavonoids from Toona sinensis seeds with different deep eutectic solvents. J. Fuyang Normal University. Nat. Sci., 2020, 37, 67-71.
[41]
Abbott, A.P.; Barron, J.C.; Ryder, K.S.; Wilson, D. Eutectic-based ionic liquids with metal-containing anions and cations. Chemistry, 2007, 13(22), 6495-6501.
[http://dx.doi.org/10.1002/chem.200601738] [PMID: 17477454]
[42]
Abbott, A.P.; Capper, G.; Davies, D.L.; Munro, H.L.; Rasheed, R.K.; Tambyrajah, V. Preparation of novel, moisture-stable, Lewis-acidic ionic liquids containing quaternary ammonium salts with functional side chains. Chem. Commun., 2001, (19), 2010-2011.
[http://dx.doi.org/10.1039/b106357j] [PMID: 12240264]
[43]
Hsiu, S.I.; Huang, J.F.; Sun, I.W.; Yuan, C.H.; Shiea, J. Lewis acidity dependency of the electrochemical window of zinc chloride-1-ethyl-3-methylimidazolium chloride ionic liquids. Electrochim. Acta, 2002, 47(27), 4367-4372.
[http://dx.doi.org/10.1016/S0013-4686(02)00509-1]
[44]
Lin, Y.F.; Sun, I.W. Electrodeposition of zinc from a Lewis acidic zinc chloride-1-ethyl-3-methylimidazolium chloride molten salt. Electrochim. Acta, 1999, 44(16), 2771-2777.
[http://dx.doi.org/10.1016/S0013-4686(99)00003-1]
[45]
Francisco, M.; van den Bruinhorst, A.; Kroon, M.C. New natural and renewable Low Transition Temperature Mixtures (LTTMs): Screening as solvents for lignocellulosic biomass processing. Green Chem., 2012, 14(8), 2153.
[http://dx.doi.org/10.1039/c2gc35660k]
[46]
Safarov, J.; Hamidova, R.; Zepik, S.; Schmidt, H.; Kul, I.; Shahverdiyev, A.; Hassel, E. Thermophysical properties of 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide at high temperatures and pressures. J. Mol. Liq., 2013, 187, 137-156.
[http://dx.doi.org/10.1016/j.molliq.2013.05.032]
[47]
Krishnakumar, V.; Vindhya, N.G.; Mandal, B.K.; Nawaz Khan, F.R. Green chemical approach: Low-melting mixture as a green solvent for efficient Michael addition of homophthalimides with chalcones. Ind. Eng. Chem. Res., 2014, 53(26), 10814-10819.
[http://dx.doi.org/10.1021/ie501320a]
[48]
Abranches, D.O.; Schaeffer, N.; Silva, L.P.; Martins, M.A.R.; Pinho, S.P.; Coutinho, J.A.P. The role of charge transfer in the formation of type I deep eutectic solvent-analogous ionic liquid mixtures. Molecules, 2019, 24(20), 3687.
[http://dx.doi.org/10.3390/molecules24203687] [PMID: 31614959]
[49]
Zahn, S.; Kirchner, B.; Mollenhauer, D. Charge spreading in deep eutectic solvents. Chem. Phys. Chem, 2016, 17(21), 3354-3358.
[http://dx.doi.org/10.1002/cphc.201600348] [PMID: 27550471]
[50]
Mbous, Y.P.; Hayyan, M.; Hayyan, A.; Wong, W.F.; Hashim, M.A.; Looi, C.Y. Applications of deep eutectic solvents in biotechnology and bioengineering-Promises and challenges. Biotechnol. Adv., 2017, 35(2), 105-134.
[http://dx.doi.org/10.1016/j.biotechadv.2016.11.006] [PMID: 27923764]
[51]
Perkins, S.L.; Painter, P.; Colina, C.M. Molecular dynamic simulations and vibrational analysis of an ionic liquid analogue. J. Phys. Chem. B, 2013, 117(35), 10250-10260.
[http://dx.doi.org/10.1021/jp404619x] [PMID: 23915257]
[52]
Sun, H.; Li, Y.; Wu, X.; Li, G. Theoretical study on the structures and properties of mixtures of urea and choline chloride. J. Mol. Model., 2013, 19(6), 2433-2441.
[http://dx.doi.org/10.1007/s00894-013-1791-2] [PMID: 23435478]
[53]
Perkins, S.L.; Painter, P.; Colina, C.M. Experimental and computational studies of choline chloride-based deep eutectic solvents. J. Chem. Eng. Data, 2014, 59(11), 3652-3662.
[http://dx.doi.org/10.1021/je500520h]
[54]
Zainal-Abidin, M.H.; Hayyan, M.; Hayyan, A.; Jayakumar, N.S. New horizons in the extraction of bioactive compounds using deep eutectic solvents: A review. Anal. Chim. Acta, 2017, 979, 1-23.
[http://dx.doi.org/10.1016/j.aca.2017.05.012] [PMID: 28599704]
[55]
Zhao, B.Y.; Xu, P.; Yang, F.X.; Wu, H.; Zong, M.H.; Lou, W.Y. Biocompatible deep eutectic solvents based on choline chloride: Characterization and application to the extraction of rutin from Sophora japonica. ACS Sustain. Chem. Eng., 2015, 3(11), 2746-2755.
[http://dx.doi.org/10.1021/acssuschemeng.5b00619]
[56]
Hou, Y.; Yao, C.; Wu, W. Deep eutectic solvents: Green solvents for separation applications. Wuli Huaxue Xuebao, 2018, 34(8), 873-885.
[http://dx.doi.org/10.3866/PKU.WHXB201802062]
[57]
Li, X.; Row, K.H. Development of deep eutectic solvents applied in extraction and separation. J. Sep. Sci., 2016, 39(18), 3505-3520.
[http://dx.doi.org/10.1002/jssc.201600633] [PMID: 27503573]
[58]
Zhu, J.J.; Wang, Z.M.; Ma, X.Y.; Feng, W-H.; Zhang, Q-W. A quantitative method for simultaneous determination of four anthraquinones with one marker in Rhei Radix et Rhizoma. Chin. Herb. Med., 2012, 4(2), 157-163.
[59]
Wang, J.; Chen, F.; Liu, X.; Shuchang, W. Application of deep eutectic solvents in Chinese materia medica. Chin. Tradit. Herbal Drugs., 2020, J. Anal. Methods Chem.
[60]
Li, L.J.; Wang, Y.J.; Liu, F.X.; Xu, Y.; Bao, H.W. Study on the effect of deep eutectic solvent liquid phase microextraction on quality standard, antitussive, and expectorant of sangbaipi decoction. J. Anal. Method Chem., 2021, 2021(3), 1-11.
[http://dx.doi.org/10.1155/2021/9999406]
[61]
Azizi, N.; Dezfooli, S.; Hashemi, M.M. A sustainable approach to the Ugi reaction in deep eutectic solvent. C. R. Chim., 2013, 16(12), 1098-1102.
[http://dx.doi.org/10.1016/j.crci.2013.05.013]
[62]
García, G.; Atilhan, M.; Aparicio, S. Insights into alkyl lactate+water mixed fluids. J. Mol. Liq., 2014, 199, 215-223.
[http://dx.doi.org/10.1016/j.molliq.2014.09.016]
[63]
Manic, M.S.; Villanueva, D.; Fornari, T.; Queimada, A.J.; Macedo, E.A.; Najdanovic-Visak, V. Solubility of high-value compounds in ethyl lactate: Measurements and modeling. J. Chem. Thermodyn., 2012, 48, 93-100.
[http://dx.doi.org/10.1016/j.jct.2011.12.005]
[64]
Kamalanathan, I.; Canal, L.; Hegarty, J.; Najdanovic-Visak, V. Partitioning of amino acids in the novel biphasic systems based on environmentally friendly ethyl lactate. Fluid Phase Equilib., 2018, 462, 6-13.
[http://dx.doi.org/10.1016/j.fluid.2018.01.016]
[65]
Bermejo, D.V.; Ibáñez, E.; Reglero, G.; Fornari, T. Effect of cosolvents (ethyl lactate, ethyl acetate and ethanol) on the supercritical CO 2 extraction of caffeine from green tea. J. Supercrit. Fluids, 2016, 107, 507-512.
[http://dx.doi.org/10.1016/j.supflu.2015.07.008]
[66]
Strati, I.F.; Oreopoulou, V. Process optimisation for recovery of carotenoids from tomato waste. Food Chem., 2011, 129(3), 747-752.
[http://dx.doi.org/10.1016/j.foodchem.2011.05.015] [PMID: 25212294]
[67]
Lores, M.; Pájaro, M.; Álvarez-Casas, M.; Domínguez, J.; García-Jares, C. Use of ethyl lactate to extract bioactive compounds from Cytisus scoparius: Comparison of pressurized liquid extraction and medium scale ambient temperature systems. Talanta, 2015, 140, 134-142.
[http://dx.doi.org/10.1016/j.talanta.2015.03.034] [PMID: 26048835]
[68]
Gao, G.; Chen, M.N.; Mo, L.P.; Zhang, Z.H. Catalyst free one-pot synthesis of α-aminophosphonates in aqueous ethyl lactate. Phosphorus Sulfur Silicon Relat. Elem., 2019, 194(4-6), 528-532.
[http://dx.doi.org/10.1080/10426507.2018.1542395]
[69]
Gawande, M.B.; Bonifácio, V.D.B.; Luque, R.; Branco, P.S.; Varma, R.S. Benign by design: Catalyst-free in-water, on-water green chemical methodologies in organic synthesis. Chem. Soc. Rev., 2013, 42(12), 5522-5551.
[http://dx.doi.org/10.1039/c3cs60025d] [PMID: 23529409]
[70]
Longo, L., Jr; Craveiro, M. Deep eutectic solvents as unconventional media for multicomponent reactions. J. Braz. Chem. Soc., 2018, 29(10), 1999-2025.
[http://dx.doi.org/10.21577/0103-5053.20180147]
[71]
Saranya, S.; Rohit, K.R.; Radhika, S.; Anilkumar, G. Palladium-catalyzed multicomponent reactions: An overview. Org. Biomol. Chem., 2019, 17(35), 8048-8061.
[http://dx.doi.org/10.1039/C9OB01538H] [PMID: 31410440]
[72]
Biesen, L.; Müller, T.J.J. Multicomponent and one‐pot syntheses of quinoxalines. Adv. Synth. Catal., 2021, 363(4), 980-1006.
[http://dx.doi.org/10.1002/adsc.202001219]
[73]
Jeannin, L.; Boisbrun, M.; Nemes, C.; Cochard, F.; Laronze, M.; Dardennes, E.; Kovács-Kulyassa, Á.; Sapi, J.; Laronze, J-Y.; Laronze, C.R. Multicomponent approach for the synthesis of non-natural tryptophan, tryptamine and β-carboline derivatives. C. R. Chim., 2003, 6(5-6), 517-528.
[http://dx.doi.org/10.1016/S1631-0748(03)00092-4]
[74]
Touré, B.B.; Hall, D.G. Natural product synthesis using multicomponent reaction strategies. Chem. Rev., 2009, 109(9), 4439-4486.
[http://dx.doi.org/10.1021/cr800296p] [PMID: 19480390]
[75]
Hayyan, M.; Hashim, M.A.; Hayyan, A.; Al-Saadi, M.A.; AlNashef, I.M.; Mirghani, M.E.S.; Saheed, O.K. Are deep eutectic solvents benign or toxic? Chemosphere, 2013, 90(7), 2193-2195.
[http://dx.doi.org/10.1016/j.chemosphere.2012.11.004] [PMID: 23200570]
[76]
Gu, Y.; De Sousa, R.; Frapper, G.; Bachmann, C.; Barrault, J.; Jérôme, F. Catalyst-free aqueous multicomponent domino reactions from formaldehyde and 1,3-dicarbonyl derivatives. Green Chem., 2009, 11(12), 1968.
[http://dx.doi.org/10.1039/b913846c]
[77]
Dömling, A. Isocyanide based multi component reactions in combinatorial chemistry. Comb. Chem. High Throughput Screen., 1998, 1(1), 1-22.
[http://dx.doi.org/10.2174/138620730101220118143111] [PMID: 10499126]
[78]
Dömling, A.; Ugi, I. Multicomponent reactions with isocyanides. Angew. Chem. Int. Ed., 2000, 39(18), 3168-3210.
[http://dx.doi.org/10.1002/1521-3773(20000915)39:18<3168::AIDANIE3168>3.0.CO;2-U] [PMID: 11028061]
[79]
Nandi, S.; Jamatia, R.; Sarkar, R.; Sarkar, F.K.; Alam, S.; Pal, A.K. One-pot multicomponent reaction: A highly versatile strategy for the construction of valuable nitrogen-containing heterocycles. Chem. Select, 2000, 7(33), e202201901.
[80]
Estévez, V.; Villacampa, M.; Menéndez, J.C. Recent advances in the synthesis of pyrroles by multicomponent reactions. Chem. Soc. Rev., 2014, 43(13), 4633-4657.
[http://dx.doi.org/10.1039/C3CS60015G] [PMID: 24676061]
[81]
Dömling, A.; Wang, W.; Wang, K. Chemistry and biology of multicomponent reactions. Chem. Rev., 2012, 112(6), 3083-3135.
[http://dx.doi.org/10.1021/cr100233r] [PMID: 22435608]
[82]
Kreye, O.; Tóth, T.; Meier, M.A.R. Introducing multicomponent reactions to polymer science: Passerini reactions of renewable monomers. J. Am. Chem. Soc., 2011, 133(6), 1790-1792.
[http://dx.doi.org/10.1021/ja1113003] [PMID: 21265532]
[83]
Zhu, J. Recent developments in the ısonitrile-based multicomponent synthesis of heterocycles. Eur. J. Org. Chem., 2003, 2003(7), 1133-1144.
[http://dx.doi.org/10.1002/ejoc.200390167]
[84]
Nichugovskiy, A.I.; Khrulev, A.A.; Perevoshchikova, K.A.; Cheshkov, D.A.; Morozova, N.G.; Maslov, M.A. Synthesis of ısonitrile derivatives of diglycerides and carbohydrates as ıntermediates for multicomponent Ugi reaction. Russ. J. Bioorganic Chem., 2021, 47(4), 929-938.
[http://dx.doi.org/10.1134/S1068162021040166]
[85]
Vercillo, O.E.; Andrade, C.K.Z.; Wessjohann, L.A. Design and synthesis of cyclic RGD pentapeptoids by consecutive Ugi reactions. Org. Lett., 2008, 10(2), 205-208.
[http://dx.doi.org/10.1021/ol702521g] [PMID: 18088132]
[86]
Denmark, S.E.; Fan, Y. The first catalytic, asymmetric α-additions of isocyanides. Lewis-base-catalyzed, enantioselective Passerini-type reactions. J. Am. Chem. Soc., 2003, 125(26), 7825-7827.
[http://dx.doi.org/10.1021/ja035410c] [PMID: 12823000]
[87]
Henkel, B.; Beck, B.; Westner, B.; Mejat, B.; Dömling, A. Convergent multicomponent assembly of 2-acyloxymethyl thiazoles, Tet. Lett, 2003, 44(50), 8947-8950.
[88]
Wang, S.X.; Wang, M.X.; Wang, D.X.; Zhu, J. Catalytic enantioselective Passerini three-component reaction. Angew. Chem. Int. Ed., 2008, 47(2), 388-391.
[http://dx.doi.org/10.1002/anie.200704315] [PMID: 18008290]
[89]
Sung, K.; Chen, F.L.; Huang, P.C. A Modified U-4CR Reaction with 2-Nitrobenzylamine as an ammonia equivalent. Synlett, 2006, 2006(16), 2667-2669.
[http://dx.doi.org/10.1055/s-2006-951485]
[90]
Kazmaier, U.; Ackermann, S. A straightforward approach towards thiazoles and endothiopeptides via Ugi reaction. Org. Biomol. Chem., 2005, 3(17), 3184-3187.
[http://dx.doi.org/10.1039/b507028g] [PMID: 16106299]
[91]
El Kaïm, L.; Grimaud, L.; Oble, J. Phenol Ugi-smiles systems: Strategies for the multicomponent N-arylation of primary amines with isocyanides, aldehydes, and phe-nols. Angew. Chem. Int. Ed., 2005, 44(48), 7961-7964.
[http://dx.doi.org/10.1002/anie.200502636] [PMID: 16287162]
[92]
Tanaka, Y.; Hasui, T.; Suginome, M. Acid-free, aminoborane-mediated Ugi-type reaction leading to general utilization of secondary amines. Org. Lett., 2007, 9(22), 4407-4410.
[http://dx.doi.org/10.1021/ol701570c] [PMID: 17887764]
[93]
Tye, H.; Whittaker, M. Use of a design of experiments approach for the optimisation of a microwave assisted Ugi reaction. Org. Biomol. Chem., 2004, 2(6), 813-815.
[http://dx.doi.org/10.1039/b400298a] [PMID: 15007407]
[94]
Okandeji, B.O.; Gordon, J.R.; Sello, J.K. Catalysis of Ugi Four Component Coupling Reactions by Rare Earth Metal Triflates. J. Org. Chem., 2008, 73(14), 5595-5597.
[95]
Pirrung, M.C.; Sarma, K.D. Multicomponent reactions are accelerated in water. J. Am. Chem. Soc., 2004, 126(2), 444-445.
[http://dx.doi.org/10.1021/ja038583a] [PMID: 14719923]
[96]
Pirrung, M.C.; Sarma, K.D. Aqueous medium effects on multi-component reactions. Tetrahedron, 2005, 61(48), 11456-11472.
[http://dx.doi.org/10.1016/j.tet.2005.08.068]
[97]
Niu, T-F.; Lu, G-P.; Cai, C. The Ugi reaction in a polyethylene glycol medium: A mild, protocol for the production of compound libraries. J. Chem. Res., 2011, 8, 444-447.
[98]
Kotha, S.; Gupta, N.K.; Aswar, V.R. Multicomponent approach to hydantoins and thiohydantoins involving a deep eutectic solvent. Chem. Asian J., 2019, 14(18), 3188-3197.
[http://dx.doi.org/10.1002/asia.201900744] [PMID: 31386259]
[99]
Leitch, J.A.; Cook, H.P.; Bhonoah, Y.; Frost, C.G. Use of the hydantoin directing group in ruthenium (II)-catalyzed C-H functionalization. J. Org. Chem., 2016, 81(20), 10081-10087.
[http://dx.doi.org/10.1021/acs.joc.6b02073] [PMID: 27680400]
[100]
Guo, F-L.; Li, Z-Q.; Liu, X-P.; Zhou, L.; Kong, F-T.; Chen, W-C.; Dai, S-Y.P.; Zhou, L.; Kong, F-T.; Chen, W-C.; Dai, S-Y. Metal-free sensitizers containing hydantoin acceptor as high performance anchoring group for dye-sensitized solar cells. Adv. Funct. Mater., 2016, 26(31), 5733-5740.
[http://dx.doi.org/10.1002/adfm.201601305]
[101]
Kotha, S.; Halder, S. Ethyl isocyanoacetate as a useful glycine equivalent. Synlett, 2010, 2010(3), 337-354.
[http://dx.doi.org/10.1055/s-0029-1219149]
[102]
Matthews, J.; Rivero, R.A. Base-promoted solid-phase synthesis of substituted hydantoins and thiohydantoins. J. Org. Chem., 1997, 62(17), 6090-6092.
[http://dx.doi.org/10.1021/jo970521d]
[103]
Marcaccini, S.; Ignacio, J.M.; Macho, S.; Pepino, R.; Torroba, T. A Facile Synthesis of 1, 3, 5-Trisubstituted hydantoins via Ugi four-component condensation. Synlett, 2005, (20), 3051-3054.
[http://dx.doi.org/10.1055/s-2005-922745]
[104]
Miura, T.; Mikano, Y.; Murakami, M. Nickel-catalyzed synthesis of 1,3,5-trisubstituted hydantoins from acrylates and isocyanates. Org. Lett., 2011, 13(14), 3560-3563.
[http://dx.doi.org/10.1021/ol200957y] [PMID: 21671608]
[105]
Zhang, D.; Xing, X.; Cuny, G.D. Synthesis of hydantoins from enantiomerically pure α-amino amides without epimerization. J. Org. Chem., 2006, 71(4), 1750-1753.
[http://dx.doi.org/10.1021/jo052474s] [PMID: 16468841]
[106]
Volonterio, A.; Ramirez de Arellano, C.; Zanda, M. Synthesis of 1,3,5-trisubstituted hydantoins by regiospecific domino condensation/aza-Michael/O-->N acyl migration of carbodiimides with activated α,β-unsaturated carboxylic acids. J. Org. Chem., 2005, 70(6), 2161-2170.
[http://dx.doi.org/10.1021/jo0480848] [PMID: 15760201]
[107]
Tei, L.; Gugliotta, G.; Avedano, S.; Giovenzana, G.B.; Botta, M. Application of the Ugi four-component reaction to the synthesis of ditopic bifunctional chelating agents. Org. Biomol. Chem., 2009, 7(21), 4406-4414.
[http://dx.doi.org/10.1039/b907932g] [PMID: 19830289]
[108]
Azizian, J.; Yadollahzadeh, K.; Tahermansouri, H.; Khoei, D.C.; Delbari, A.S. Efficient synthesis of urea derivatives via a sequential one-pot nucleophilic addition/ugi five-component reaction under solvent-free conditions. Synth. Commun., 2012, 42(14), 2110-2120.
[http://dx.doi.org/10.1080/00397911.2011.553697]
[109]
Cerulli, V.; Banfi, L.; Basso, A.; Rocca, V.; Riva, R. Diversity oriented and chemoenzymatic synthesis of densely functionalized pyrrolidines through a highly diastereoselective Ugi multicomponent reaction. Org. Biomol. Chem., 2012, 10(6), 1255-1274.
[http://dx.doi.org/10.1039/c1ob06632c] [PMID: 22215069]
[110]
Banfi, L.; Basso, A.; Riva, R. Synthesis of heterocycles through classical Ugi and Passerini reactions followed by secondary transformations involving one or two additional functional groups. Top. Heterocycl. Chem., 2010, 23, 1-39.
[http://dx.doi.org/10.1007/7081_2009_23]
[111]
Beller, M.; Eckert, M.; Moradi, W.A.; Neumann, H. Palladium-catalyzed synthesis of substituted hydantoins-a new carbonylation reaction for the synthesis of amino acid derivatives. Angew. Chem. Intern. Ed. Engl., 1999, 38(10), 1454-1457.
[http://dx.doi.org/10.1002/(SICI)1521-3757(19990517)111:10<1562::AIDANGE1562>3.0.CO;2-W]
[112]
Gore, S.; Chinthapally, K.; Baskaran, S.; König, B. Synthesis of substituted hydantoins in low melting mixtures. Chem. Commun., 2013, 49(44), 5052-5054.
[http://dx.doi.org/10.1039/c3cc41254g] [PMID: 23625044]
[113]
Yanagita, H.; Urano, E.; Matsumoto, K.; Ichikawa, R.; Takaesu, Y.; Ogata, M.; Murakami, T.; Wu, H.; Chiba, J.; Komano, J.; Hoshino, T. Structural and biochemical study on the inhibitory activity of derivatives of 5-nitro-furan-2-carboxylic acid for RNase H function of HIV-1 reverse transcriptase. Bioorg. Med. Chem., 2011, 19(2), 816-825.
[http://dx.doi.org/10.1016/j.bmc.2010.12.011] [PMID: 21193314]
[114]
Mahyari, M.; Shaabani, S.; Shaabani, A.; Ng, S. A passerini-type condensation: A carboxylic acid-free approach for the synthesis of the α-acyloxycarboxamides. Comb. Chem. High Throughput Screen., 2013, 16(10), 858-864.
[http://dx.doi.org/10.2174/13862073113169990051] [PMID: 24050692]
[115]
Andreana, P.R.; Liu, C.C.; Schreiber, S.L. Stereochemical control of the Passerini reaction. Org. Lett., 2004, 6(23), 4231-4233.
[http://dx.doi.org/10.1021/ol0482893] [PMID: 15524450]
[116]
Andrade, C.; Takada, S.; Suarez, P.; Alves, M. Revisiting the passerini reaction under eco-friendly reaction conditions. Synlett, 2006, 2006(10), 1539-1542.
[http://dx.doi.org/10.1055/s-2006-941606]
[117]
Koszelewski, D.; Szymanski, W.; Krysiak, J.; Ostaszewski, R. Solvent‐free passerini reactions. Synth. Commun., 2008, 38(7), 1120-1127.
[http://dx.doi.org/10.1080/00397910701863608]
[118]
Barreto, A.F.S.; Vercillo, O.E.; Andrade, C.K.Z. Microwave-assisted passerini reactions under solvent-free conditions. J. Braz. Chem. Soc., 2011, 22(3), 462-467.
[http://dx.doi.org/10.1590/S0103-50532011000300008]
[119]
Shaabani, A.; Afshari, R.; Hooshmand, S.E. Passerini three-component cascade reactions in deep eutectic solvent: An environmentally benign and rapid system for the synthesis of α-acyloxyamides. Res. Chem. Intermed., 2016, 42(6), 5607-5616.
[http://dx.doi.org/10.1007/s11164-015-2390-x]
[120]
Gewald, K. Zur reaktion von alpha-oxo-mercaptanen mit nitrilen. Angew. Chem., 1961, 73(3), 114.
[http://dx.doi.org/10.1002/ange.19610730307]
[121]
Huang, Y.; Dömling, A. The gewald multicomponent reaction. Mol. Divers., 2011, 15(1), 3-33.
[http://dx.doi.org/10.1007/s11030-010-9229-6] [PMID: 20191319]
[122]
Meltzer, H.Y.; Fibiger, H.C. Olanzapine: A new typical antipsychotic drug. Neuropsychopharmacology, 1996, 14(2), 83-85.
[http://dx.doi.org/10.1016/0893-133X(95)00197-L] [PMID: 8822530]
[123]
Wang, T.; Huang, X-G.; Liu, J.; Li, B.; Wu, J.J.; Chen, K.X.; Zhu, W.L.; Xu, X.Y.; Zeng, B.B. An efficient one-pot synthesis of substituted 2-aminothiophenes via three-component Gewald reaction catalyzed by L-Proline. Synlett, 2010, 9, 1351-1354.
[124]
Tayebee, R.; Javadi, F.; Argi, G. Easy single-step preparation of ZnO nano-particles by sedimentation method and studying their catalytic performance in the synthesis of 2-aminothiophenes via Gewald reaction. J. Mol. Catal. Chem., 2013, 368-369, 16-23.
[http://dx.doi.org/10.1016/j.molcata.2012.11.011]
[125]
Tayebee, R.; Ahmadi, S.J.; Rezaei Seresht, E.; Javadi, F.; Yasemi, M.A.; Hosseinpour, M.; Maleki, B. Commercial zinc oxide: A facile, efficient, and eco-friendly catalyst for the one-pot three-component synthesis of multisubstituted 2-aminothiophenes via the Gewald reaction. Ind. Eng. Chem. Res., 2012, 51(44), 14577-14582.
[http://dx.doi.org/10.1021/ie301737h]
[126]
Chen, L.H.; Chuang, Y.S.; Narhe, B.D.; Sun, C.M. A concise synthesis of 2-(2-aminothiophene)-benzimidazoles by one-pot multicomponent reaction. RSC Advances, 2013, 3(33), 13934.
[http://dx.doi.org/10.1039/c3ra41545g]
[127]
Sridhar, M.; Rao, R.M.; Baba, N.H.K.; Kumbhare, R.M. Microwave accelerated Gewald reaction: Synthesis of 2-aminothiophenes. Tetrahedron Lett., 2007, 48(18), 3171-3172.
[http://dx.doi.org/10.1016/j.tetlet.2007.03.052]
[128]
Hu, Y.; Chen, Z.C.; Le, Z.G.; Zheng, Q.G. Organic reactions in ionic liquids: Gewald synthesis of 2‐aminothiophenes catalyzed by ethylenediammonium diacetate. Synth. Commun., 2004, 34(20), 3801-3806.
[http://dx.doi.org/10.1081/SCC-200032526]
[129]
Kaki, V.R.; Akkinepalli, R.R.; Deb, P.K.; Pichika, M.R. Basic ionic liquid [bmIm]OH-mediated Gewald reaction as green protocol for the synthesis of 2-aminothiophenes. Synth. Commun., 2015, 45(1), 119-126.
[http://dx.doi.org/10.1080/00397911.2014.951898]
[130]
Li, P.; Du, J.; Xie, Y.; Tao, M.; Zhang, W.Q. Highly efficient polyacrylonitrile fiber catalysts functionalized by aminopyridines for the synthesis of 3-substituted 2-aminothiophenes in water. ACS Sustain. Chem. Eng., 2016, 4(3), 1139-1147.
[http://dx.doi.org/10.1021/acssuschemeng.5b01216]
[131]
Dos Santos, B.D.D.C.F.; Forero, J.S.B.; de Carvalho, E.M.; Jones, J.; da Silva, A.M. Solventlesssynthesis of 2-aminothiophenes via the Gewald reaction under ultrasonic conditions. Het. Lett., 2012, 2(1), 31-36.
[132]
Xu, F.; Li, Y.; Xu, F.; Ye, Q.; Han, L.; Gao, J.; Yu, W. Solvent-free synthesis of 2-aminothiophene-3-carbonitrile derivatives using high-speed vibration milling. J. Chem. Res., 2014, 38(7), 450-452.
[http://dx.doi.org/10.3184/174751914X14034491855728]
[133]
Shearouse, W.; Shumba, M.; Mack, J. Solvent-Free, One-step, one-pot Gewald reaction for alkyl-aryl ketones via mechanochemistry. Appl. Sci., 2014, 4(2), 171-179.
[http://dx.doi.org/10.3390/app4020171]
[134]
Mekheimer, R.A.; Ameen, M.A.; Sadek, K.U. Solar thermochemical reactions II1: Synthesis of 2-aminothiophenes via Gewald reaction induced by solar thermal energy. Chin. Chem. Lett., 2008, 19(7), 788-790.
[http://dx.doi.org/10.1016/j.cclet.2008.04.041]
[135]
Shaabani, A.; Hooshmand, S.E.; Afaridoun, H. A green chemical approach: A straightforward one-pot synthesis of 2-aminothiophene derivatives via Gewald reaction in deep eutectic solvents. Monatsh. Chem., 2017, 148(4), 711-716.
[http://dx.doi.org/10.1007/s00706-016-1787-6]
[136]
Yang, J.M.; Ji, S.J.; Gu, D.G.; Shen, Z.L.; Wang, S.Y. Ultrasound-irradiated Michael addition of amines to ferrocenylenones under solvent-free and catalyst-free conditions at room temperature. J. Organomet. Chem., 2005, 690(12), 2989-2995.
[http://dx.doi.org/10.1016/j.jorganchem.2005.03.030]
[137]
Mulakayala, N.; Pavan Kumar, G.; Rambabu, D.; Aeluri, M.; Basaveswara Rao, M.V.; Pal, M. A greener synthesis of 1,8-dioxo-octahydroxanthene derivatives under ultrasound. Tetrahedron Lett., 2012, 53(51), 6923-6926.
[http://dx.doi.org/10.1016/j.tetlet.2012.10.024]
[138]
Chen, Y.; Zhang, H.; Nan, F. Construction of a 3-amino-2-pyridone library by ring-closing metathesis of α-amino acrylamide. J. Comb. Chem., 2004, 6(5), 684-687.
[http://dx.doi.org/10.1021/cc049939x] [PMID: 15360199]
[139]
Wang, S.; Tan, T.; Li, J.; Hu, H. Highly efficient one-pot synthesis of 1, 2-dihydro-2-oxo-3-pyridine- carboxylate derivatives by FeCl3-promoted [3+3] annulation. Synlett, 2005, 17(17), 2658-2660.
[http://dx.doi.org/10.1055/s-2005-917092]
[140]
Soto, J. L.; Seoane, C.; Zamorano, P.; Rubio, M. J.; Monforte, A.; Quinteiro, M. Synthesis of heterocyclic compounds. Part 46. The reactions of malonamide and 2-cyanoacetamide with substituted propenones. J Chem Society, Perkin Transac. 1, 1985, 8, 1681-1685.
[141]
Azizi, N.; Yadollahy, Z.; Rahimzadeh-Oskooee, A. An atom-economic and odorless thia-Michael addition in a deep eutectic solvent. Tetrahedron Lett., 2014, 55(10), 1722-1725.
[http://dx.doi.org/10.1016/j.tetlet.2014.01.104]
[142]
Yadav, U.N.; Shankarling, G.S. Synergistic effect of ultrasound and deep eutectic solvent choline chloride-urea as versatile catalyst for rapid synthesis of β-functionalized ketonic derivatives. J. Mol. Liq., 2014, 195, 188-193.
[http://dx.doi.org/10.1016/j.molliq.2014.02.016]
[143]
Sanap, A.K.; Shankarling, G.S. Eco-friendly and recyclable media for rapid synthesis of tricyanovinylated aromatics using biocatalyst and deep eutectic solvent. Catal. Commun., 2014, 49, 58-62.
[http://dx.doi.org/10.1016/j.catcom.2014.01.031]
[144]
Chaudhary, P.M.; Tupe, S.G.; Deshpande, M.V. Chitin synthase inhibitors as antifungal agents. Mini Rev. Med. Chem., 2013, 13(2), 222-236.
[PMID: 22512590]
[145]
Nikalje, A.P.G.; Ghodke, M.S.; Kalam Khan, F.A.; Sangshetti, J.N. CAN catalyzed one-pot synthesis and docking study of some novel substituted imidazole coupled 1,2,4-triazole-5-carboxylic acids as antifungal agents. Chin. Chem. Lett., 2015, 26(1), 108-112.
[http://dx.doi.org/10.1016/j.cclet.2014.10.020]
[146]
Keshavarzipour, F.; Tavakol, H. Deep eutectic solvent as a recyclable catalyst for three-component synthesis of β-amino carbonyls. Catal. Lett., 2015, 145(4), 1062-1066.
[http://dx.doi.org/10.1007/s10562-014-1471-6]
[147]
Mentese, M.Y.; Bayrak, H.; Uygun, Y.; Mermer, A.; Ulker, S.; Karaoglu, S.A.; Demirbas, N. Microwave assisted synthesis of some hybrid molecules derived from nor-floxacin and investigation of their biological activities. Eur. J. Med. Chem., 2013, 67, 230-242.
[http://dx.doi.org/10.1016/j.ejmech.2013.06.045] [PMID: 23871903]
[148]
Mentese, M.; Demirci, S.; Basoglu-Ozdemir, S.; Demirbas, A.; Ulker, S.; Demirbas, N. Microwave assisted synthesis and antimicrobial activity evaluation of new hetero-functionalized norfloxacine derivatives. Lett. Drug Des. Discov., 2016, 13(10), 1076-1090.
[http://dx.doi.org/10.2174/1570180813666160712222922]
[149]
Kamble, S.; Kumbhar, A.; Rashinkar, G.; Barge, M.; Salunkhe, R. Ultrasound promoted efficient and green synthesis of β-amino carbonyl compounds in aqueous hydrotropic medium. Ultrason. Sonochem., 2012, 19(4), 812-815.
[http://dx.doi.org/10.1016/j.ultsonch.2011.12.001] [PMID: 22230101]
[150]
Mentese, M.; Demirbas, N.; Mermer, A.; Demirci, S.; Demirbas, A.; Ayaz, F.A. Novel azole-functionalited flouroquinolone hybrids: Design, conventional and microwave irradiated synthesis, evaluation as antibacterial and antioxidant agents. Lett. Drug Des. Discov., 2018, 15(1), 46-64.
[http://dx.doi.org/10.2174/1570180814666170823163540]
[151]
Itzel López-López, L.; Daniel Nery-Flores, S.; Sáenz-Galindo, A.; de Loera, D. Facile synthesis of aminonaphthoquinone Mannich bases by noncatalytic multicomponent reaction. Synth. Commun., 2017, 47(23), 2247-2253.
[http://dx.doi.org/10.1080/00397911.2017.1371760]
[152]
Mermer, A.; Demirci, S.; Ozdemir, S.B.; Demirbas, A.; Ulker, S.; Ayaz, F.A.; Aksakal, F.; Demirbas, N. Conventional and microwave irradiated synthesis, biological activity evaluation and molecular docking studies of highly substituted piperazine-azole hybrids. Chin. Chem. Lett., 2017, 28(5), 995-1005.
[http://dx.doi.org/10.1016/j.cclet.2016.12.012]
[153]
Song, G.; Peng, Y.; Dou, R.; Jiang, J. Dramatically accelerated synthesis of β-aminoketones via aqueous mannich reaction under combined microwave and ultrasound irradiation. Synlett, 2005, (14), 2245-2247.
[http://dx.doi.org/10.1055/s-2005-872246]
[154]
Demirci, S.; Aksakal, F.; Colak, N.; Ulker, S.; Demirbas, A.; Demirbas, N. Structure-based hybridization, conventional and microwave irradiated synthesis, biological evaluation and molecular docking studies of new compounds derived from thiomorpholin. Lett. Drug Des. Discov., 2017, 14(4), 444-463.
[http://dx.doi.org/10.2174/1570180813666161024165613]
[155]
Wu, Z.; Wang, G.; Li, Z.; Feng, E.; Liang, Y.; Zhan, H.; Liu, W. Solvent-free multi-component synthesis of unsymmetrical bis(indolyl)alkanes with Lewis acid-surfactant-SiO2 as nanocatalyst. Synth. Commun., 2021, 51(8), 1-10.
[http://dx.doi.org/10.1080/00397911.2021.1874016]
[156]
Demirci, S.; Mermer, A.; Ak, G.; Aksakal, F.; Colak, N.; Demirbas, A.; Ayaz, F.A.; Demirbas, N. Conventional and microwave-assisted total synthesis, antioxidant capacity, biological activity, and molecular docking studies of new hybrid compounds. J. Heterocycl. Chem., 2017, 54(3), 1785-1805.
[http://dx.doi.org/10.1002/jhet.2760]
[157]
Ozturkcan, S.; Turhan, K.; Turgut, Z. Ultrasound-assisted rapid synthesis of β-aminoketones with direct-type catalytic Mannich reaction using bismuth (III) triflate in aqueous media at room temperature. Chem. Pap., 2012, 66(1), 61-66.
[http://dx.doi.org/10.2478/s11696-011-0097-z]
[158]
Demirci, S.; Demirbaş, N.; Menteşe, M.; Özdemir, S.; Karaoğlu, Ş.A. Synthesis and antimicrobial activity evaluation of new norfloxacine-azole hybrids. Heterocycl. Commun., 2018, 24(6), 317-325.
[http://dx.doi.org/10.1515/hc-2018-0070]
[159]
Hosseinzadeh, R.; Lasemi, Z.; Oloub, M.; Pooryousef, M. A green protocol for the one-pot multicomponent Petasis boronic Mannich reaction using ball milling. J. Indian Chem. Soc., 2017, 14(2), 347-355.
[http://dx.doi.org/10.1007/s13738-016-0983-y]
[160]
Huan, P.; Yulin, H.; Rong, X.; Dong, F. Choline-based biodegradable ionic liquid catalyst for Mannich-type reaction. J. Chem. Sci., 2016, 128(12), 1855-1860.
[http://dx.doi.org/10.1007/s12039-016-1199-5]
[161]
Azizi, N.; Edrisi, M. Multicomponent reaction in deep eutectic solvent for synthesis of substituted 1-aminoalkyl-2-naphthols. Res. Chem. Intermed., 2017, 43(1), 379-385.
[http://dx.doi.org/10.1007/s11164-016-2628-2]
[162]
Gadilohar, B.L.; Kumbhar, H.S.; Shankarling, G.S. Choline peroxydisulfate oxidizing Bio-TSIL: Triple role player in the one-pot synthesis of Betti bases and gem-bisamides from aryl alcohols under solvent-free conditions. New J. Chem., 2015, 39(6), 4647-4657.
[http://dx.doi.org/10.1039/C4NJ02295E]
[163]
Patil, S.B.; Singh, P.R.; Surpur, M.P.; Samant, S.D. Ultrasound-promoted synthesis of 1-amidoalkyl-2-naphthols via a three-component condensation of 2-naphthol, ureas/amides, and aldehydes, catalyzed by sulfamic acid under ambient conditions. Ultrason. Sonochem., 2007, 14(5), 515-518.
[http://dx.doi.org/10.1016/j.ultsonch.2006.09.006] [PMID: 17145194]
[164]
Khan, A.T.; Ali, S.; Dar, A.A.; Lal, M. New three-component condensation reaction: Synthesis of 1-[(alkylthio) (phenyl) methyl]-naphthalene-2-ol catalyzed by bromo-dimethylsulfonium bromide (BDMS). Tetrahedron Lett., 2011, 52(40), 5157-5160.
[http://dx.doi.org/10.1016/j.tetlet.2011.07.113]
[165]
Mohana Roopan, S.; Patil, S.M.; Palaniraja, J. Recent synthetic scenario on imidazo [1,2-a]pyridines chemical intermediate. Res. Chem. Intermed., 2016, 42(4), 2749-2790.
[http://dx.doi.org/10.1007/s11164-015-2216-x]
[166]
Cooper, E.R.; Andrews, C.D.; Wheatley, P.S.; Webb, P.B.; Wormald, P.; Morris, R.E. Ionic liquids and eutectic mixtures as solvent and template in synthesis of zeolite analogues. Nature, 2004, 430(7003), 1012-1016.
[http://dx.doi.org/10.1038/nature02860] [PMID: 15329717]
[167]
Subramaniapillai, S.G. Mannich reaction: A versatile and convenient approach to bioactive skeletons. J. Chem. Sci., 2013, 125(3), 467-482.
[http://dx.doi.org/10.1007/s12039-013-0405-y]
[168]
Gupta, R.P.; Yadav, B.N.; Srivastava, A.K. Synthesis of some Mannich bases of isatin-3-(4′-phenyl-3′-thiosemicarbazone) and their antibacterial activity. Proc. Indian Acad. Sci. Sect. A Phys. Sci., 1985, 94(3), 475-480.
[http://dx.doi.org/10.1007/BF02867443]
[169]
Nagarajan, S.; Kandasamy, E. Reusable 1,2,4-triazolium based bronsted acidic room temperature ionic liquids as catalyst for Mannich base reaction. Catal. Lett., 2014, 144(9), 1507-1514.
[http://dx.doi.org/10.1007/s10562-014-1312-7]
[170]
Li, G.; Long, R.; Yang, S.; Zhang, L. Aluminium dodecatungstophosphate (AlPW12O40)-An efficient catalyst for three-component Mannich reaction in water. Kinet. Catal., 2011, 52(4), 559-563.
[http://dx.doi.org/10.1134/S0023158411040045]
[171]
Ghatole, A.M.; Lanjewar, K.R.; Gaidhane, M.K.; Hatzade, K.M. Evaluation of substituted methyl cyclohexanone hybrids for anti-tubercular, anti-bacterial and anti-fungal activity: Facile syntheses under catalysis by ionic liquids. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 151, 515-524.
[http://dx.doi.org/10.1016/j.saa.2015.06.035] [PMID: 26162339]
[172]
Keglevich, G.; Bálint, E. The Kabachnik-Fields reaction: Mechanism and synthetic use. Molecules, 2012, 17(11), 12821-12835.
[http://dx.doi.org/10.3390/molecules171112821] [PMID: 23117425]
[173]
De Clercq, E. Antivirals: Past, present and future. Biochem. Pharmacol., 2013, 85(6), 727-744.
[http://dx.doi.org/10.1016/j.bcp.2012.12.011] [PMID: 23270991]
[174]
Demkowicz, S.; Rachon, J.; Daśko, M.; Kozak, W. Selected organophosphorus compounds with biological activity. Applications in medicine. RSC Advances, 2016, 6(9), 7101-7112.
[http://dx.doi.org/10.1039/C5RA25446A]
[175]
Singh, B.K.; Walker, A. Microbial degradation of organophosphorus compounds. FEMS Microbiol. Rev., 2006, 30(3), 428-471.
[http://dx.doi.org/10.1111/j.1574-6976.2006.00018.x] [PMID: 16594965]
[176]
Marklund, A.; Andersson, B.; Haglund, P. Screening of organophosphorus compounds and their distribution in various indoor environments. Chemosphere, 2003, 53(9), 1137-1146.
[http://dx.doi.org/10.1016/S0045-6535(03)00666-0] [PMID: 14512118]
[177]
Liu, W.; Rogers, C.J.; Fisher, A.J.; Toney, M.D. Aminophosphonate inhibitors of dialkylglycine decarboxylase: Structural basis for slow binding inhibition. Biochemistry, 2002, 41(41), 12320-12328.
[http://dx.doi.org/10.1021/bi026318g] [PMID: 12369820]
[178]
Ghafuri, H.; Rashidizadeh, A.; Esmaili Zand, H.R. Highly efficient solvent free synthesis of α-aminophosphonates catalyzed by recyclable nano-magnetic sulfated zirconia (Fe3O4@ZrO2/SO42−). RSC Advances, 2016, 6(19), 16046-16054.
[http://dx.doi.org/10.1039/C5RA13173A]
[179]
Hudson, H.R.; Wardle, N.J.; Bligh, S.W.A.; Greiner, I.; Grun, A.; Keglevich, G. N-heterocyclic dronic acids: Applications and synthesis. Mini Rev. Med. Chem., 2012, 12(4), 313-325.
[http://dx.doi.org/10.2174/138955712799829285] [PMID: 22303942]
[180]
Sampath, C.; Harika, P.; Revaprasadu, N. Design, green synthesis, anti-microbial, and anti-oxidant activities of novel α -aminophosphonates via Kabachnik-Fields reaction. Phosphorus Sulfur Silicon Relat. Elem., 2016, 191(8), 1081-1085.
[http://dx.doi.org/10.1080/10426507.2015.1035379]
[181]
Ordóñez, M.; Arizpe, A.; Sayago, F.; Jiménez, A.; Cativiela, C. Practical and Efficient synthesis of α-aminophosphonic acids containing 1,2,3,4-tetrahydroquinoline or 1,2,3,4-tetrahydroisoquinoline heterocycles. Molecules, 2016, 21(9), 1140.
[http://dx.doi.org/10.3390/molecules21091140] [PMID: 27589713]
[182]
Shilpa, T.; Harry, N.; Shilpa, T.; Anilkumar, G. An overview of microwave-assisted kabachnik-fields reactions. ChemSelect, 2020, 5, 4422-4436.
[183]
Nazish, M.; Saravanan, S.; Khan, N.H.; Kumari, P.; Kureshy, R.I.; Abdi, S.H.R.; Bajaj, H.C. Magnetic Fe3O4 nanoparticle-supported phosphotungstic acid as a recyclable catalyst for the kabachnik-fields reaction of isatins, imines, and aldehydes under solvent-free conditions. ChemPlusChem, 2014, 79, 1753-1760.
[184]
Zefirov, N.S.; Matveeva, E.D. Catalytic Kabachnik-Fields reaction: New horizons for old reaction. ARKIVO, 2008, 2008, 1-17.
[185]
Shaibuna, M.; Sreekumar, K. Experimental investigation on the correlation between the physicochemical properties and catalytic activity of six dess in the Kabachnik-Fields reaction. ChemistrySelect, 2020, 5(43), 13454-13460.
[http://dx.doi.org/10.1002/slct.202003848]
[186]
Wang, L.; Zhu, K-Q.; Chen, Q.; He, M-Y. Facile and green synthesis of Hantzsch derivatives in deep eutectic solvent. Green Process Synthesis, 2014, 3(6), 1-5.
[187]
Xia, J.J.; Wang, G.W. One-pot synthesis and aromatization of 1, 4-dihydropyridines in refluxing water. Synthesis, 2005, 14, 2379-2383.
[188]
Song, G.; Wang, B.; Wu, X.; Kang, Y.; Yang, L. Montmorillonite K10 clay: An effective solid catalyst for one‐pot synthesis of polyhydroquinoline derivatives. Synth. Commun., 2005, 35(22), 2875-2880.
[http://dx.doi.org/10.1080/00397910500297255]
[189]
Surasani, R.; Kalita, D.; Rao, A.V.D.; Yarbagi, K.; Chandrasekhar, K.B. FeF3 as a novel catalyst for the synthesis of polyhydroquinoline derivatives via unsymmetrical Hantzsch reaction. J. Fluor. Chem., 2012, 135, 91-96.
[http://dx.doi.org/10.1016/j.jfluchem.2011.09.005]
[190]
Donelson, J.L.; Gibbs, R.A.; De, S.K. An efficient one-pot synthesis of polyhydroquinoline derivatives through the Hantzsch four component condensation. J. Mol. Catal. Chem., 2006, 256(1-2), 309-311.
[http://dx.doi.org/10.1016/j.molcata.2006.03.079]
[191]
Ko, S.; Yao, C.F. Ceric Ammonium Nitrate (CAN) catalyzes the one-pot synthesis of polyhydroquinoline via the Hantzsch reaction. Tetrahedron, 2006, 62(31), 7293-7299.
[http://dx.doi.org/10.1016/j.tet.2006.05.037]
[192]
Heydari, A.; Khaksar, S.; Tajbakhsh, M.; Bijanzadeh, H.R. One-step, synthesis of Hantzsch esters and polyhydroquinoline derivatives in fluoro alcohols. J. Fluor. Chem., 2009, 130(7), 609-614.
[http://dx.doi.org/10.1016/j.jfluchem.2009.03.014]
[193]
Rucins, M.; Plotniece, A.; Bernotiene, E.; Tsai, W.B.; Sobolev, A. Recent approaches to chiral 1,4-dihydropyridines and their fused analogues. Catalysts, 2020, 10(9), 1019.
[http://dx.doi.org/10.3390/catal10091019]
[194]
Filipan-Litvić, M.; Litvić, M.; Cepanec, I.; Vinković, V. Hantzsch synthesis of 2, 6-Dimethyl-3,5-dimethoxycarbonyl-4-(o-methoxyphenyl)-1,4-dihydropyridine; a novel cyclisation leading to an unusual formation of 1-Amino-2-methoxycarbonyl-3,5-bis(o-methoxyphenyl)-4-oxa-cyclohexan-1-ene. Molecules, 2007, 12(11), 2546-2558.
[http://dx.doi.org/10.3390/12112546] [PMID: 18065957]
[195]
Vanden Eynde, J.; Mayence, A. Synthesis and aromatization of Hantzsch 1,4 -dihydropyridines under microwave irradiation. An overview. Molecules, 2003, 8(4), 381-391.
[http://dx.doi.org/10.3390/80400381]
[196]
Mayurachayakul, P.; Pluempanupat, W.; Srisuwannaket, C.; Chantarasriwong, O. Four-component synthesis of polyhydroquinolines under catalyst- and solvent-free conventional heating conditions: Mechanistic studies. RSC Advances, 2017, 7(89), 56764-56770.
[http://dx.doi.org/10.1039/C7RA13120H]
[197]
Portilla-Zuñiga, O.M.; Sathicq, Á.G.; Martínez, J.J.; Fernandes, S.A.; Rezende, T.R.M.; Romanelli, G.P. Synthesis of Biginelli adducts using a Preyssler heteropolyacid in silica matrix from biomass building block. Sustain. Chem. Pharm., 2018, 10, 50-55.
[http://dx.doi.org/10.1016/j.scp.2018.09.002]
[198]
Zorkun, İ.S.; Saraç, S.; Çelebi, S.; Erol, K. Synthesis of 4-aryl-3, 4-dihydropyrimidin-2(1H)-thione derivatives as potential calcium channel blockers. Bioorg. Med. Chem., 2006, 14(24), 8582-8589.
[http://dx.doi.org/10.1016/j.bmc.2006.08.031] [PMID: 16971126]
[199]
de Fátima, Â.; Braga, T.C.; Neto, L.S.; Terra, B.S.; Oliveira, B.G.F.; da Silva, D.L.; Modolo, L.V. A mini-review on Biginelli adducts with notable pharmacological properties. J. Adv. Res., 2015, 6(3), 363-373.
[http://dx.doi.org/10.1016/j.jare.2014.10.006] [PMID: 26257934]
[200]
Neto, B.A.D.; Eberlin, M.N.; Sherwood, J. Solvent screening is not solvent effect: A review on the most neglected aspect of multicomponent reactions. Eur. J. Org. Chem., 2022, 2022(30), 8-16.
[http://dx.doi.org/10.1002/ejoc.202200172]
[201]
Liu, P.; Hao, J.W.; Mo, L.P.; Zhang, Z.H. Recent advances in the application of deep eutectic solvents as sustainable media as well as catalysts in organic reactions. RSC Advances, 2015, 5(60), 48675-48704.
[http://dx.doi.org/10.1039/C5RA05746A]
[202]
Lobo, H.R.; Singh, B.S.; Shankarling, G.S. Bio-compatible eutectic mixture for multi-component synthesis: A valuable acidic catalyst for synthesis of novel 2, 3-dihydroquinazolin-4(1H)-one derivatives. Catal. Commun., 2012, 27, 179-183.
[http://dx.doi.org/10.1016/j.catcom.2012.07.020]
[203]
Shahabi, D.; Tavakol, H. One-pot synthesis of quinoline derivatives using choline chloride/tin (II) chloride deep eutectic solvent as a green catalyst. J. Mol. Liq., 2016, 220, 324-328.
[http://dx.doi.org/10.1016/j.molliq.2016.04.094]
[204]
Gore, S.; Baskaran, S.; Koenig, B. Efficient synthesis of 3, 4-dihydropyrimidin-2-ones in low melting tartaric acid-urea mixtures. Green Chem., 2011, 13(4), 1009-1013.
[http://dx.doi.org/10.1039/c1gc00009h]
[205]
Azizi, N.; Dezfuli, S.; Hahsemi, M.M. Eutectic salt catalyzed environmentally benign and highly efficient Biginelli reaction. Sci. World J., 2012, 2012, 908702.
[http://dx.doi.org/10.1100/2012/908702] [PMID: 22649326]
[206]
Khumalo, M.; Maddila, S.N.; Maddila, S.; Jonnalagadda, S.B. Green catalyst-free one-pot synthesis of novel tetrahydropyridine-3-carboxamides by microwave-assisted approach. J. Chem. Sci., 2020, 132(1), 36.
[http://dx.doi.org/10.1007/s12039-019-1725-3]
[207]
Chidurala, P.; Jetti, V.; Pagadala, R.; Meshram, J.S.; Jonnalagadda, S. Eco-Efficient Synthesis of New Pyrido [2, 3-c] Coumarin scaffolds under sonochemical method. J. Heterocycl. Chem., 2016, 53(2), 467-472.
[http://dx.doi.org/10.1002/jhet.2319]
[208]
Bretanha, L.C.; Teixeira, V.E.; Ritter, M.; Siqueira, G.M.; Cunico, W.; Pereira, C.M.P.; Freitag, R.A. Ultrasound-promoted synthesis of 3-trichloromethyl-5-alkyl (aryl)-1,2,4-oxadiazoles. Ultrason. Sonochem., 2011, 18(3), 704-707.
[http://dx.doi.org/10.1016/j.ultsonch.2010.09.016] [PMID: 21115383]
[209]
Wang, Y.; Cheng, H.; He, J.R.; Yao, Q.X.; Li, L.L.; Liang, Z.H.; Li, X. Enzymes-catalyzed knoevenagel condensation promoted by ionic liquid and deep eutectic solvent. Catal. Lett., 2022, 152(4), 1215-1223.
[http://dx.doi.org/10.1007/s10562-021-03718-1]
[210]
Hayashi, Y.; Tsuboi, W.; Shoji, M.; Suzuki, N. Application of high pressure induced by water-freezing to the direct catalytic asymmetric three-component List-Barbas-Mannich reaction. J. Am. Chem. Soc., 2003, 125(37), 11208-11209.
[http://dx.doi.org/10.1021/ja0372513] [PMID: 16220937]
[211]
Hayashi, Y.; Urushima, T.; Tsuboi, W.; Shoji, M. L-Proline-catalyzed enantioselective one-pot cross-Mannich reaction of aldehydes. Nat. Protoc., 2007, 2(1), 113-118.
[http://dx.doi.org/10.1038/nprot.2006.472] [PMID: 17401345]
[212]
Wang, Y.; Yao, Q.X.; He, J.R.; Liang, Z.H.; Li, X.; Cheng, H.; Li, L.L. L-proline-catalyzed Knoevenagel reaction promoted by choline chloride-based deep eutectic solvents. Biomass Convers. Biorefin., 2022, 12(S1), 87-93.
[http://dx.doi.org/10.1007/s13399-021-01747-9]
[213]
Karade, N.N.; Gampawar, S.V.; Shinde, S.V.; Jadhav, W.N. L-proline catalyzed solvent-free Knoevenagel condensation for the synthesis of 3-substituted coumarins. Chin. J. Chem., 2007, 25(11), 1686-1689.
[http://dx.doi.org/10.1002/cjoc.200790311]
[214]
Al-Momani, L.A.; Lorbach, V.; Detry, J.; Geilenkirchen, P.; Mller, M. β- and σ-amino acids (2, 3- and 3,4-trans-CHA) as catalysts in Knoevenagel condensation and asymmetric aldol reactions. ARKIVOC, 2016, 6, 172-183.
[215]
Karrouchi, K.; Radi, S.; Ramli, Y.; Taoufik, J.; Mabkhot, Y.; Al-aizari, F.; Ansar, M. Synthesis and pharmacological activities of pyrazole derivatives: A review. Molecules, 2018, 23(1), 134.
[http://dx.doi.org/10.3390/molecules23010134] [PMID: 29329257]
[216]
Manjunatha, U.H.; Vinayak, S.; Zambriski, J.A.; Chao, A.T.; Sy, T.; Noble, C.G.; Bonamy, G.M.C.; Kondreddi, R.R.; Zou, B.; Gedeck, P.; Brooks, C.F.; Herbert, G.T.; Sateriale, A.; Tandel, J.; Noh, S.; Lakshminarayana, S.B.; Lim, S.H.; Goodman, L.B.; Bodenreider, C.; Feng, G.; Zhang, L.; Blasco, F.; Wagner, J.; Leong, F.J.; Striepen, B.; Diagana, T.T. A Cryptosporidium PI(4)K inhibitor is a drug candidate for cryptosporidiosis. Nature, 2017, 546(7658), 376-380.
[http://dx.doi.org/10.1038/nature22337] [PMID: 28562588]
[217]
Al-Tel, T.H.; Al-Qawasmeh, R.A.; Zaarour, R. Design, synthesis and in vitro antimicrobial evaluation of novel Imidazo[1,2-a]pyridine and imidazo[2,1-b][1,3]benzothiazole motifs. Eur. J. Med. Chem., 2011, 46(5), 1874-1881.
[http://dx.doi.org/10.1016/j.ejmech.2011.02.051] [PMID: 21414694]
[218]
Moraski, G.C.; Markley, L.D.; Hipskind, P.A.; Boshoff, H.; Cho, S.; Franzblau, S.G.; Miller, M.J. Advent of Imidazo[1,2- a]pyridine-3-carboxamides with potent multi- and extended drug resistant antituberculosis activity. ACS Med. Chem. Lett., 2011, 2(6), 466-470.
[http://dx.doi.org/10.1021/ml200036r] [PMID: 21691438]
[219]
Chezal, J.M.; Paeshuyse, J.; Gaumet, V.; Canitrot, D.; Maisonial, A.; Lartigue, C.; Gueiffier, A.; Moreau, E.; Teulade, J.C.; Chavignon, O.; Neyts, J. Synthesis and antiviral activity of an imidazo[1,2-a]pyrrolo[2,3-c]pyridine series against the bovine viral diarrhea virus. Eur. J. Med. Chem., 2010, 45(5), 2044-2047.
[http://dx.doi.org/10.1016/j.ejmech.2010.01.023] [PMID: 20149501]
[220]
Moraski, G.C.; Markley, L.D.; Chang, M.; Cho, S.; Franzblau, S.G.; Hwang, C.H.; Boshoff, H.; Miller, M.J. Generation and exploration of new classes of antitubercular agents: The optimization of oxazolines, oxazoles, thiazolines, thiazoles to imidazo[1,2-a]pyridines and isomeric 5,6-fused scaffolds. Bioorg. Med. Chem., 2012, 20(7), 2214-2220.
[http://dx.doi.org/10.1016/j.bmc.2012.02.025] [PMID: 22391032]
[221]
Al-Tel, T.H.; Al-Qawasmeh, R.A. Post Groebke-Blackburn multicomponent protocol: Synthesis of new polyfunctional imidazo[1,2-a]pyridine and imidazo[1,2-a]pyrimidine derivatives as potential antimicrobial agents. Eur. J. Med. Chem., 2010, 45(12), 5848-5855.
[http://dx.doi.org/10.1016/j.ejmech.2010.09.049] [PMID: 20934788]
[222]
Matsumoto, S.; Miyamoto, N.; Hirayama, T.; Oki, H.; Okada, K.; Tawada, M.; Iwata, H.; Nakamura, K.; Yamasaki, S.; Miki, H.; Hori, A.; Imamura, S. Structure-based design, synthesis, and evaluation of imidazo[1,2-b]pyridazine and imidazo[1,2-a]pyridine derivatives as novel dual c-Met and VEGFR2 kinase inhibitors. Bioorg. Med. Chem., 2013, 21(24), 7686-7698.
[http://dx.doi.org/10.1016/j.bmc.2013.10.028] [PMID: 24216091]
[223]
Ducray, R.; Jones, C.D.; Jung, F.H.; Simpson, I.; Curwen, J.; Pass, M. Novel imidazo[1,2-a]pyridine based inhibitors of the IGF-1 receptor tyrosine kinase: Optimization of the aniline. Bioorg. Med. Chem. Lett., 2011, 21(16), 4702-4704.
[http://dx.doi.org/10.1016/j.bmcl.2011.06.090] [PMID: 21764307]
[224]
Terao, Y.; Suzuki, H.; Yoshikawa, M.; Yashiro, H.; Takekawa, S.; Fujitani, Y.; Okada, K.; Inoue, Y.; Yamamoto, Y.; Nakagawa, H.; Yao, S.; Kawamoto, T.; Uchikawa, O. Design and biological evaluation of imidazo[1,2-a]pyridines as novel and potent ASK1 inhibitors. Bioorg. Med. Chem. Lett., 2012, 22(24), 7326-7329.
[http://dx.doi.org/10.1016/j.bmcl.2012.10.084] [PMID: 23147077]
[225]
Ulloora, S.; Shabaraya, R.; Adhikari, A.V. Facile synthesis of new imidazo[1,2-a]pyridines carrying 1,2,3-triazoles via click chemistry and their antiepileptic studies. Bioorg. Med. Chem. Lett., 2013, 23(11), 3368-3372.
[http://dx.doi.org/10.1016/j.bmcl.2013.03.086] [PMID: 23623419]
[226]
Díaz-Ortiz, A.; de la Hoz, A.; Langa, F. Microwave irradiation in solvent-free conditions: An eco-friendly methodology to prepare indazoles, pyrazolopyridines and bipyrazoles by cycloaddition reactions. Green Chem., 2000, 2(4), 165-172.
[http://dx.doi.org/10.1039/b003752o]
[227]
Aggarwal, R.; Kumar, S. 5-Aminopyrazole as precursor in design and synthesis of fused pyrazoloazines. Beilstein J. Org. Chem., 2018, 14, 203-242.
[http://dx.doi.org/10.3762/bjoc.14.15] [PMID: 29441143]
[228]
Dabiri, M.; Salehi, P.; Koohshari, M.; Hajizadeh, Z. MaGee, D.I An efficient synthesis of tetrahydropyrazolopyridine derivatives by a one-pot tandem multi-component reaction in a green media. ARKIVOC, 2014, 4, 204-214.
[229]
Shabalala, N.G.; Pagadala, R.; Jonnalagadda, S.B. Ultrasonic-accelerated rapid protocol for the improved synthesis of pyrazoles. Ultrason. Sonochem., 2015, 27, 423-429.
[http://dx.doi.org/10.1016/j.ultsonch.2015.06.005] [PMID: 26186863]
[230]
Sadeghzadeh, S.M. A heteropolyacid-based ionic liquid immobilized onto magnetic fibrous nano-silica as robust and recyclable heterogeneous catalysts for the synthesis of tetrahydrodipyrazolopyridines in water. RSC Advances, 2016, 6(79), 75973-75980.
[http://dx.doi.org/10.1039/C6RA15766A]
[231]
Vanegas, S.; Rodríguez, D.; Ochoa-Puentes, C. An efficient and eco-friendly one-pot synthesis of pyrazolopyridines mediated by choline chloride/urea eutectic mixture. ChemistrySelect, 2019, 4(11), 3131-3134.
[http://dx.doi.org/10.1002/slct.201900314]
[232]
Azizi, N.; Dezfooli, S. Catalyst-free synthesis of imidazo [1, 2-a] pyridines via Groebke multicomponent reaction. Environ. Chem. Lett., 2016, 14(2), 201-206.
[http://dx.doi.org/10.1007/s10311-015-0541-3]
[233]
Khandelwal, S.; Tailor, Y.G.; Rushell, E.; Kumar, M. Advances in Green and Sustainable Chemistry. Green App. Med. Chem. Sus. Drug Des., 2023, 2023, 245-352.
[234]
Prachayasittikul, S.; Pingaew, R.; Worachartcheewan, A.; Sinthupoom, N.; Prachayasittikul, V.; Ruchirawat, S.; Prachayasittikul, V. Roles of pyridine and pyrimidine derivatives as privileged scaffolds in anticancer agents. Mini Rev. Med. Chem., 2017, 17(10), 869-901.
[PMID: 27670581]
[235]
Fry, D.W.; Harvey, P.J.; Keller, P.R.; Elliott, W.L.; Meade, M.; Trachet, E.; Albassam, M.; Zheng, X.; Leopold, W.R.; Pryer, N.K.; Toogood, P.L. Specific inhibition of cyclin-dependent kinase 4/6 by PD 0332991 and associated antitumor activity in human tumor xenografts. Mol. Cancer Ther., 2004, 3(11), 1427-1438.
[http://dx.doi.org/10.1158/1535-7163.1427.3.11] [PMID: 15542782]
[236]
Yu, P.; Laird, A.D.; Du, X.; Wu, J.; Won, K.A.; Yamaguchi, K.; Hsu, P.P.; Qian, F.; Jaeger, C.T.; Zhang, W.; Buhr, C.A.; Shen, P.; Abulafia, W.; Chen, J.; Young, J.; Plonowski, A.; Yakes, F.M.; Chu, F.; Lee, M.; Bentzien, F.; Lam, S.T.; Dale, S.; Matthews, D.J.; Lamb, P.; Foster, P. Characterization of the activity of the PI3K/mTOR inhibitor XL765 (SAR245409) in tumor models with diverse genetic alterations affecting the PI3K pathway. Mol. Cancer Ther., 2014, 13(5), 1078-1091.
[http://dx.doi.org/10.1158/1535-7163.MCT-13-0709] [PMID: 24634413]
[237]
Ribble, W.; Hill, W.E.; Ochsner, U.A.; Jarvis, T.C.; Guiles, J.W.; Janjic, N.; Bullard, J.M. Discovery and analysis of 4H-pyridopyrimidines, a class of selective bacterial protein synthesis inhibitors. Antimicrob. Agents Chemother., 2010, 54(11), 4648-4657.
[http://dx.doi.org/10.1128/AAC.00638-10] [PMID: 20696870]
[238]
Rosowsky, A.; Mota, C.E.; Queener, S.F. Synthesis and antifolate activity of 2,4-diamino-5,6,7,8-tetrahydropyrido[4,3- d]pyrimidine analogues of trimetrexate and piritrexim. J. Heterocycl. Chem., 1995, 32(1), 335-340.
[http://dx.doi.org/10.1002/jhet.5570320155]
[239]
Nofal, Z.M.; Fahmy, H.H.; Zarea, E.S.; El-Eraky, W. Synthesis of new pyrimidine derivatives with evaluation of their anti-inflammatory and analgesic activities. Acta Pol. Pharm., 2011, 68(4), 507-517.
[PMID: 21796933]
[240]
Singh, G.; Singh, G.; Yadav, A.K.; Mishra, A.K. Synthesis and antimicrobial evaluation of some new pyrido [2,3-d]pyrimidines and their ribofuranosides. Indian J. Chem. Sect. B Org. Chem. Incl. Med. Chem., 2002, 41, 430-432.
[241]
Liu, K.K.C.; Huang, X.; Bagrodia, S.; Chen, J.H.; Greasley, S.; Cheng, H.; Sun, S.; Knighton, D.; Rodgers, C.; Rafidi, K.; Zou, A.; Xiao, J.; Yan, S. Quinazolines with intra-Molecular Hydrogen Bonding Scaffold (iMHBS) as PI3K/mTOR dual inhibitors. Bioorg. Med. Chem. Lett., 2011, 21(4), 1270-1274.
[http://dx.doi.org/10.1016/j.bmcl.2010.12.026] [PMID: 21269826]
[242]
Wei, L.; Malhotra, S.V. Synthesis and cytotoxicity evaluation of novel pyrido [3,4-d]pyrimidine derivatives as potential anticancer agents. Med. Chem. Comm, 2012, 3(10), 1250-1257.
[http://dx.doi.org/10.1039/c2md20097j] [PMID: 25429348]
[243]
Bennett, L.R.; Blankley, C.J.; Fleming, R.W.; Smith, R.D.; Tessman, D.K. Antihypertensive activity of 6-arylpyrido [2,3-d]pyrimidin-7-amine derivatives. J. Med. Chem., 1981, 24(4), 382-389.
[http://dx.doi.org/10.1021/jm00136a006] [PMID: 7265125]
[244]
Agarwal, A. Ramesh; Ashutosh; Goyal, N.; Chauhan, P.M.S.; Gupta, S. Dihydropyrido[2,3-d]pyrimidines as a new class of antileishmanial agents. Bioorg. Med. Chem., 2005, 13(24), 6678-6684.
[http://dx.doi.org/10.1016/j.bmc.2005.07.043] [PMID: 16126395]
[245]
Mahmoud, M.R.; El-Bordany, E.A.A.; Hassan, N.F.; Abu El-Azm, F.S.M. Utility of Nitriles in Synthesis of Pyrido[2,3-d]pyrimidines, Thiazolo[3,2-a]pyridines, Pyrano[2,3-b]benzopyrrole, and Pyrido[2,3-d]benzopyrroles. Phosphorus Sulfur Silicon Relat. Elem., 2007, 182(11), 2507-2521.
[http://dx.doi.org/10.1080/10426500701506465]
[246]
Bulicz, J.; Bertarelli, D.C.G.; Baumert, D.; Fülle, F.; Müller, C.E.; Heber, D. Synthesis and pharmacology of pyrido[2,3-d]pyrimidinediones bearing polar substituents as adenosine receptor antagonists. Bioorg. Med. Chem., 2006, 14(8), 2837-2849.
[http://dx.doi.org/10.1016/j.bmc.2005.12.008] [PMID: 16377196]
[247]
DeGraw, J.I.; Christie, P.H.; Colwell, W.T.; Sirotnak, F.M. Synthesis and antifolate properties of 5, 10-ethano-5,10-dideazaaminopterin. J. Med. Chem., 1992, 35(2), 320-324.
[http://dx.doi.org/10.1021/jm00080a017] [PMID: 1732549]
[248]
Saurat, T.; Buron, F.; Rodrigues, N.; de Tauzia, M.L.; Colliandre, L.; Bourg, S.; Bonnet, P.; Guillaumet, G.; Akssira, M.; Corlu, A.; Guillouzo, C.; Berthier, P.; Rio, P.; Jourdan, M.L.; Bénédetti, H.; Routier, S. Design, synthesis, and biological activity of pyridopyrimidine scaffolds as novel PI3K/mTOR dual inhibitors. J. Med. Chem., 2014, 57(3), 613-631.
[http://dx.doi.org/10.1021/jm401138v] [PMID: 24345273]
[249]
Font, M.; González, Á.; Palop, J.A.; Sanmartín, C. New insights into the structural requirements for pro-apoptotic agents based on 2,4-diaminoquinazoline, 2,4-diaminopyrido[2,3-d]pyrimidine and 2,4-diaminopyrimidine derivatives. Eur. J. Med. Chem., 2011, 46(9), 3887-3899.
[http://dx.doi.org/10.1016/j.ejmech.2011.05.060] [PMID: 21700369]
[250]
Pastor, A.; Alajarin, R.; Vaquero, J.J.; Alvarez-Builla, J.; Fau de Casa-Juana, M.; Sunkel, C.; Priego, J.G.; Fonseca, I.; Sanz-Aparicio, J. Synthesis and structure of new pyrido[2,3-d]pyrimidine derivatives with calcium channel antagonists activity. Tetrahedron, 1994, 50, 8085-8098.
[http://dx.doi.org/10.1016/S0040-4020(01)85291-1]
[251]
Zhang, H.J.; Wang, S.B.; Wen, X.; Li, J.Z.; Quan, Z.S. Design, synthesis, and evaluation of the anticonvulsant and antidepressant activities of pyrido [2,3-d]pyrimidine derivatives. Med. Chem. Res., 2016, 25(7), 1287-1298.
[http://dx.doi.org/10.1007/s00044-016-1559-1]
[252]
Fares, M.; Abou-Seri, S.M.; Abdel-Aziz, H.A.; Abbas, S.E.S.; Youssef, M.M.; Eladwy, R.A. Synthesis and antitumor activity of pyrido [2,3-d]pyrimidine and pyrido[2,3-d] [1,2,4]triazolo[4,3-a]pyrimidine derivatives that induce apoptosis through G1 cell-cycle arrest. Eur. J. Med. Chem., 2014, 83, 155-166.
[http://dx.doi.org/10.1016/j.ejmech.2014.06.027] [PMID: 24956552]
[253]
Gineinah, M.M.; Nasr, M.N.A.; Badr, S.M.I.; El-Husseiny, W.M. Synthesis and antitumor activity of new pyrido [2,3-d]pyrimidine derivatives. Med. Chem. Res., 2013, 22(8), 3943-3952.
[http://dx.doi.org/10.1007/s00044-012-0396-0]
[254]
Naresh Kumar, R.; Jitender Dev, G.; Ravikumar, N.; Krishna Swaroop, D.; Debanjan, B.; Bharath, G.; Narsaiah, B.; Nishant Jain, S.; Gangagni Rao, A. Synthesis of novel triazole/isoxazole functionalized 7-(trifluoromethyl)pyrido[2,3- d]pyrimidine derivatives as promising anticancer and antibacterial agents. Bioorg. Med. Chem. Lett., 2016, 26(12), 2927-2930.
[http://dx.doi.org/10.1016/j.bmcl.2016.04.038] [PMID: 27130357]
[255]
DeGoey, D.A.; Betebenner, D.A.; Grampovnik, D.J.; Liu, D.; Pratt, J.K.; Tufano, M.D.; He, W.; Krishnan, P.; Pilot-Matias, T.J.; Marsh, K.C.; Molla, A.; Kempf, D.J.; Maring, C.J. Discovery of pyrido[2,3-d]pyrimidine-based inhibitors of HCV NS5A. Bioorg. Med. Chem. Lett., 2013, 23(12), 3627-3630.
[http://dx.doi.org/10.1016/j.bmcl.2013.04.009] [PMID: 23642966]
[256]
Cheung, A.W.H.; Banner, B.; Bose, J.; Kim, K.; Li, S.; Marcopulos, N.; Orzechowski, L.; Sergi, J.A.; Thakkar, K.C.; Wang, B.B.; Yun, W.; Zwingelstein, C.; Berthel, S.; Olivier, A.R. 7-Phenyl-pyrido[2,3-d]pyrimidine-2,4-diamines: Novel and highly selective protein tyrosine phosphatase 1B inhibitors. Bioorg. Med. Chem. Lett., 2012, 22(24), 7518-7522.
[http://dx.doi.org/10.1016/j.bmcl.2012.10.035] [PMID: 23122867]
[257]
Ibrahim, D.A.; Ismail, N.S.M. Design, synthesis and biological study of novel pyrido [2,3-d]pyrimidine as anti-proliferative CDK2 inhibitors. Eur. J. Med. Chem., 2011, 46(12), 5825-5832.
[http://dx.doi.org/10.1016/j.ejmech.2011.09.041] [PMID: 22000924]
[258]
Malagu, K.; Duggan, H.; Menear, K.; Hummersone, M.; Gomez, S.; Bailey, C.; Edwards, P.; Drzewiecki, J.; Leroux, F.; Quesada, M.J.; Hermann, G.; Maine, S.; Molyneaux, C.A.; Le Gall, A.; Pullen, J.; Hickson, I.; Smith, L.; Maguire, S.; Martin, N.; Smith, G.; Pass, M. The discovery and optimisation of pyrido[2,3-d]pyrimidine-2,4-diamines as potent and selective inhibitors of mTOR kinase. Bioorg. Med. Chem. Lett., 2009, 19(20), 5950-5953.
[http://dx.doi.org/10.1016/j.bmcl.2009.08.038] [PMID: 19762236]
[259]
Saikia, L.; Das, B.; Bharali, P.; Thakur, A.J. A convenient synthesis of novel 5-aryl-pyrido [2,3-d]pyrimidines and screening of their preliminary antibacterial properties. Tetrahedron Lett., 2014, 55(10), 1796-1801.
[http://dx.doi.org/10.1016/j.tetlet.2014.01.128]
[260]
Abu-Zied, K.M.; Mohamed, T.K.; Al-Duiaj, O.K.; Zaki, M.E.A. A simple approach to fused pyrido[2,3- d]pyrimidines incorporating khellinone and trimethoxyphenyl moieties as new scaffolds for antibacterial and antifungal agents. Heterocycl. Commun., 2014, 20(2), 93-102.
[http://dx.doi.org/10.1515/hc-2013-0199]
[261]
Walker, B.; Barrett, S.; Polasky, S.; Galaz, V.; Folke, C.; Engström, G.; Ackerman, F.; Arrow, K.; Carpenter, S.; Chopra, K.; Daily, G.; Ehrlich, P.; Hughes, T.; Kautsky, N.; Levin, S.; Mäler, K.G.; Shogren, J.; Vincent, J.; Xepapadeas, T.; de Zeeuw, A. Environment. Looming global-scale failures and missing institutions. Science, 2009, 325(5946), 1345-1346.
[http://dx.doi.org/10.1126/science.1175325] [PMID: 19745137]
[262]
Long, K.S.; Vester, B. Resistance to linezolid caused by modifications at its binding site on the ribosome. Antimicrob. Agents Chemother., 2012, 56(2), 603-612.
[http://dx.doi.org/10.1128/AAC.05702-11] [PMID: 22143525]
[263]
Biggs-Houck, J.E.; Younai, A.; Shaw, J.T. Recent advances in multicomponent reactions for diversity-oriented synthesis. Curr. Opin. Chem. Biol., 2010, 14(3), 371-382.
[http://dx.doi.org/10.1016/j.cbpa.2010.03.003] [PMID: 20392661]
[264]
Shaker, R.M.; Elrady, M.A.; Sadek, K.U. Synthesis, reactivity, and biological activity of 5-aminouracil and its derivatives. Mol. Divers., 2016, 20(1), 153-183.
[http://dx.doi.org/10.1007/s11030-015-9595-1] [PMID: 25926388]
[265]
Aryan, R.; Beyzaei, H.; Nojavan, M.; Pirani, F.; Samareh Delarami, H.; Sanchooli, M. Expedient multicomponent synthesis of a small library of some novel highly substituted pyrido[2,3-d]pyrimidine derivatives mediated and promoted by deep eutectic solvent and in vitro and quantum mechanical study of their antibacterial and anti-fungal activities. Mol. Divers., 2019, 23(1), 93-105.
[http://dx.doi.org/10.1007/s11030-018-9859-7] [PMID: 30027387]
[266]
Sabour, B.; Peyrovi, M.H.; Hajimohammadi, M. Al-HMS-20 catalyzed synthesis of pyrano [2,3-d]pyrimidines and pyrido[2,3-d]pyrimidines via three-component reaction. Res. Chem. Intermed., 2015, 41(3), 1343-1350.
[http://dx.doi.org/10.1007/s11164-013-1277-y]
[267]
Rad, A.M.; Mokhtary, M. Efficient one-pot synthesis of pyrido [2,3-d]pyrimidines catalyzed by nanocrystalline MgO in water. Int. Nano Lett., 2015, 5(2), 109-123.
[http://dx.doi.org/10.1007/s40089-015-0145-8]
[268]
Bhattacharyya, P.; Paul, S.; Das, A.R. Facile synthesis of pyridopyrimidine and coumarin fused pyridine libraries over a Lewis base-surfactant-combined catalyst TEOA in aqueous medium. RSC Advances, 2013, 3(10), 3203-3208.
[http://dx.doi.org/10.1039/c3ra23254a]
[269]
Abdolmohammadi, S.; Balalaie, S. A clean procedure for synthesis of pyrido[d]pyrimidine derivatives under solvent-free conditions catalyzed by ZrO(2) nanoparticles. Comb. Chem. High Throughput Screen., 2012, 15(5), 395-399.
[http://dx.doi.org/10.2174/138620712800194486] [PMID: 22263865]
[270]
Abdolmohammadi, S.; Balalaie, S. An efficient synthesis of pyrido[2,3-d]pyrimidine derivatives via one-pot three-component reaction in aqueous media. Int. J. Org. Chem., 2012, 2(1), 7-14.
[http://dx.doi.org/10.4236/ijoc.2012.21002]
[271]
Kidwai, M.; Jain, A.; Bhardwaj, S. Magnetic nanoparticles catalyzed synthesis of diverse N-Heterocycles. Mol. Divers., 2012, 16(1), 121-128.
[http://dx.doi.org/10.1007/s11030-011-9336-z] [PMID: 22057791]
[272]
Geies, A.A. Synthesis of pyrido[2,3-d]pyrimidines via the reaction of activated nitrites with aminopyrimidines. J. Chin. Chem. Soc., 1999, 46(1), 69-75.
[http://dx.doi.org/10.1002/jccs.199900009]
[273]
Wang, X.S.; Zeng, Z.S.; Shi, D.Q.; Tu, S.J.; Wei, X.Y.; Zong, Z.M. Three component one-pot synthesis of pyrido[2,3-d]pyrimidine derivatives catalyzed by KF-alumina. Synth. Commun., 2006, 26, 256-259.
[274]
Nemati, F.; Saeedirad, R. Nano-Fe3O4 encapsulated-silica particles bearing sulfonic acid groups as a magnetically separable catalyst for green and efficient synthesis of functionalized pyrimido[4,5-b]quinolines and indeno fused pyrido[2,3-d]pyrimidines in water. Chin. Chem. Lett., 2013, 24(5), 370-372.
[http://dx.doi.org/10.1016/j.cclet.2013.02.018]
[275]
Kakade, G.; Madje, B.; Ware, M.; Balaskar, R.; Shingare, M.S. Solvent-free one-pot synthesis of polyhydropyridopyrimidine derivatives via Hantzsch condensation using sulphamic acid catalyst. Org. Chem. Indian J., 2007, 3, 104-106.
[276]
Verma, S.; Jain, S.L. Thiourea dioxide in water as a recyclable catalyst for the synthesis of structurally diverse dihydropyrido [2,3-d]pyrimidine-2,4-diones. Tet. Lett, 2012, 53, 2595-2600.
[277]
Abdolmohammadi, S.; Afsharpour, M. Facile one-pot synthesis of pyrido[2,3-d]pyrimidine derivatives over ZrO2 nanoparticles catalyst. Chin. Chem. Lett., 2012, 23(3), 257-260.
[http://dx.doi.org/10.1016/j.cclet.2012.01.001]
[278]
Abbott, A.P.; Boothby, D.; Capper, G.; Davies, D.L.; Rasheed, R.K. Deep eutectic solvents formed between choline chloride and carboxylic acids: Versatile alternatives to ionic liquids. J. Am. Chem. Soc., 2004, 126(29), 9142-9147.
[http://dx.doi.org/10.1021/ja048266j] [PMID: 15264850]
[279]
Alonso, D.A.; Baeza, A.; Chinchilla, R.; Guillena, G.; Pastor, I.M.; Ramón, D.J. Deep eutectic solvents: The organic reaction medium of the century. Eur. J. Org. Chem., 2016, 2016(4), 612-632.
[http://dx.doi.org/10.1002/ejoc.201501197]
[280]
Azizi, N.; Haghayegh, M.S. Greener and additive-free reactions in deep eutectic solvent: One-Pot, three-component synthesis of highly substituted pyridines. ChemistrySelect, 2017, 2(28), 8870-8873.
[http://dx.doi.org/10.1002/slct.201701682]
[281]
Shukla, N.M.; Salunke, D.B.; Yoo, E.; Mutz, C.A.; Balakrishna, R.; David, S.A. Antibacterial activities of Groebke-Blackburn-Bienaymé-derived imidazo[1,2-a]pyridin-3-amines. Bioorg. Med. Chem., 2012, 20(19), 5850-5863.
[http://dx.doi.org/10.1016/j.bmc.2012.07.052] [PMID: 22925449]
[282]
Starrett, J.E., Jr; Montzka, T.A.; Crosswell, A.R.; Cavanagh, R.L. Synthesis and biological activity of 3-substituted imidazo[1,2-a]pyridines as antiulcer agents. J. Med. Chem., 1989, 32(9), 2204-2210.
[http://dx.doi.org/10.1021/jm00129a028] [PMID: 2769690]
[283]
Gueiffier, A.; Mavel, S.; Lhassani, M.; Elhakmaoui, A.; Snoeck, R.; Andrei, G.; Chavignon, O.; Teulade, J.C.; Witvrouw, M.; Balzarini, J.; De Clercq, E.; Chapat, J.P. Synthesis of imidazo[1,2-a]pyridines as antiviral agents. J. Med. Chem., 1998, 41(25), 5108-5112.
[http://dx.doi.org/10.1021/jm981051y] [PMID: 9836626]
[284]
Mirmashhori, B.; Azizi, N.; Saidi, M.R. A simple, economical, and highly efficient synthesis of β-hydroxynitriles from epoxide under solvent free conditions. J. Mol. Catal. Chem., 2006, 247(1-2), 159-161.
[http://dx.doi.org/10.1016/j.molcata.2005.11.042]
[285]
Katritzky, A.R.; Xu, Y.J.; Tu, H. Regiospecific synthesis of 3-substituted imidazo[1,2-a]pyridines, Imidazo[1,2-a]pyrimidines, and Imidazo[1,2-c]pyrimidine. J. Org. Chem., 2003, 68(12), 4935-4937.
[http://dx.doi.org/10.1021/jo026797p] [PMID: 12790603]
[286]
Blackburn, C. A three-component solid-phase synthesis of 3-aminoimidazo[1,2-a]azines. Tetrahedron Lett., 1998, 39(31), 5469-5472.
[http://dx.doi.org/10.1016/S0040-4039(98)01113-7]
[287]
Blackburn, C.; Guan, B. A novel dealkylation affording 3-aminoimidazo[1,2-a]pyridines: Access to new substitution patterns by solid-phase synthesis. Tetrahedron Lett., 2000, 41(10), 1495-1500.
[http://dx.doi.org/10.1016/S0040-4039(00)00003-4]
[288]
Rostamnia, S.; Hassankhani, A. RuCl3-catalyzed solvent-free Ugi-type Groebke-Blackburn synthesis of aminoimidazole heterocycles. RSC Advances, 2013, 3(40), 18626-18629.
[http://dx.doi.org/10.1039/c3ra42752h]
[289]
Lamberth, C. First Synthesis of 3-Amino-2-arylimidazo[1,2-b]pyridazines by Groebke-Blackburn Reaction. Synlett, 2011, 2011(12), 1740-1744.
[http://dx.doi.org/10.1055/s-0030-1260940]
[290]
Krasavin, M.; Tsirulnikov, S.; Nikulnikov, M.; Sandulenko, Y.; Bukhryakov, K. tert-Butyl isocyanide revisited as a convertible reagent in the Groebke-Blackburn reaction. Tet. Lett, 2008, 49, 7318-7321.
[291]
Parchinsky, V.Z.; Shuvalova, O.; Ushakova, O.; Kravchenko, D.V.; Krasavin, M. Multi-component reactions between 2-aminopyrimidine, aldehydes and isonitriles: The use of a nonpolar solvent suppresses formation of multiple products. Tet. Lett, 2006, 47, 947-951.
[292]
Bienaymé, H.; Bouzid, K. A new heterocyclic multicomponent reaction for the combinatorial synthesis of fused 3-aminoimidazoles. Angew. Chem. Int. Ed., 1998, 37(16), 2234-2237.
[http://dx.doi.org/10.1002/(SICI)1521-3773(19980904)37:16<2234::AID-ANIE2234>3.0.CO;2-R] [PMID: 29711433]
[293]
Shaabani, A.; Soleimani, E.; Maleki, A.; Moghimi-Rad, J. Rapid synthesis of 3-Aminoimidazo [1,2-a]pyridines and pyrazines. Synth. Commun., 2008, 38(7), 1090-1095.
[http://dx.doi.org/10.1080/00397910701862931]
[294]
Rousseau, A.L.; Matlaba, P.; Parkinson, C.J. Multicomponent synthesis of imidazo [1, 2-a] pyridines using catalytic zinc chloride. Tet. Lett, 2007, 48, 4079-4082.
[295]
Adib, M.; Mahdavi, M.; Noghani, M.A.; Mirzaei, P. Catalyst-free threecomponent reaction between 2-aminopyridines (or 2-aminothiazoles), aldehydes, and isocyanides in water. Tet. Lett, 2007, 48, 7263-7265.
[296]
Noolvi, M.N.; Patel, H.M.; Bhardwaj, V.; Chauhan, A. Synthesis and in vitro antitumor activity of substituted quinazoline and quinoxaline derivatives: Search for anticancer agent. Eur. J. Med. Chem., 2011, 46(6), 2327-2346.
[http://dx.doi.org/10.1016/j.ejmech.2011.03.015] [PMID: 21458891]
[297]
El-Azab, A.S.; Al-Omar, M.A.; Abdel-Aziz, A.A.M.; Abdel-Aziz, N.I.; El-Sayed, M.A.A.; Aleisa, A.M.; Sayed-Ahmed, M.M.; Abdel-Hamide, S.G. Design, synthesis and biological evaluation of novel quinazoline derivatives as potential antitumor agents: Molecular docking study. Eur. J. Med. Chem., 2010, 45(9), 4188-4198.
[http://dx.doi.org/10.1016/j.ejmech.2010.06.013] [PMID: 20599299]
[298]
Poudapally, S.; Battu, S.; Velatooru, L.R.; Bethu, M.S.; Janapala, V.R.; Sharma, S.; Sen, S.; Pottabathini, N.; Iska, V.B.R.; Katangoor, V. Synthesis and biological evaluation of novel quinazoline-sulfonamides as anti-cancer agents. Bioorg. Med. Chem. Lett., 2017, 27(9), 1923-1928.
[http://dx.doi.org/10.1016/j.bmcl.2017.03.042] [PMID: 28351589]
[299]
Mohamed, T.; Rao, P.P.N. 2, 4-Disubstituted quinazolines as amyloid-β aggregation inhibitors with dual cholinesterase inhibition and antioxidant properties: Development and Structure-Activity Relationship (SAR) studies. Eur. J. Med. Chem., 2017, 126, 823-843.
[http://dx.doi.org/10.1016/j.ejmech.2016.12.005] [PMID: 27951490]
[300]
Balakumar, C.; Lamba, P.; Pran Kishore, D.; Lakshmi Narayana, B.; Venkat Rao, K.; Rajwinder, K.; Raghuram Rao, A.; Shireesha, B.; Narsaiah, B. Synthesis, anti-inflammatory evaluation and docking studies of some new fluorinated fused quinazolines. Eur. J. Med. Chem., 2010, 45(11), 4904-4913.
[http://dx.doi.org/10.1016/j.ejmech.2010.07.063] [PMID: 20800934]
[301]
Alafeefy, A.M.; Kadi, A.A.; Al-Deeb, O.A.; El-Tahir, K.E.H.; Al-jaber, N.A. Synthesis, analgesic and anti-inflammatory evaluation of some novel quinazoline derivatives. Eur. J. Med. Chem., 2010, 45(11), 4947-4952.
[http://dx.doi.org/10.1016/j.ejmech.2010.07.067] [PMID: 20817329]
[302]
Held, F.E.; Guryev, A.A.; Fröhlich, T.; Hampel, F.; Kahnt, A.; Hutterer, C.; Steingruber, M.; Bahsi, H.; von Bojničić-Kninski, C.; Mattes, D.S.; Foertsch, T.C.; Nesterov-Mueller, A.; Marschall, M.; Tsogoeva, S.B. Facile access to potent antiviral quinazoline heterocycles with fluorescence properties via merging metal-free domino reactions. Nat. Commun., 2017, 8(1), 15071.
[http://dx.doi.org/10.1038/ncomms15071] [PMID: 28462939]
[303]
Mahire, V.N.; Patel, V.E.; Mahulikar, P.P. Facile DES-mediated synthesis and antioxidant potency of benzimidazoquinazolinone motifs. Res. Chem. Intermed., 2017, 43(3), 1847-1861.
[http://dx.doi.org/10.1007/s11164-016-2734-1]
[304]
Zhang, Z.H.; Zhang, X.N.; Mo, L.P.; Li, Y.X.; Ma, F.P. Catalyst-free synthesis of quinazoline derivatives using low melting sugar-urea-salt mixture as a solvent. Green Chem., 2012, 14(5), 1502-1506.
[http://dx.doi.org/10.1039/c2gc35258c]
[305]
Shanthi, G.; Subbulakshmi, G.; Perumal, P.T. A new InCl3-catalyzed, facile and efficient method for the synthesis of spirooxindoles under conventional and solvent-free microwave conditions. Tetrahedron, 2007, 63(9), 2057-2063.
[http://dx.doi.org/10.1016/j.tet.2006.12.042]
[306]
Gao, S.; Tsai, C.H.; Tseng, C.; Yao, C.F. Fluoride ion catalyzed multicomponent reactions for efficient synthesis of 4H-chromene and N-arylquinoline derivatives in aqueous media. Tetrahedron, 2008, 64(38), 9143-9149.
[http://dx.doi.org/10.1016/j.tet.2008.06.061]
[307]
Azizi, N.; Dezfooli, S.; Mahmoudi Hashemi, M. Greener synthesis of spirooxindole in deep eutectic solvent. J. Mol. Liq., 2014, 194, 62-67.
[http://dx.doi.org/10.1016/j.molliq.2014.01.009]
[308]
Nguyen, V.T.; Nguyen, H.T.; Tran, P.H. Correction: One-pot three-component synthesis of 1-amidoalkyl naphthols and polyhydroquinolines using a deep eutectic solvent: A green method and mechanistic insight. New J. Chem., 2021, 45(9), 4507-4507.
[http://dx.doi.org/10.1039/D1NJ90022F]
[309]
Fokialakis, N.; Magiatis, P.; Chinou, I.; Mitaku, S.; Tillequin, F. Megistoquinones I and II, two quinoline alkaloids with antibacterial activity from the bark of Sarcomelicope megistophylla. Chem. Pharm. Bull. (Tokyo), 2002, 50(3), 413-414.
[http://dx.doi.org/10.1248/cpb.50.413] [PMID: 11911210]
[310]
Ryckebusch, A.; Deprez-Poulain, R.; Maes, L.; Debreu-Fontaine, M.A.; Mouray, E.; Grellier, P.; Sergheraert, C. Synthesis and in vitro and in vivo antimalarial activity of N1-(7-chloro-4-quinolyl)-1,4-bis(3-aminopropyl)piperazine derivatives. J. Med. Chem., 2003, 46(4), 542-557.
[http://dx.doi.org/10.1021/jm020960r] [PMID: 12570376]
[311]
Kalaria, P.N.; Satasia, S.P.; Raval, D.K. Synthesis, characterization and pharmacological screening of some novel 5-imidazopyrazole incorporated polyhydroquinoline derivatives. Eur. J. Med. Chem., 2014, 78, 207-216.
[http://dx.doi.org/10.1016/j.ejmech.2014.02.015] [PMID: 24681985]
[312]
Kumar, A.; Sharma, S.; Tripathi, V.D.; Maurya, R.A.; Srivastava, S.P.; Bhatia, G.; Tamrakar, A.K.; Srivastava, A.K. Design and synthesis of 2,4-disubstituted polyhydroquinolines as prospective antihyperglycemic and lipid modulating agents. Bioorg. Med. Chem., 2010, 18(11), 4138-4148.
[http://dx.doi.org/10.1016/j.bmc.2009.11.061] [PMID: 20471838]
[313]
Wang, L.; Zhong, X.; Zhou, M.; Zhou, W.; Chen, Q.; He, M.Y. One-pot synthesis of polysubstituted imidazoles in a Brønsted acidic deep eutectic solvent. J. Chem. Res., 2013, 37(4), 236-238.
[http://dx.doi.org/10.3184/174751913X13636339694414]
[314]
Wang, L.; Woods, K.W.; Li, Q.; Barr, K.J.; McCroskey, R.W.; Hannick, S.M.; Gherke, L.; Credo, R.B.; Hui, Y.H.; Marsh, K.; Warner, R.; Lee, J.Y.; Zielinski-Mozng, N.; Frost, D.; Rosenberg, S.H.; Sham, H.L. Potent, orally active heterocycle-based combretastatin A-4 analogues: Synthesis, structure-activity relationship, pharmacokinetics, and in vivo antitumor activity evaluation. J. Med. Chem., 2002, 45(8), 1697-1711.
[http://dx.doi.org/10.1021/jm010523x] [PMID: 11931625]
[315]
Nagarapu, L.; Apuri, S.; Kantevari, S. Potassium dodecatugstocobaltate trihydrate (K5CoW12O40•3H2O): A mild and efficient reusable catalyst for the one-pot synthesis of 1, 2, 4, 5-tetrasubstituted imidazoles under conventional heating and microwave irradiation. J. Mol. Catal. Chem., 2007, 266(1-2), 104-108.
[http://dx.doi.org/10.1016/j.molcata.2006.10.056]
[316]
Wang, L.; Cai, C. Polymer-supported zinc chloride: A highly active and reusable heterogeneous catalyst for one-pot synthesis of 2, 4, 5-trisubstituted imidazoles. Monatsh. Chem., 2009, 140(5), 541-546.
[http://dx.doi.org/10.1007/s00706-008-0086-2]
[317]
Nagargoje, D.; Mandhane, P.; Shingote, S.; Badadhe, P.; Gill, C. Ultrasound assisted one pot synthesis of imidazole derivatives using diethyl bromophosphate as an oxidant. Ultrason. Sonochem., 2012, 19(1), 94-96.
[http://dx.doi.org/10.1016/j.ultsonch.2011.05.009] [PMID: 21652255]
[318]
Oskooie, H.A.; Alimohammadi, Z.; Heravi, M.M. Microwave-assisted solid-phase synthesis of 2, 4, 5-triaryl imidazoles in solventless system: An improved protocol. Heteroatom Chem., 2006, 17(7), 699-702.
[http://dx.doi.org/10.1002/hc.20237]
[319]
Aziizi, N.; Manochehri, Z.; Nahayi, A.; Torkashvand, S. A facile one-pot synthesis of tetrasubstituted imidazoles catalyzed by eutectic mixture stabilized ferrofluid. J. Mol. Liq., 2014, 196, 153-158.
[http://dx.doi.org/10.1016/j.molliq.2014.03.013]
[320]
Hu, H.C.; Liu, Y.H.; Li, B.L.; Cui, Z.S.; Zhang, Z.H. Deep eutectic solvent based on choline chloride and malonic acid as an efficient and reusable catalytic system for one-pot synthesis of functionalized pyrroles. RSC Advances, 2015, 5(10), 7720-7728.
[http://dx.doi.org/10.1039/C4RA13577F]
[321]
Lin, P.; Lee, C.L.; Sim, M.M. Synthesis of novel guanidinoglycoside: 2-glycosylamino 4, 5-dihydro-6-pyrimidinone. J. Org. Chem., 2001, 66(24), 8243-8247.
[http://dx.doi.org/10.1021/jo015915q] [PMID: 11722234]
[322]
Yadav, J.S.; Subba Reddy, B.V.; Srinivas, M.; Divyavani, C.; Jeelani Basha, S.; Sarma, A.V.S. Three-component reaction of aldose sugars, aryl amines, and 1,3-diones: A novel synthesis of annulated pyrroles. J. Org. Chem., 2008, 73(8), 3252-3254.
[http://dx.doi.org/10.1021/jo702012w] [PMID: 18355078]
[323]
Nagarapu, L.; Cheemalapati, V.; Karnakanti, S.; Bantu, R. Synthesis of Annulated Pyrroles: Condensation of Aldose Sugars, Arylamines, and 1, 3-Diones Using TBAB. Synthesis, 2010, 2010(19), 3374-3378.
[http://dx.doi.org/10.1055/s-0030-1257973]
[324]
Rokade, S.M.; Garande, A.M.; Ahmad, N.A.A.; Bhate, P.M. Acid- and metal-free synthesis of annulated pyrroles in a deep eutectic solvent. RSC Advances, 2015, 5(3), 2281-2284.
[http://dx.doi.org/10.1039/C4RA14379E]
[325]
Kamble, S.S.; Shankarling, G.S. A Unique blend of water, DES and ultrasound for one-pot knorr pyrazole synthesis and Knoevenagel-Michael addition reaction. ChemistrySelect, 2018, 3(7), 2032-2036.
[http://dx.doi.org/10.1002/slct.201702898]
[326]
Nagre, D.T.; Khandebharad, A.U.; Sarda, S.R.; Dhotre, B.K.; Agrawal, B.R. Synthesis of 3-substituted indoles using deep eutectic solvent and ultrasound. Org. Prep. Proced. Int., 2021, 53(3), 278-283.
[http://dx.doi.org/10.1080/00304948.2021.1875775]
[327]
Giddens, A.C.; Boshoff, H.I.M.; Franzblau, S.G.; Barry, C.E., III; Copp, B.R. Antimycobacterial natural products: Synthesis and preliminary biological evaluation of the oxazole-containing alkaloid texaline. Tetrahedron Lett., 2005, 46(43), 7355-7357.
[http://dx.doi.org/10.1016/j.tetlet.2005.08.119]
[328]
Wasserman, H.H.; Gambale, R.J. Synthesis of (+)-antimycin A3. Use of the oxazole ring in protecting and activating functions. J. Am. Chem. Soc., 1985, 107(5), 1423-1424.
[http://dx.doi.org/10.1021/ja00291a059]
[329]
Leaver, I.H.; Milligan, B. Fluorescent whitening agents-a survey (1974-82). Dyes Pigments, 1984, 5(2), 109-144.
[http://dx.doi.org/10.1016/0143-7208(84)80008-X]
[330]
Singh, B.S.; Lobo, H.R.; Pinjari, D.V.; Jarag, K.J.; Pandit, A.B.; Shankarling, G.S. Ultrasound and Deep Eutectic Solvent (DES): A novel blend of techniques for rapid and energy efficient synthesis of oxazoles. Ultrason. Sonochem., 2013, 20(1), 287-293.
[http://dx.doi.org/10.1016/j.ultsonch.2012.06.003] [PMID: 22784641]
[331]
Singh, B.S.; Lobo, H.R.; Pinjari, D.V.; Jarag, K.J.; Pandit, A.B.; Shankarling, G.S. Comparative material study and synthesis of 4-(4-nitrophenyl)oxazol-2-amine via sonochemical and thermal method. Ultrason. Sonochem., 2013, 20(2), 633-639.
[http://dx.doi.org/10.1016/j.ultsonch.2012.09.002] [PMID: 23062955]
[332]
Kumar, D.; Reddy, V.B.; Sharad, S.; Dube, U.; Kapur, S. A facile one-pot green synthesis and antibacterial activity of 2-amino-4H-pyrans and 2-amino-5-oxo-5,6,7,8-tetrahydro-4H-chromenes. Eur. J. Med. Chem., 2009, 44(9), 3805-3809.
[http://dx.doi.org/10.1016/j.ejmech.2009.04.017] [PMID: 19419801]
[333]
Evdokimov, N.M.; Kireev, A.S.; Yakovenko, A.A.; Antipin, M.Y.; Magedov, I.V.; Kornienko, A. Convenient one-step synthesis of a medicinally relevant benzopyranopyridine system. Tetrahedron Lett., 2006, 47(52), 9309-9312.
[http://dx.doi.org/10.1016/j.tetlet.2006.10.110] [PMID: 23243322]
[334]
Gupta, A.K.; Kumari, K.; Singh, N.; Raghuvanshi, D.S.; Singh, K.N. An eco-safe approach to benzopyranopyrimidines and 4H-chromenes in ionic liquid at room temperature. Tet. Lett, 2012, 53, 650-653.
[335]
Evdokimov, N.M.; Kireev, A.S.; Yakovenko, A.A.; Antipin, M.Y.; Magedov, I.V.; Kornienko, A. One-step synthesis of heterocyclic privileged medicinal scaffolds by a multicomponent reaction of malononitrile with aldehydes and thiols. J. Org. Chem., 2007, 72(9), 3443-3453.
[http://dx.doi.org/10.1021/jo070114u] [PMID: 17408286]
[336]
Sridevi, C.; Shanthi, G.; Velraj, G. Structural, vibrational, electronic, NMR and reactivity analyses of 2-Amino-4H-Chromene-3-Carbonitrile (ACC) by ab initio HF and DFT calculations. Spectrochim. Acta. A. Mol. Biomol. Spectrosc., 2012, 89, 46-54.
[http://dx.doi.org/10.1016/j.saa.2011.12.050] [PMID: 22248456]
[337]
Manhas, M.S.; Ganguly, S.N.; Mukherjee, S.; Jain, A.K.; Bose, A.K. Microwave initiated reactions: Pechmann coumarin synthesis, Biginelli reaction and acylation. Tet. Lett, 2006, 47, 2423-2425.
[338]
Augustine, J.K.; Bombrun, A.; Ramappa, B.; Boodappa, C. An efficient one-pot synthesis of coumarins mediated by propylphosphonic anhydride (T3P) via the Perkin condensation. Tet. Lett, 2012, 53, 4422-4425.
[339]
Li, J.; Chen, H.; Zhang-Negrerie, D.; Du, Y.; Zhao, K. Synthesis of coumarins via PIDA/I2-mediated oxidative cyclization of substituted phenylacrylic acids. RSC Advances, 2013, 3(13), 4311-4330.
[http://dx.doi.org/10.1039/c3ra23188g]
[340]
Kaye, P.T.; Musa, M. A. A convenient and improved Baylis-Hillman synthesis of 3-substututed 2H-1-benzopyran-2-ones. Synt.-Stuttgart, 2002, 18, 2701-2706.
[http://dx.doi.org/10.1055/s-2002-35984]
[341]
Moafi, L.; Ahadi, S.; Bazgir, A.; New, H.A. 14-1 Analogues: Synthesis of 2-amino-4-cyano-4H-chromenes. Tet. Lett, 2010, 51, 6270-6274.
[342]
Costa, M.; Areias, F.; Abrunhosa, L.; Venâncio, A.; Proença, F. The condensation of salicylaldehydes and malononitrile revisited: Synthesis of new dimeric chromene derivatives. J. Org. Chem., 2008, 73(5), 1954-1962.
[http://dx.doi.org/10.1021/jo702552f] [PMID: 18271600]
[343]
Xie, J.W.; Huang, X.; Fan, L.P.; Xu, D.C.; Li, X.S.; Su, H.; Wen, Y-H. Efficient method for the synthesis of optically active 2-amino-2-chromene derivatives via one-pot tandem reactions. Adv. Synth. Catal., 2009, 351(18), 3077-3082.
[http://dx.doi.org/10.1002/adsc.200900579]
[344]
Ren, Q.; Siau, W.Y.; Du, Z.; Zhang, K.; Wang, J. Expeditious assembly of a 2-amino-4H-chromene skeleton by using an enantioselective Mannich intramolecular ring cyclization-tautomerization cascade sequence. Chemistry, 2011, 17(28), 7781-7785.
[http://dx.doi.org/10.1002/chem.201100927] [PMID: 21618299]
[345]
Yang, G.; Luo, C.; Mu, X.; Wang, T.; Liu, X.Y. Highly efficient enantioselective three-component synthesis of 2-amino-4H-chromenes catalysed by chiral tertiary amine-thioureas. Chem. Commun., 2012, 48(47), 5880-5882.
[http://dx.doi.org/10.1039/c2cc30731f] [PMID: 22572702]
[346]
Bhat, S.I.; Choudhury, A.R.; Trivedi, D.R. Condensation of malononitrile with salicylaldehydes and o-aminobenzaldehydes revisited: Solvent and catalyst free synthesis of 4H-chromenes and quinolines. RSC Advances, 2012, 2(28), 10556-11063.
[http://dx.doi.org/10.1039/c2ra21849f]
[347]
Shanthi, G.; Perumal, P.T. An eco-friendly synthesis of 2-aminochromenes and indolyl chromenes catalyzed by InCl3 in aqueous media. Tet. Lett, 2007, 48, 6785-6789.
[348]
Chen, W.; Cai, Y.; Fu, X.; Liu, X.; Lin, L.; Feng, X. Enantioselective one-pot synthesis of 2-amino-4-(indol-3-yl)-4H-chromenes. Org. Lett., 2011, 13(18), 4910-4913.
[http://dx.doi.org/10.1021/ol2019949] [PMID: 21859119]
[349]
Lakshmi, N.V.; Kiruthika, S.E.; Perumal, P.T. A rapid and efficient access to 4-substituted 2-amino-4H-chromenes catalyzed by InCl3. Synlett, 2011, 10, 1389-1394.
[350]
Ghahremanzadeh, R.; Amanpour, T.; Bazgir, A. Pseudo four-component synthesis of benzopyranopyrimidines. Tet. Lett, 2010, 51, 4202-4420.
[351]
Tasqeeruddin, S.; Asiri, Y.I.; Shaheen, S. Rapid and efficient one-pot multicomponent synthesis of pyrano [3, 2-c]chromene derivatives, catalyzed by a deep eutectic solvent. Russ. J. Org. Chem., 2021, 57(8), 1321-1329.
[http://dx.doi.org/10.1134/S1070428021080121]
[352]
Azizi, N.; Mariami, M.; Edrisi, M. Greener construction of 4H-chromenes based dyes in deep eutectic solvent. Dyes Pigments, 2014, 100, 215-221.
[http://dx.doi.org/10.1016/j.dyepig.2013.09.007]
[353]
Krishnammagari, S.K.; Cho, B.G.; Jeong, Y.T. Choline chloride based eutectic solvent for the efficient synthesis of 2-amino-4 H -chromen-4-yl phosphonate derivatives via multicomponent reaction under mild conditions. Phosphorus Sulfur Silicon Relat. Elem., 2018, 193(5), 306-316.
[http://dx.doi.org/10.1080/10426507.2017.1417296]
[354]
Bremner, J.B.; Samosorn, S. Azepines and their Fused-Ring Derivatives. Comprehensive Heterocyclic Chem. III, 2008, 13, 1-43.
[355]
Cepanec, I.; Litvić, M.; Pogorelić, I. Efficient synthesis of 3-hydroxy-1, 4-benzodiazepines oxazepam and lorazepam by new acetoxylation reaction of 3-position of 1, 4-benzodiazepine ring. Org. Process Res. Dev., 2006, 10(6), 1192-1198.
[http://dx.doi.org/10.1021/op068009u]
[356]
Miki, T.; Kori, M.; Mabuchi, H.; Tozawa, R.; Nishimoto, T.; Sugiyama, Y.; Teshima, K.; Yukimasa, H. Synthesis of novel 4,1-benzoxazepine derivatives as squalene synthase inhibitors and their inhibition of cholesterol synthesis. J. Med. Chem., 2002, 45(20), 4571-4580.
[http://dx.doi.org/10.1021/jm020234o] [PMID: 12238936]
[357]
Smits, R.A.; Lim, H.D.; Stegink, B.; Bakker, R.A.; de Esch, I.J.P.; Leurs, R. Characterization of the histamine H4 receptor binding site. Part 1. Synthesis and pharmacological evaluation of dibenzodiazepine derivatives. J. Med. Chem., 2006, 49(15), 4512-4516.
[http://dx.doi.org/10.1021/jm051008s] [PMID: 16854056]
[358]
Ursini, A.; Capelli, A.M.; Carr, R.A.E.; Cassarà, P.; Corsi, M.; Curcuruto, O.; Curotto, G.; Dal Cin, M.; Davalli, S.; Donati, D.; Feriani, A.; Finch, H.; Finizia, G.; Gaviraghi, G.; Marien, M.; Pentassuglia, G.; Polinelli, S.; Ratti, E.; Reggiani, A.; Tarzia, G.; Tedesco, G.; Tranquillini, M.E.; Trist, D.G.; Van Amsterdam, F.T.M. Synthesis and SAR of new 5-phenyl-3-ureido-1,5-benzodiazepines as cholecystokinin-B receptor antagonists. J. Med. Chem., 2000, 43(20), 3596-3613.
[http://dx.doi.org/10.1021/jm990967h] [PMID: 11020274]
[359]
Bihel, F.; Kraus, J.L. Novel synthesis of 3, 4-dihydro-5-bromo[1,4]oxazin-2-one derivatives, new protease inhibitor scaffold. Org. Biomol. Chem., 2003, 1(5), 793-799.
[http://dx.doi.org/10.1039/b212064j] [PMID: 12929361]
[360]
Essaber, M.; Baouid, A.; Hasnaoui, A.; Benharref, A.; Lavergne, J.P. Synthesis of new tri- and tetraheterocyclic systems: 1,3-dipolar cycloaddition of nitrilimines on 2,7-dimethyl-4 -phenyl-3H-1,5-benzodiazepin. Synth. Commun., 1998, 28(22), 4097-4104.
[http://dx.doi.org/10.1080/00397919809458689]
[361]
Klunder, J.M.; Hargrave, K.D.; West, M.; Cullen, E.; Pal, K.; Behnke, M.L.; Kapadia, S.R.; McNeil, D.W.; Wu, J.C.; Chow, G.C.; Adams, J. Novel non-nucleoside inhibitors of HIV-1 reverse transcriptase. 2. Tricyclic pyridobenzoxazepinones and dibenzoxazepinones. J. Med. Chem., 1992, 35(10), 1887-1897.
[http://dx.doi.org/10.1021/jm00088a027] [PMID: 1375293]
[362]
Li, R.; Farmer, P.S.; Wang, J.; Boyd, R.J.; Cameron, T.S.; Quilliam, M.A.; Walter, J.A.; Howlett, S.E. Molecular geometries of dibenzothiazepinone and dibenzoxazepinone calcium antagonists Drug Des. Dis., 1995, 12(4), 337-358.
[363]
Nagarajan, K.; David, J.; Kulkarni, Y.; Hendi, S.; Shenoy, S.; Upadhyaya, P. Piperazinylbenzonaphthoxazepines with CNS depressant properties. Eur. J. Med. Chem., 1986, 21, 21-26.
[364]
Shaabani, A.; Hooshmand, S.E.; Nazeri, M.T.; Afshari, R.; Ghasemi, S. Deep eutectic solvent as a highly efficient reaction media for the one-pot synthesis of benzo-fused seven-membered heterocycles. Tetrahedron Lett., 2016, 57(33), 3727-3730.
[http://dx.doi.org/10.1016/j.tetlet.2016.07.005]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy