Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Research Article

Synthesis of 1,2-dihydropyridine, Arylidene, Hydrazide, and Terthienylnicotinamidine Hydrochloride Analogs: Theoretical Studies, and Antioxidant Activity Assessment

Author(s): Mohamed M. Hammouda*, Nadher A. Abed, Mohamed A. Ismail and Ehab Abdel-Latif

Volume 27, Issue 6, 2023

Published on: 13 July, 2023

Page: [546 - 556] Pages: 11

DOI: 10.2174/1385272827666230614123355

Price: $65

Abstract

In the current work, we have utilized the reactivity of N-(4-acetylphenyl)-2-(4- formylphenoxy)acetamide for the synthesis of novel series of 1,2-dihydropyridines, Arylidenes, and hydrazides. Our strategies were prolonged for the synthesis of novel terthienylnicotinamidine hydrochloride salt through a Stille coupling reaction of 6-(5'-bromo- [2,2'-bithiophen]-5-yl)nicotinonitrile with 2-tributyltin thiophene followed by treatment with lithium trimethylsilylamide and subsequent hydrolysis.

The newly prepared structures were well-elucidated by analytical and spectral data (IR, 1HNMR, 13C-NMR, MS, and elemental analysis). The theoretical studies of terthienylnicotinamidine verified that the other atoms that carry a high density of positive values are considered active centers for the electron acceptor.

The novel synthesized compounds were efficiently established by spectroscopic data and elemental analysis. The antioxidant activity of the synthesized arylidene, hydrazide, and dihydropyridine compounds was assessed by ABTS•+ free radical assay.

The results verified that the transformation of N-(4-acetylphenyl)-2-(4-formylphenoxy)acetamide (47.6%) into hydrazide analogs provided remarkable antioxidant activity (78.1, and 60.3%).

« Previous
Graphical Abstract

[1]
Prestwich, G.D.; Marecak, D.M.; Marecek, J.F.; Vercruysse, K.P.; Ziebell, M.R. Controlled chemical modification of hyaluronic acid: Synthesis, applications, and biodeg-radation of hydrazide derivatives. J. Control. Release, 1998, 53(1-3), 93-103.
[http://dx.doi.org/10.1016/S0168-3659(97)00242-3] [PMID: 9741917]
[2]
Godula, K.; Bertozzi, C.R. Synthesis of glycopolymers for microarray applications via ligation of reducing sugars to a poly(acryloyl hydrazide) scaffold. J. Am. Chem. Soc., 2010, 132(29), 9963-9965.
[http://dx.doi.org/10.1021/ja103009d] [PMID: 20608651]
[3]
Shetty, P. Hydrazide derivatives: An overview of their inhibition activity against acid corrosion of mild steel. S. Afr. J. Chem., 2018, 71, 46-50.
[http://dx.doi.org/10.17159/0379-4350/2018/v71a6]
[4]
Elder, D.P.; Snodin, D.; Teasdale, A. Control and analysis of hydrazine, hydrazides and hydrazones—Genotoxic impurities in active pharmaceutical ingredients (APIs) and drug products. J. Pharm. Biomed. Anal., 2011, 54(5), 900-910.
[http://dx.doi.org/10.1016/j.jpba.2010.11.007] [PMID: 21145684]
[5]
Huang, C.H. Hydrolysis of amide, carbamate, hydrazide and sulfonylurea agrochemicals: Catalysis and inhibition by dissolved metal ions, metal ion-ligand com-plexes and hydrous metal oxide surfaces; The Johns Hopkins University, 1997.
[6]
Lemay, M.; Aumand, L.; Ogilvie, W.W. Design of a conformationally rigid hydrazide organic catalyst. Adv. Synth. Catal., 2007, 349(3), 441-447.
[http://dx.doi.org/10.1002/adsc.200600268]
[7]
Bär, F.; Hopf, H.; Knorr, M.; Krahl, J. Synthesis, characterization and antioxidant properties of 2,4,6-tris-isopropylbenzoic acid hydrazide in biodiesel. Fuel, 2018, 215, 249-257.
[http://dx.doi.org/10.1016/j.fuel.2017.10.096]
[8]
Purkait, R.; Patra, C.; Mahapatra, A.D.; Chattopadhyay, D.; Sinha, C. A visible light excitable chromone appended hydrazide chemosensor for sequential sensing of Al+3 and F− in aqueous medium and in vero cells. Sens. Actuators B Chem., 2018, 257, 545-552.
[http://dx.doi.org/10.1016/j.snb.2017.10.168]
[9]
Fadda, A.A.; Bondock, S.; Rabie, R.; Etman, H.A. Cyanoacetamide derivatives as synthons in heterocyclic synthesis. Turk. J. Chem., 2008, 32(3), 259-286.
[10]
Carles, L.; Narkunan, K.; Penlou, S.; Rousset, L.; Bouchu, D.; Ciufolini, M.A. 2-pyridones from cyanoacetamides and enecarbonyl compounds: Application to the syn-thesis of nothapodytine B. J. Org. Chem., 2002, 67(12), 4304-4308.
[http://dx.doi.org/10.1021/jo025546d] [PMID: 12054967]
[11]
Mathews, A.; Anabha, E.R.; Sasikala, K.A.; Lathesh, K.C.; Krishnaraj, K.U.; Sreedevi, K.N.; Prasanth, M.; Devaky, K.S.; Asokan, C.V. Simple methods to synthesize 2-pyridones: Reactions of 2-aroyl-3,3-bis(alkylsulfanyl)acrylaldehydes and cyanoacetamide. Tetrahedron, 2008, 64(8), 1671-1675.
[http://dx.doi.org/10.1016/j.tet.2007.12.012]
[12]
Misic-Vukovic, M.I.L.I.C.A.; Mijin, D.U.S.A.N.; Radojkovic-Velicovic, M.; Valentic, N.; Krstic, V. Condensation of 1, 3-diketones with cyanoacetamide: 4, 6-disubstituted-3-cyano-2-pyridones. J. Serb. Chem. Soc., 1998, 63, 585-600.
[13]
Bruno, G.; Costantino, L.; Curinga, C.; Maccari, R.; Monforte, F.; Nicolò, F.; Ottanà, R.; Vigorita, M.G. Synthesis and aldose reductase inhibitory activity of 5-arylidene-2,4-thiazolidinediones. Bioorg. Med. Chem., 2002, 10(4), 1077-1084.
[http://dx.doi.org/10.1016/S0968-0896(01)00366-2] [PMID: 11836118]
[14]
Kohli, P.; Srivastava, S.D.; Srivastava, S.K. Synthesis and biological activity of mercaptobenzoxazole based thiazolidinones and their arylidenes. J. Chin. Chem. Soc., 2007, 54(4), 1003-1010.
[http://dx.doi.org/10.1002/jccs.200700144]
[15]
Sokmen, B.B.; Ugras, S.; Sarikaya, H.Y.; Ugras, H.I.; Yanardag, R. Antibacterial, antiurease, and antioxidant activities of some arylidene barbiturates. Appl. Biochem. Biotechnol., 2013, 171(8), 2030-2039.
[http://dx.doi.org/10.1007/s12010-013-0486-6] [PMID: 24018846]
[16]
Khan, K.M.; Ali, M.; Wadood, A. Zaheer-ul-Haq; Khan, M.; Lodhi, M.A.; Perveen, S.; Choudhary, M.I.; Voelter, W. Molecular modeling-based antioxidant arylidene barbiturates as urease inhibitors. J. Mol. Graph. Model., 2011, 30, 153-156.
[http://dx.doi.org/10.1016/j.jmgm.2011.07.001] [PMID: 21816644]
[17]
Zhao, B.; Huo, J.; Liu, N.; Zhang, J.; Dong, J. Transketolase is identified as a target of herbicidal substance α-terthienyl by proteomics. Toxins, 2018, 10(1), 41.
[http://dx.doi.org/10.3390/toxins10010041] [PMID: 29329271]
[18]
Abed, N.A.; Hammouda, M.M.; Ismail, M.A.; Abdel-Latif, E. Synthesis of new heterocycles festooned with thiophene and evaluating their antioxidant activity. J. Heterocycl. Chem., 2020, 57(12), 4153-4163.
[http://dx.doi.org/10.1002/jhet.4122]
[19]
Afsah, E.M.; Fadda, A.A.; Bondock, S.; Hammouda, M.M. Synthesis and some reactions of functionalized benzo[b]azonines and Bi(benzo[b]azonines). Z. Naturforsch, 2009, 64b, 415-422.
[http://dx.doi.org/10.1515/znb-2009-0410]
[20]
Afsah, E.M.; Fadda, A.A.; Bondock, S.; Hammouda, M.M. Synthesis and some reactions of functionalized 11,12-dihydro-5 H -dibenzo[ b, g]azonines. Z. Naturforsch. B. J. Chem. Sci., 2015, 70(6), 385-391.
[http://dx.doi.org/10.1515/znb-2014-0271]
[21]
Hammoud, M.M.; Khattab, M.; Abdel-Motaal, M.; Van der Eycken, J.; Alnajjar, R.; Abulkhair, H.S.; Al-Karmalawy, A.A. Synthesis, structural characterization, DFT calculations, molecular docking, and molecular dynamics simulations of a novel ferrocene derivative to unravel its potential antitumor activity. J. Biomol. Struct. Dyn., 2022, 1-18.
[http://dx.doi.org/10.1080/07391102.2022.2082533] [PMID: 35674744]
[22]
Hammouda, M.M.; Elmaaty, A.A.; Nafie, M.S.; Abdel-Motaal, M.; Mohamed, N.S.; Tantawy, M.A.; Belal, A.; Alnajjar, R.; Eldehna, W.M.; Al-Karmalawy, A.A. Design and synthesis of novel benzoazoninone derivatives as potential CBSIs and apoptotic inducers: In Vitro, in Vivo, molecular docking, molecular dynamics, and SAR stud-ies. Bioorg. Chem., 2022, 127, 105995.
[http://dx.doi.org/10.1016/j.bioorg.2022.105995] [PMID: 35792315]
[23]
Anthwal, A.; Thakur, B.K.; Rawat, M.S.M. Synthesis, antibacterial screening and theoretical molecular properties prediction of hydantoin-chalcone conjugates. J. Indian Chem. Soc., 2014, 91, 1525-1531.
[24]
Taha, M.A.; Dappour, A.M.; Ismail, M.A.; Kamel, A.H.; Abdel-Shafi, A.A. Solvent polarity indicators based on bithiophene carboxamidine hydrochloride salt deriva-tives. J. Photochem. Photobiol. Chem., 2021, 404, 112933.
[http://dx.doi.org/10.1016/j.jphotochem.2020.112933]
[25]
Sabek, H.A.Z.; Alazaly, A.M.M.; Salah, D.; Abdel-Samad, H.S.; Ismail, M.A.; Abdel-Shafi, A.A. Photophysical properties and fluorosolvatochromism of D–π–A thio-phene based derivatives. RSC Advances, 2020, 10(71), 43459-43471.
[http://dx.doi.org/10.1039/D0RA08433F] [PMID: 35519720]
[26]
Hudson, J.B.; Harris, L.; Marles, R.J.; Arnason, J.T. The anti-HIV activities of photoactive terthiophenes. Photochem. Photobiol., 1993, 58(2), 246-250.
[http://dx.doi.org/10.1111/j.1751-1097.1993.tb09556.x] [PMID: 8415917]
[27]
Hussin, W.A.; Ismail, M.A.; El-Sayed, W.M. Novel 4-substituted phenyl-2,2′-bichalcophenes and aza-analogs as antibacterial agents: A structural activity relationship. Drug Des. Devel. Ther., 2013, 7, 185-193.
[PMID: 23662048]
[28]
El-sayed, W.; Hussin, W.A. Antimutagenic and antioxidant activity of novel 4-substituted phenyl-2,2′-bichalcophenes and aza-analogs. Drug Des. Devel. Ther., 2013, 7, 73-81.
[http://dx.doi.org/10.2147/DDDT.S40129] [PMID: 23430305]
[29]
Ismail, M.; Arafa, R.; Magdy, M.; Youssef, M.; El-Sayed, W. Anticancer, antioxidant activities, and DNA affinity of novel monocationic bithiophenes and analogues. Drug Des. Devel. Ther., 2014, 8, 1659-1672.
[http://dx.doi.org/10.2147/DDDT.S68016] [PMID: 25302019]
[30]
Fouda, A.E.A.S.; Nawar, N.; Ismail, M.A.; Zaher, A.A.; Abousalem, A.S. The inhibition action of methoxy-substituted phenylthienyl benzamidines on the corrosion of carbon steel in hydrochloric acid medium. J. Mol. Liq., 2020, 312, 113267.
[http://dx.doi.org/10.1016/j.molliq.2020.113267]
[31]
Abousalem, A.S.; Ismail, M.A.; Fouda, A.S. A complementary experimental and in silico studies on the action of fluorophenyl 2,2′ bichalcophenes as ecofriendly corro-sion inhibitors and biocide agents. J. Mol. Liq., 2019, 276, 255-274.
[http://dx.doi.org/10.1016/j.molliq.2018.11.125]
[32]
Ismail, M.A.; Boykin, D.W. Synthesis of novel bithiophene-substituted heterocycles bearing carbonitrile groups. Synth. Commun., 2011, 41(3), 319-330.
[http://dx.doi.org/10.1080/00397910903537364] [PMID: 21546984]
[33]
Rostampour, B.; Seifzadeh, D.; Abedi, M.; Shamkhali, A.N. Synthesis and characterization of a new N 4 S 2 Schiff base and investigation of its adsorption and corrosion inhibition effect by experimental and theoretical methods. Prot. Met. Phys. Chem. Surf., 2020, 56(1), 233-244.
[http://dx.doi.org/10.1134/S2070205120010189]
[34]
Arshad, N.; Akram, A.R.; Akram, M.; Rasheed, I. Triazolothiadiazine derivatives as corrosion inhibitors for copper, mild steel and aluminum surfaces: Electrochemical and quantum investigations. Prot. Met. Phys. Chem. Surf., 2017, 53(2), 343-358.
[http://dx.doi.org/10.1134/S2070205117020046]
[35]
Ahmed, S.K.; Ali, W.B.; Khadom, A.A. Synthesis and investigations of heterocyclic compounds as corrosion inhibitors for mild steel in hydrochloric acid. Int. J. Ind. Chem., 2019, 10(2), 159-173.
[http://dx.doi.org/10.1007/s40090-019-0181-8]
[36]
Elemike, E.E.; Nwankwo, H.U.; Onwudiwe, D.C.; Hosten, E.C. Synthesis, crystal structures, quantum chemical studies and corrosion inhibition potentials of 4-(((4-ethylphenyl)imino)methyl)phenol and (E)-4-((naphthalen-2-ylimino) methyl) phenol Schiff bases. J. Mol. Struct., 2017, 1147, 252-265.
[http://dx.doi.org/10.1016/j.molstruc.2017.06.104]
[37]
El-Haddad, M.N.; Fouda, A.S.; Hassan, A.F. Data from Chemical, electrochemical and quantum chemical studies for interaction between Cephapirin drug as an eco-friendly corrosion inhibitor and carbon steel surface in acidic medium. Chemical Data Collections, 2019, 22, 100251.
[http://dx.doi.org/10.1016/j.cdc.2019.100251]
[38]
Erdoğan, Ş.; Safi, Z.S.; Kaya, S.; Işın, D.Ö.; Guo, L.; Kaya, C. A computational study on corrosion inhibition performances of novel quinoline derivatives against the corrosion of iron. J. Mol. Struct., 2017, 1134, 751-761.
[http://dx.doi.org/10.1016/j.molstruc.2017.01.037]
[39]
Yan, Y.; Lin, X.; Zhang, L.; Zhou, H.; Wu, L.; Cai, L. Electrochemical and quantum-chemical study on newly synthesized triazoles as corrosion inhibitors of mild steel in 1 M HCl. Res. Chem. Intermed., 2017, 43(5), 3145-3162.
[http://dx.doi.org/10.1007/s11164-016-2816-0]
[40]
Miller, N.J.; Rice-Evans, C.A. Factors influencing the antioxidant activity determined by the ABTS.+ radical cation assay. Free Radic. Res., 1997, 26(3), 195-199.
[http://dx.doi.org/10.3109/10715769709097799] [PMID: 9161842]
[41]
Ilyasov, I.R.; Beloborodov, V.L.; Selivanova, I.A.; Terekhov, R.P. ABTS/PP decolorization assay of antioxidant capacity reaction pathways. Int. J. Mol. Sci., 2020, 21(3), 1131.
[http://dx.doi.org/10.3390/ijms21031131] [PMID: 32046308]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy