Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Review Article

Synthesis and Diverse Pharmacological Actions of Thiosemicarbazide Analogs: A Review

Author(s): Varsha Jindaniya, Rakhi Mishra*, Avijit Mazumder and Shivani Tyagi

Volume 21, Issue 12, 2024

Published on: 22 August, 2023

Page: [2302 - 2334] Pages: 33

DOI: 10.2174/1570180820666230614121851

Price: $65

Abstract

Background: Thiosemicarbazide is an important substance in the synthesis of pharmacological and bioactive substances, and it is commonly used in the discovery of new medications. Multiple synthetic approaches exist for the creation of different thiosemicarbazide analogs, which are then discovered to treat a variety of diseases.

Objective: This review paper aims to determine the growing importance of thiosemicarbazide analogs in various types of sickness by examining various unique synthetic methods that have been described to manufacture them.

Methods: To incorporate published research and review papers, a comprehensive review of the literature from many sources during the past 24 years was conducted.

Results: This paper summarises the findings of a literature review about the synthesis and biological activity of thiosemicarbazide and thiosemicarbazone derivatives.

Conclusion: Numerous new studies on the role of thiosemicarbazide and thiosemicarbazone derivatives, as well as their methods of production and biological activity for various forms of the disease, are discussed in this review article.

[1]
Lobana, T.S.; Sharma, R.; Bawa, G.; Khanna, S. Bonding and structure trends of thiosemicarbazone derivatives of metals—An overview. Coord. Chem. Rev., 2009, 253(7-8), 977-1055.
[http://dx.doi.org/10.1016/j.ccr.2008.07.004]
[2]
Dilovic, I.; Rubcic, M. Novel thiosemicarbazone derivatives as potential antitumor agents: Synthesis, physicochemical and structure properties, DNA interaction and antiproliferative activity. Bioorg. Med. Chem., 2008, 16, 5189-5198.
[http://dx.doi.org/10.1016/j.bmc.2008.03.006] [PMID: 18358728]
[3]
Nguyen, H.H.; Maia, P.I.S.; Deflon, V.M.; Abram, U. Oxotechnetium(V) complexes with a novel class of tridentate thiosemicarbazide ligands. Inorg. Chem., 2009, 48(1), 25-27.
[http://dx.doi.org/10.1021/ic802044r] [PMID: 19053242]
[4]
de Siqueira, L.R.P.; de Moraes, P.A.T.G.; de Lima, L.P.F.; de Melo, M.J.B.R.; Ana, C.L.L. Multi-target compounds acting in cancer progression: Focus on thiosemicarbazone, thiazole and thiazolidinone analogues. Eur. J. Med. Chem., 2019, 170, 237-260.
[5]
Perez-Rebolledo, A.; Ayala, J.D.; de Lima, G.M.; Marchini, N.; Bombieri, G.; Zani, C.L.; Souza-Fagundes, E.M.; Beraldo, H. Structural studies and cytotoxic activity of N(4)-phenyl-2-benzoylpyridine thiosemicarbazone Sn(IV) complexes. Eur. J. Med. Chem., 2005, 40(5), 467-472.
[http://dx.doi.org/10.1016/j.ejmech.2005.01.006] [PMID: 15893020]
[6]
Ishaq, M.; Taslimi, P.; Shafiq, Z.; Khan, S.; Ekhteiari, S.R.; Zangeneh, M.M.; Saeed, A.; Zangeneh, A.; Sadeghian, N.; Asari, A.; Mohamad, H. Synthesis, bioactivity and binding energy calculations of novel 3-ethoxysalicylaldehyde based thiosemicarbazone derivatives. Bioorg. Chem., 2020, 100, 103924.
[http://dx.doi.org/10.1016/j.bioorg.2020.103924] [PMID: 32442818]
[7]
Aly, A.A.; Hassan, A.A. AbdEl-latief, E-S.S.M. An update of the use of thiocarbohydrazides and thiosemicarbazides in the preparation of heterocycles and their biological importance. J. Heterocycl. Chem., 2018, 55(10), 2196-2223.
[http://dx.doi.org/10.1002/jhet.3295]
[8]
Venkatesh, K.; Banothu, V.; Chandra, S.K. Synthesis, characterization & biological activity of some new thiosemicarbazide derivatives and their transition metal complexes. J. Chem. Pharm. Res., 2015, 7(8), 437-445.
[9]
Aljahdali, M.; Ahmed, A. Synthesis, characterization, molecular modeling and biological activity of moxed ligand complexes of Cu(II), Ni(II), and Co(II) based on 1,10-phenanthroline and novel thiosemicarbazone. InorganicaChim. Acta., 2013, 407, 58-68.
[10]
Hu, W.; Zhou, W.; Xia, C.; Wen, X. Synthesis and anticancer activity of thiosemicarbazones. Bioorg. Med. Chem. Lett., 2006, 16(8), 2213-2218.
[http://dx.doi.org/10.1016/j.bmcl.2006.01.048] [PMID: 16458509]
[11]
Ishak, N.N.M.; Jamsari, J.; Ismail, A.Z.; Tahir, M.I.M.; Tiekink, E.R.T.; Abhi, V.; Ravoof, T.B.S.A. Synthesis, characterization and biological studies of mixed-ligand nickel (II) complexes containing imidazole derivatives and thiosemicarbazide Schiff bases. Core.au.ck., 2019, 1-39.
[12]
Zhang, H.J.; Qian, Y.; Zhu, D.D.; Yang, X.G.; Zhu, H.L. Synthesis, molecular modeling and biological evaluation of chalcone thiosemicarbazide derivatives as novel anticancer agents. Eur. J. Med. Chem., 2011, 46(9), 4702-4708.
[http://dx.doi.org/10.1016/j.ejmech.2011.07.016] [PMID: 21816517]
[13]
Pitucha, M.; Korga-Plewko, A.; Czylkowska, A.; Rogalewicz, B.; Drozd, M.; Iwan, M.; Kubik, J.; Humeniuk, E.; Adamczuk, G.; Karczmarzyk, Z.; Fornal, E.; Wysocki, W.; Bartnik, P. Influence of complexation of thiosemicarbazone derivatives with Cu (II) ions on their antitumor activity against melanoma cells. Int. J. Mol. Sci., 2021, 22(6), 3104.
[http://dx.doi.org/10.3390/ijms22063104] [PMID: 33803618]
[14]
Prajapati, N.P.; Patel, H.D. Novel thiosemicarbazone derivatives and their metal complexes: Recent development. Synth. Commun., 2019, 49(21)
[15]
Metwally, M.A.; Bondock, S.; El-Azap, H.; Kandeel, E-E.M. Thiosemicarbazides: synthesis and reactions, Journal of sulfur Chemistry, 32:5, 489-519. Thiosemicarbazides: synthesis and reactions. J. Sulfur Chem., 2011, 32(9), 490-519.
[16]
Shariar, S.M.S.; Jesmin, M.; Ali, M.M. Antibacterial activities of some schiff bases involving thiosemicarbazide and ketones. Int. Lett. Chem. Phys. Astron., 2014, 26, 53-61.
[http://dx.doi.org/10.56431/p-40j3lb]
[17]
Tokali, F.S.; Taslimi, P.; Usanmaz, H.; Karaman, M.; Sendil, K. Synthesis, characterization, biological activity and molecular docking studies of novel schiff bases derived from thiosemicarbazide: Biochemical and computational approach. J. Mol. Struct., 2020, 12-21.
[18]
Pishawikar, S.A.; More, H.N. Synthesis, docking and in-vitro screening of mannich bases of thiosemicarbazide for anti-fungal activity. Arab. J. Chem., 2017, 10, S2714-S2722.
[http://dx.doi.org/10.1016/j.arabjc.2013.10.016]
[19]
Ni, W.W.; Fang, H.L.; Ye, Y.X.; Li, W.Y.; Yuan, C.P.; Li, D.D.; Mao, S.J.; Li, S.E.; Zhu, Q.H.; Ouyang, H.; Xiao, Z.P.; Zhu, H.L. N -monosubstituted thiosemicarbazide as novel Ure inhibitors: synthesis, biological evaluation and molecular docking. Future Med. Chem., 2020, 12(18), 1633-1645.
[http://dx.doi.org/10.4155/fmc-2020-0048] [PMID: 32892642]
[20]
Kozyra, P.; Korga-Plewko, A.; Karczmarzyk, Z.; Hawryl, A.; Wysocki, W.; Czlapski, M.; Iawn, M.; Ostrowska-Le, M.S.; Emilia, F.; Monika, P. Potential anticancer agents against melanoma cells based on an as-synthesized thiosemicarbazide derivative. Biomolecules, 2022, 12(151), 2-19.
[21]
Šarkanj, B.; Molnar, M.; Čačić, M.; Gille, L. 4-Methyl-7-hydroxycoumarin antifungal and antioxidant activity enhancement by substitution with thiosemicarbazide and thiazolidinone moieties. Food Chem., 2013, 139(1-4), 488-495.
[http://dx.doi.org/10.1016/j.foodchem.2013.01.027] [PMID: 23561135]
[22]
Dziduch, K.; Przemyslaw, K.; Agata, P.; Bogucka-Kocka, A.; Wujec, M. Synthesis and anthelmintic activity of new thiosemicarbazide derivatives – a preliminary study. Molecules, 2020, 2770(25), 2-8.
[23]
Dincel, E.D.; Guzeldemirci, N.U. Synthesis and computer-aided drug design studies of novel thiosemicarbazide derivatives as potent and target-oriented anti-cancer agents. Medicine, 2020, 9(2), 305-313.
[24]
Ali, B.; Khan, K.M.; Salar, U. Kanwal; Hussain, S.; Ashraf, M.; Riaz, M.; Wadood, A.; Taha, M.; Perveen, S. 1-[(4′-Chlorophenyl) carbonyl-4-(aryl) thiosemicarbazide derivatives as potent urease inhibitors: Synthesis, in vitro and in silico studies. Bioorg. Chem., 2018, 79, 363-371.
[http://dx.doi.org/10.1016/j.bioorg.2018.05.017]
[25]
Yamaguchi, M.U.; Barbosa da Silva, A.P.; Ueda-Nakamura, T.; Dias Filho, B.P.; Conceição da Silva, C.; Nakamura, C.V. Effects of a thiosemicarbazide camphene derivative on trichophyton mentagrophytes. Molecules, 2009, 14(5), 1796-1807.
[http://dx.doi.org/10.3390/molecules14051796]
[26]
He, J.; Wang, X.; Zhao, X.; Liang, Y.; He, H.; Fu, L. Synthesis and antitumor activity of novel quinazoline derivatives containing thiosemicarbazide moiety. Eur. J. Med. Chem., 2012, 54, 925-930.
[http://dx.doi.org/10.1016/j.ejmech.2012.06.003] [PMID: 22749192]
[27]
Acharya, P.T.; Bhavsar, Z.A.; Jethava, D.J.; Patel, D.B.; Patel, H.D. A review on development of bio-active thiosemicarbazide derivatives: Recent advances. J. Mol. Struct., 2021, 1226, 129268.
[http://dx.doi.org/10.1016/j.molstruc.2020.129268]
[28]
Shashidhar, K.S.; Halli, M.B. Synthesis, characterization and antimicrobial studies on metal complexes with a napthofuranthiosemicarbazide derivatives. J. Coord. Chem., 2006, 59(16), 1848-1855.
[29]
Patel, D.B.; Patel, K.D.; Prajapati, N.P.; Patel, K.R.; Rajani, D.P.; Rajani, S.D.; Shah, N.S.; Devendra, D. Design, synthesis, and biological and in silico study of fluorine-containing quinoline hybrid thiosemicarbazide analogues. J. Heterocycl. Chem., 2009, 000, 1-18.
[30]
Govender, H.; Chunderika, M.; Hezekiel, M.K.; Neil, A.K. Synthesis, antibacterial activity and docking studies of substituted quinolone thiosemicarbazones. Phosphorus Sulfur Silicon Relat. Elem., 2019, 194(11)
[31]
Molecular docking, synthesis and anticancer activity of thiosemicarbazone derivatives against MCF-7 human breast cancer cell line. Life Sci., 2021, 273, 2-11.
[32]
ZelekeSibuh, B.; Piyush, K.G.; Pankaj, T.; Sonia, K.; Paratpar, S.; Sanya, P.; Abrar, A.K.; Niraj, K.J.; Kamal, D.; Sachin, K.S.; Sadanand, P.; Petr, S.; Kavindra, K.K.; Shubhadeep, R. Synthesis, In Silico Study, and Anti-Cancer Activity of Thiosemicarbazide Derivatives. Biomedicines, 2021, 1375(9), 2-19.
[33]
Liu, M.C.; Lin, T.C.; Sartorelli, A.C. Synthesis and antitumor activity of amino derivatives of pyridine-2-carboxaldehyde thiose micarbazone. J. Med. Chem., 1992, 35(20), 3672-3677.
[http://dx.doi.org/10.1021/jm00098a012]
[34]
Ibrahim, E.S.A.; Omar, A.M.M.E.; Khalil, M.A. Novel potential anticancer agents derived from benzimidazole. J. Pharm. Sci., 1980, 69(11), 1348-1350.
[http://dx.doi.org/10.1002/jps.2600691130] [PMID: 7452470]
[35]
Wenlin, X.; Shimin, X.; Ying, Z.; Xufu, T.; Jian, L.; Wenqian, Y.; Minghua, Q. Design and synthesis of novel 5,6-disubstituted pyridine-2,3-dione-3-thiosemicarbazone derivatives as potential anticancer agents. Eur. J. Med. Chem., 2014, 81, 23-27.
[36]
Sever, B.; Gulsen, A.C.; Ahmet, O.; Mehlik, D.A. Design, synthesis and in vitro evaluation of new thiosemicarbazone derivatives as potential anticancer agents. J. Pharm. Res., 2018, 23(1), 17-24.
[37]
Hu, K.; Yang, Z.; Pan, S.S.; Xu, H.; Ren, J. Synthesis and antitumor activity of liquiritigenin thiosemicarbazone derivatives. Eur. J. Med. Chem., 2010, 45(8), 3453-3458.
[http://dx.doi.org/10.1016/j.ejmech.2010.04.036] [PMID: 20494492]
[38]
Wang, Y.; Gu, W.; Shan, Y.; Liu, F.; Xu, X.; Yang, Y.; Zhang, Q.; Hongbo, K.; Zhonglong, W.; Shifa, W. Design, synthesis and anticancer activity of novel nopinone-based thiosemicarbazone derivatives. Bioorg. Med. Chem. Lett., 2017, 27, 2361-2362.
[39]
Yogeeswari, P.; Sriram, D.; Sunil Jit, L.R.J.; Kumar, S.S.; Stables, J.P. Anticonvulsant and neurotoxicity evaluation of some 6-chlorobenzothiazolyl-2-thiosemicarbazones. Eur. J. Med. Chem., 2002, 37(3), 231-236.
[http://dx.doi.org/10.1016/S0223-5234(02)01338-7] [PMID: 11900867]
[40]
Abhale, Y.K.; Shinde, A.; Deshmukh, K.K.; Nawale, L.; Sarkar, D.; Mhaske, P.C. Synthesis, antitubercular and antimicrobial potential of some new thiazole substituted thiosemicarbazide derivatives. Med. Chem. Res., 2017, 26(10), 2557-2567.
[http://dx.doi.org/10.1007/s00044-017-1955-1]
[41]
Patel, D.B.; Darji, D.G.; Patel, K.R.; Rajani, D.P.; Rajani, S.D.; Patel, H.D. Synthesis of novel quinolone-thiosemicarbazide hybrids and evaluation of their biological activities, molecular docking, molecular dynamics, pharmacophore model studies, and ADME-Tox properties. J. Heterocycl. Chem., 2019, 1-18.
[42]
Abbas, S.Y.; Basyouni, W.M.; El-Bayouki, K.A.M.; Dawood, R.M.; Abdelhafez, T.H.; Elawady, M.K. Efficient synthesis and anti-bovine viral diarrhea virus evaluation of 5-(aryldiazo)salicylaldehyde thiosemicarbazone derivatives. Synth. Commun., 2019, 49(18), 2411-2416.
[http://dx.doi.org/10.1080/00397911.2019.1626893]
[43]
Vitalino de Almeida, S.M.; Lafayette, E.A.; da Silva, L.P.B.G. Synthesis, DNA Binding, and Antiproliferative Acticity of Novel Acridine-Thiosemicarbazone Derivatives. Int. J. Mol. Sci., 2015, 16, 13026-13038.
[44]
Tan, O.U. Synthesis and antimycobacterial activities of some new N-acylhydrazone and thiosemicarbazide derivatives of 6-methyl-4,5-dihydropyridazin-3(2H)-one. Med. Chem. Res., 2011, 21, 2388-2392. [KerimanOzadali, Perumal Yogeeswari, Dharmarajan Sriram, Ayla Balkan.]
[45]
Patel, S.R.; Gangwal, R.; Sangamwar, A.T.; Jain, R. Synthesis, biological evaluation and 3D-QSAR study of hydrazide, semicarbazide and thiosemicarbazide derivatives of 4-(adamantan-1-yl)quinoline as anti-tuberculosis agents. Eur. J. Med. Chem., 2014, 85, 255-267.
[http://dx.doi.org/10.1016/j.ejmech.2014.07.100] [PMID: 25089809]
[46]
Chen, R.; Huo, L.; Jaiswal, Y.; Huang, J.; Zhong, Z.; Zhong, J.; Williams, L.; Xia, X.; Liang, Y.; Yan, Z. Design, synthesis, antimicrobial, and anticancer activities of acridine thiosemicarbazides derivatives. Molecules, 2019, 24(11), 2065.
[http://dx.doi.org/10.3390/molecules24112065] [PMID: 31151235]
[47]
Bhattacharyya, A.; Makhal, S.C.; Guchhait, N. Evaluating the merit of a diethylamino coumarinderived thiosemicarbazone as an intramolecular charge transfer probe: Efficient Zn(II) mediated emission swing from green to yellow. Photochem. Photobiol. Sci., 2019, 18(8), 2031-2041.
[http://dx.doi.org/10.1039/c9pp00108e] [PMID: 31292572]
[48]
El-Tab, A.S.; Moshira, M.A.E-W.; Rezk, A.M.S.M. Cytotoxic behavior and spectroscopic characterization of metal complexes of ethylacetoacetate bis(thiosemicarbazone) ligand. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2013, 2-23.
[PMID: 24011929]
[49]
Bhakiaraj, D.; Elavarasan, T.; Mathavan, M.; Megala, S.; Enbaraj, E.; Gopalakrishnan, M. Synthesis, spectral analysis, antibacterial activity and molecular docking studies of some novel derivatives of combined tetrazole and thiosemicarbazide moieties. Int. J. Adv. Sci. Res., 2021, 12(4), 210-218.
[50]
Altintop, M.D.; Sever, B.; Özdemir, A.; Kuş, G.; Oztopcu-Vatan, P.; Kabadere, S.; Kaplancikli, Z.A. Synthesis and evaluation of naphthalene-based thiosemicarbazone derivatives as new anticancer agents against LNCaP prostate cancer cells. J. Enzyme Inhib. Med. Chem., 2016, 31(3), 410-416.
[PMID: 25826149]
[51]
Arora, M.; Dhawan, R.K.; Sharma, B.; Kaur, N.; Mir, P.A.; Uppal, J.; Nagpal, N. Synthesis and evaluation of antimicrobial and antioxidant activity of thiosemicarbazone derivatives. EJPMR, 2021, 8(10), 553-559.
[52]
Pervez, H.; Manzoor, N.; Yaqub, M.; Khan, K.M. 5-Nitroisatin-derived thiosemicarbazones: potential antileishmanial agents. J. Enzyme Inhib. Med. Chem., 2014, 29(5), 628-632.
[http://dx.doi.org/10.3109/14756366.2013.836641] [PMID: 24090424]
[53]
Mohebbi, S.; Hassan, M.; Ghaffari, R.; Sardari, S.; Farahani, Y.F. Discovery of novel isatin-based thiosemicarbazones: synthesis, antibacterial, antifungal, and antimycobacterial screening. Res. Pharm. Sci., 2020, 15(3), 281-290.
[http://dx.doi.org/10.4103/1735-5362.288435] [PMID: 33088328]
[54]
Sayed, M.; El-Dean, A.M.K.; El-Dean, A.M.K.; Hassanien-Dean, M.A.R. Synthesis of some heterocyclic compounds derived from indole as antimicrobial agents. Synth. Commun., 2018, 2-9.
[55]
Abdellatif, K.R.A.; Abdelall, E.K.A.; Elshemy, H.A.H.; John, N.; Philoppes, E.H.M.H.; Nesma, M.K. Optimization of pyrazole-based compounds with 1,2,4-triazole-3-thiol moiety as selective COX-2 inhibitors cardioprotective drug candidates: Design, synthesis, cyclooxygenase inhibitions, anti-inflammatory, ulcerogenecity, cardiovascular evaluation, and molecular modeling studies. Bioorg. Chem., 2021, 114, 1-20.
[http://dx.doi.org/10.1016/j.bioorg.2021.105122]
[56]
Hammud, H.H.; El-Dakdouki, M.H.; Sonji, N.; Sonji, G.; Bouhadir, K.H. Interactions of Some Divalent Metal Ions with Thymine and Uracil Thiosemicarbazide Derivatives. Nucleosides Nucleotides Nucleic Acids, 2016, 35(5), 259-276.
[http://dx.doi.org/10.1080/15257770.2016.1143558] [PMID: 27049340]
[57]
Sriram, D.; Yogeeswari, P.; Rathinasababathy, T.; Roheet, K.P. Discovery of New Antitubercular Oxazolyl Thiosemicarbazones. J. Med. Chem., 2006, (49), 3448-3449.
[PMID: 16759086]
[58]
Sazeli, S.; Nath, A.R.; Ahmad, M.H.; Zulkifli, N.W.M.; Mohd, R.J.; Wageeh, A.Y. HweiVoon, L. Semicarbazide and thiosemicarbazide containing butylated hydroxytoluene moiety: new potential antioxidant additives for synthetic lubricanting oil. RSC Advances, 2021, 11, 7138-7145.
[http://dx.doi.org/10.1039/D0RA10626G] [PMID: 35423237]
[59]
Bisceglie, F.; Degola, F.; Rogolino, D.; Giannelli, G.; Orsoni, N.; Spadola, G.; Pioli, M.; Restivo, F.M.; Carcelli, M.; Pelosi, G. Sisters in structure but different in character, some benzaldehyde and cinnamaldehyde derivatives differentially favus secondary metabolism. Sci. Rep., 2020, 10(17), 1-14.
[60]
Munir, R. Zia-ur-Rehman, M.; Shahzad, M.; Sumera, Z.; Noman, J.; Sana, J.A.; Kiran, I.; Muhammad, M.A.; Imtiaz, A. Microwave-assisted synthesis of (Piperidin-1-yl)quinolin-3-yl)methylene)hydrazinecarbothioamides as potent inhibitors of cholinesterases: A biochemical and in silico approach. Molecules, 2021, 656(26), 1-31.
[61]
Altaf, A.A.; Shahzad, A.; Gul, Z.; Rasool, N.; Badshah, A.; Lal, B.; Khan, E. A review on the medicinal importance of pyridine derivatives. JMCDD, 2015, 1(1), 1-11.
[62]
Guo, C.; Wang, L.; Li, X.; Wang, S.; Yu, X.; Xu, K.; Zhao, Y.; Luo, J.; Li, X.; Jiang, B.; Shi, D. Discovery of novel bromophenol–thiosemicarbazone hybrids as potent selective inhibitors of poly(ADP-ribose) Polymerase-1 (PARP-1) for use in cancer. J. Med. Chem., 2019, 62(6), 3051-3067.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01946] [PMID: 30844273]
[63]
Jamal, S.E.; Iqbal, A.; Rahman, K.A.; Tahmeena, K. Thiosemicarbazone complexes as versatile medicinal chemistry agents: A review. JDDT, 2019, 9(3), 689-703.
[64]
Namiecińska, E.; Sobiesiak, M.; Małecka, M.; Guga, P.; Rozalska, B.; Budzisz, E. Antimicrobial and structural properties of metal ions complexes with thiosemicarbazide motif and related heterocyclic compounds. Curr. Med. Chem., 2019, 26(4), 664-693.
[http://dx.doi.org/10.2174/0929867325666180228164656] [PMID: 29493443]
[65]
Ramkishore, M.; Meenakshi, K.; Hoti, S.L.; Tharanikkarasu, K. Thiosemicarbazone derivatives: Design, synthesis and in vitro antimalarial activities studies. Eur. J. Pharm. Sci., 2019, 137, 2-12.
[66]
Paneth, A.; Stączek, P.; Plech, T.; Strzelczyk, A.; Dzitko, K.; Wujec, M.; Kuśmierz, E.; Kosikowska, U.; Grzegorczyk, A.; Paneth, P. Biological evaluation and molecular modelling study of thiosemicarbazide derivatives as bacterial type IIA topoisomerases inhibitors. J. Enzyme Inhib. Med. Chem., 2016, 31(1), 14-22.
[http://dx.doi.org/10.3109/14756366.2014.1003214] [PMID: 25792505]
[67]
Glisoni, R.J.; Castro, E.F.; Cavallaro, L.V.; Moglioni, A.G.; Sosnik, A. Complexation of a 1-Indanone Thiosemicarbazone with Hydroxypropyl-<I>β</I>-Cyclodextrin Enhances Its Activity Against a Hepatitis C Virus Surrogate Model. J. Nanosci. Nanotechnol., 2015, 15(6), 4224-4228.
[http://dx.doi.org/10.1166/jnn.2015.9613] [PMID: 26369033]
[68]
Celik, İ.; Ayhan-Kılcıgil, G.; Guven, B.; Kara, Z.; Gurkan-Alp, A.S.; Karayel, A.; Onay-Besikci, A. Design, synthesis and docking studies of benzimidazole derivatives as potential EGFR inhibitors. Eur. J. Med. Chem., 2019, 173, 240-249.
[http://dx.doi.org/10.1016/j.ejmech.2019.04.012] [PMID: 31009910]
[69]
Julia, H.; Bormio, N.; Sonja, H.; Marlene, M.; Vivien, P.; Alexander, R.; Eva, A.E.; Alessia, S.; Walter, B.; Bernhard, K.P.; Petra, H.; Christian, R.K. Cancer cell resistance against the clinically investigated thiosemicarbazone COTI-2 Is Based on Formation of Intracellular Copper Glutathione Adducts and ABCC 1-Mediated Efflux. J. Med. Chem., 2020, 63, 13719-13732.
[70]
He, Z.; Qiao, H.; Yang, F.; Zhou, W.; Gong, Y.; Zhang, X.; Wang, H.; Zhao, B.; Ma, L.; Liu, H.; Zhao, W. Novel thiosemicarbazone derivatives containing indole fragment as potent and selective anticancer agent. Eur. J. Med. Chem., 2019, 184, 111764.
[http://dx.doi.org/10.1016/j.ejmech.2019.111764] [PMID: 31614257]
[71]
Trotsko, N. Influence of Thiazolidine-2,4-Dione Derivatives with Azolidine or Thiosemicarbazone Moieties on Haemophilus spp. Planktonic orBioflim-Forming Cells. Molecules, 2019, 1051(24), 1-12.
[72]
De Monte, C.; Bizzarri, B.; Gidaro, M.C.; Carradori, S.; Mollica, A.; Luisi, G.; Granese, A.; Alcaro, S.; Costa, G.; Basilico, N.; Parapini, S.; Scaltrito, M.M.; Masia, C.; Sisto, F. Bioactive compounds of Crocus sativus L. and their semi-synthetic derivatives as promising anti- Helicobacter pylori, anti-malarial and anti-leishmanial agents. J. Enzyme Inhib. Med. Chem., 2015, 30(6), 1027-1033.
[http://dx.doi.org/10.3109/14756366.2014.1001755] [PMID: 25766747]
[73]
Kostova, I.; Saso, L. Advances in research of Schiff-base metal complexes as potent antioxidants. Curr. Med. Chem., 2013, 20(36), 4609-4632.
[http://dx.doi.org/10.2174/09298673113209990149] [PMID: 23834186]
[74]
Nath, R.; Pathania, S.; Grover, G.; Akhtar, M.J. Isatin containing heterocycles for different biological activities: Analysis of structure activity relationship. J. Mol. Struct., 2020, 1222, 128900.
[http://dx.doi.org/10.1016/j.molstruc.2020.128900]
[75]
Kovač, T.; Kovač, M.; Strelec, I.; Nevistić, A.; Molnar, M. Antifungal and antiaflatoxigenic activities of coumarinyl thiosemicarbazides against Aspergillus flavus NRRL 3251. Arh. Hig. Rada Toksikol., 2017, 68(1), 9-15.
[http://dx.doi.org/10.1515/aiht-2017-68-2883] [PMID: 28365677]
[76]
Hussein, M.A.; Iqbal, M.A.; Asif, M.; Haque, R.A.; Mohammed, B.; Khadeer, A.; Amin, M.S.A.M.; Teoh, S.G. A synthesis, crystal structures and in vitro anticancer studies of new ts.g.hiosemicarbazone derivatives. Phosphorus Sulfur Silicon Relat. Elem., 2015, 190, 1500-1506.
[http://dx.doi.org/10.1080/10426507.2014.995299]
[77]
Kassenhin, U.C.; Gbaguidi, F.A.; McCurdy, C.R.; Poupaert, J.H. Trypanocidal activity of a thioacyl-thiosemicarbazide derivative associating both immunostimulating thalidomide and anti-parasitic thiosemicarbazide pharmacophores. J. Chem. Pharm. Res., 2015, 7(7), 48-55.
[78]
Sampath, N.; Mathews, R.; Ponnuswamy, M.N.; Kang, L-W. Crystal Structure and Conformation Study of 4-N,N-Dimethylamine Benzaldehyde Thiosemicarbazone Derivative. Mol. Cryst. Liq. Cryst., 2010, 518(1), 151-159.
[http://dx.doi.org/10.1080/15421400903568138]
[79]
Asif, M. Chemical characteristics, synthetic methods, and biological potential of quinazoline and quinazolinone derivatives. Int. Med. Chem, 2014, 2014, 395637.
[80]
Singh, M.; Singh, S.K.; Gangwar, M.; Nath, G.; Singh, S.K. Design, synthesis and mode of action of novel 2-(4-aminophentyl)benzothiazole derivatives bearing semicarbazone and thiosemicarbazone moiety as potent antimicrobial agents. Med. Chem. Res., 2015.
[81]
Jones, L.M.; Pinney, K.G. Design and Synthesis of Functionalized Small-Molecule Inhibitors of Cathepsins L and K., 2012.
[82]
Maurya, M.R.; Kumar, A.; Abid, M.; Azam, A. Dioxovanadium(V) and μ-oxo bis[oxovanadium(V)] complexes containing thiosemicarbazone based ONS donor set and their antiamoebic activity. Inorg. Chim. Acta, 2006, 359(8), 2439-2447.
[http://dx.doi.org/10.1016/j.ica.2006.02.032]
[83]
Marella, A.; Shaquiquzzaman, M.; Akhter, M.; Verma, G.; Alam, M.M. Novel pyrazole–pyrazoline hybrids endowed with thioamide as antimalarial agents: their synthesis and 3D-QSAR studies. J. Enzyme Inhib. Med. Chem., 2015, 30(4), 597-606.
[http://dx.doi.org/10.3109/14756366.2014.958081] [PMID: 25333767]
[84]
The Tamil, M.G.R.. Medicinal Univercity Chennai-600 032. Molecular Design, Synthesis, Characterization & Biological Evaluation of New Series of Substituted 1,4 Dihydro Pyridine Derivatives. 2012, 1-114.
[85]
Carradori, S.; Chimenti, P.; Fazzari, M.; Granese, A.; Angiolella, L. Antimicrobial activity, synergism and inhibition of germ tube formation by Crocus sativus -derived compounds against Candida spp. J. Enzyme Inhib. Med. Chem., 2016, 31(sup2), 189-193.
[http://dx.doi.org/10.1080/14756366.2016.1180596] [PMID: 27160150]
[86]
Kalhor, M.; Shabani, M.; Nikokar, I.; Reyhaneh Banisaeed, S. Synthesis, Characterization and Antibacterial Activity of some Novel Thiosemicarbazides, 1,2,4-Triazol-3-thiols and their S-substituted Derivatives. Iran. J. Pharm. Res., 2015, 14(1), 67-75.
[PMID: 25561913]
[87]
Abu Khalaf, R.; Abdula, A.M.; Mubarak, M.S.; Taha, M.O. Tryptophan and thiosemicarbazide derivatives: design, synthesis, and biological evaluation as potential β-D-glucosidase inhibitors. Med. Chem. Res., 2014.
[88]
Karthikeyan, S.; Bharanidharan, G.; Kesherwani, M.; Mani, K.A.; Srinivasan, N.; Velmurugan, D.; Aruna, P.; Ganesan, S. Insights into the binding of thiosemicarbazone derivatives with human serum albumin: spectroscopy and molecular modeling studies. J. Biomol. Struct. Dyn., 2015, 2-15.
[PMID: 26368536]
[89]
Sumera, Z.; Rubina, M.; Muhammad, T.Y.; Naghmana, K.; Aliya, I.; Sehar, A.; Noorma, S.; Tahira, T.A.; Hashem, O.A.; Imtiaz, K. Hybrid Quinoline-Thiosemicarbazone Therapeutics as a New Treatment Opportunity for Alzheimer’s Disease—Synthesis, in vitro Cholinesterase Inhibitory Potential and Computational Modeling Analysis. Molecules, 2021, 26, 1-23.
[90]
Matesanz, A.; Souza, P. α-N-heterocyclic thiosemicarbazone derivatives as potential antitumor agents: a structure-activity relationships approach. Mini Rev. Med. Chem., 2009, 9(12), 1389-1396.
[http://dx.doi.org/10.2174/138955709789957422] [PMID: 19929812]
[91]
Summersa, K.L. A Structural Chemistry Perspective on the Antimalarial Properties of Thiosemicarbazone Metal Complexes. Mini Rev. Med. Chem., 2017, 0, 1-21.
[92]
Al-Mutairi, A.A.; Al-Alshaikh, M.A.; Al-Omary, F.A.M.; Hassan, H.M.; El-Mahdy, A.M.; El-Emam, A.A. Synthesis, Antimicrobial, and Anti-Proliferative Activities of Novel 4-(Adamantan-1-yl)-1-arylidene-3-thiosemicarbazides, 4-Arylmethyl N′-(Adamantan-1-yl)piperidine-1-carbothioimidates, and Related Derivatives. Molecules, 2019, 24(23), 4308.
[http://dx.doi.org/10.3390/molecules24234308] [PMID: 31779091]
[93]
Toan, V.N.; Thanh, N.D. Synthesis and antiproliferative activity of hybrid thiosemicarbazone derivatives bearing coumarin and d-galactose moieties with EGFR inhibitory activity and molecular docking study. Med. Chem. Res., 2021, 30(10), 1868-1885.
[http://dx.doi.org/10.1007/s00044-021-02773-y]
[94]
Li, M.X.; Chen, C.L.; Zhang, D.; Niu, J.Y.; Ji, B.S. Mn(II), Co(II) and Zn(II) complexes with heterocyclic substituted thiosemicarbazones: Synthesis, characterization, X-ray crystal structures and antitumor comparison. Eur. J. Med. Chem., 2010, 45(7), 3169-3177.
[http://dx.doi.org/10.1016/j.ejmech.2010.04.009] [PMID: 20434816]
[95]
Cihan-Ustundag, G.; Elif, G.; Lieve, N.; Ulusoy-Guzeldemirci, N.G. Synthesis and antiviral properties of novel indole-based thiosemicarbazides and 4-thiazolidinones. Bioorg. Med. Chem., 2015, 24, 240-246.
[96]
Kishore Kumar, G.D.; Gustavo, E.C.; Charlton-Sevcik, A.K.; Grace, K.Y. Functionalized benzophenone, thiophene, pyridine, and fluorene thiosemicarbazone derivatives as inhibitors of cathepsin L. Bioorg. Med. Chem. Lett., 2010, 20, 6610-6615.
[97]
Yi, W.; Cao, R.; Wen, H.; Yan, Q.; Zhou, B.; Ma, L.; Song, H. Discovery of 4-functionalized phenyl-O-β-d-glycosides as a new class of mushroom tyrosinase inhibitors. Bioorg. Med. Chem. Lett., 2009, 19(21), 6157-6160.
[http://dx.doi.org/10.1016/j.bmcl.2009.09.018] [PMID: 19800229]
[98]
Patel, J.J.; Modh, R.P.; Manjoorahmed, A.; Kishor, H.C. Comparative biological study between quinazolinyl-triazinylsemicarbazide and thiosemicarbazide hybrid derivatives. Mol. Divers., 2020, 25(4), 2271-2287.
[99]
Serra, S.; Moineaux, L.; Vancraeynest, C.; Masereel, B.; Wouters, J.; Pochet, L.; Frédérick, R. Thiosemicarbazide, a fragment with promising indolamine-2,3-dioxygenase (IDO) inhibition properties. Eur. J. Med. Chem., 2014, 82, 96-105.
[http://dx.doi.org/10.1016/j.ejmech.2014.05.044] [PMID: 24878638]
[100]
Rane, R.A.; Naphade, S.S.; Bangalore, P.K.; Palkar, M.B.; Shaikh, M.S.; Rajshekhar, K. Synthesis of nivel 4-nitropyrrole-based semicarbazide and thiosemicarbazide hybrids with antimicrobial and anti-tubercular activity. Bioorg. Med. Chem. Lett., 2014, 24, 3079-3083.
[http://dx.doi.org/10.1016/j.bmcl.2014.05.018] [PMID: 24878195]
[101]
Phan, V.H.; Thi, P.D.P.; Phan, D.C.; Vu, B.D. Synthesis and Bioactivity of Thiosemicarbazones Containing Adamantane Skeletons. Molecules, 2020, 324(14), 1-14.

© 2025 Bentham Science Publishers | Privacy Policy