Generic placeholder image

The Natural Products Journal

Editor-in-Chief

ISSN (Print): 2210-3155
ISSN (Online): 2210-3163

Systematic Review Article

The Analgesic Effect of Ginger on Postoperative Pain: A Systematic Review of Clinical Trials

Author(s): Hamidreza Azizi Farsani, Saeid Heidari-Soureshjani, Catherine MT Sherwin, Arash Tafrishinejad* and Zahra Azadegan-Dehkordi

Volume 14, Issue 2, 2024

Published on: 24 July, 2023

Article ID: e140623217969 Pages: 9

DOI: 10.2174/2210315513666230614103154

Price: $65

conference banner
Abstract

Introduction and Aim: Pain is a common problem that can negatively affect patients' daily life and impair the quality of life of patients. This systematic review evaluates ginger's analgesic effects and underlying mechanisms in postoperative pain.

Methods: An extensive search was undertaken in various databases, including Cochrane Library, Pub- Med, Embase, Web of Science, and Scopus. After considering the study's inclusion and exclusion criteria, 12 records were retrieved. The raw data were extracted and entered into an Excel form, and the study outcomes were analyzed. A PRISMA 2020 flow diagram illustrates the direct search approach used for this systematic review.

Results: The reviewed studies mainly examined ginger's analgesic effects and other chemical analgesics, such as ibuprofen. Ginger and its bioactive compounds, such as gingerols and shogaols, can reduce postoperative pain by relieving nociceptive, mechanical, and neuropathic pain inflammatory pain by activating the various descendent inhibitory pathways of pain. Ginger induces its postoperative analgesic effects by involving and changing thinly myelinated A-delta, unmyelinated C-fibers, and myelinated A-beta-fibers, Transient receptor potential vanilloid 1 (TRPV1), and inhibiting inflammatory process and oxidant activities.

Conclusion: Ginger is emerging as promising analgesic effects through various nociceptive pathways on postoperative pain in patients. Additional rigorous clinical trials are warranted to investigate these results further.

Graphical Abstract

[1]
Menon, P.; Perayil, J.; Fenol, A.; Rajan Peter, M.; Lakshmi, P.; Suresh, R. Effectiveness of ginger on pain following periodontal surgery – A randomized cross-over clinical trial. J. Ayurveda Integr. Med., 2021, 12(1), 65-69.
[http://dx.doi.org/10.1016/j.jaim.2020.05.003] [PMID: 32624375]
[2]
Raffaeli, W.; Tenti, M.; Corraro, A.; Malafoglia, V.; Ilari, S.; Balzani, E.; Bonci, A. Chronic pain: what does it mean? a review on the use of the term chronic pain in clinical practice. J. Pain Res., 2021, 14, 827-835.
[http://dx.doi.org/10.2147/JPR.S303186] [PMID: 33833560]
[3]
Hadi, M.A.; McHugh, G.A.; Closs, S.J. Impact of chronic pain on patients’ quality of life: a comparative mixed-methods study. J. Patient Exp., 2019, 6(2), 133-141.
[http://dx.doi.org/10.1177/2374373518786013] [PMID: 31218259]
[4]
Mills, S.E.E.; Nicolson, K.P.; Smith, B.H. Chronic pain: a review of its epidemiology and associated factors in population-based studies. Br. J. Anaesth., 2019, 123(2), e273-e283.
[http://dx.doi.org/10.1016/j.bja.2019.03.023] [PMID: 31079836]
[5]
Apariman, S.; Ratchanon, S.; Wiriyasirivej, B. Effectiveness of ginger for prevention of nausea and vomiting after gynecological laparoscopy. J. Med. Assoc. Thai., 2006, 89(12), 2003-2009.
[PMID: 17214049]
[6]
Prell, T.; Liebermann, J.D.; Mendorf, S.; Lehmann, T.; Zipprich, H.M. Pain coping strategies and their association with quality of life in people with Parkinson’s disease: A cross-sectional study. PLoS One, 2021, 16(11), e0257966.
[http://dx.doi.org/10.1371/journal.pone.0257966] [PMID: 34723975]
[7]
Gómez, M.; Izquierdo, C.E.; Mayoral Rojals, V.; Pergolizzi, J., Jr; Plancarte Sanchez, R.; Paladini, A.; Varrassi, G. Considerations for better management of postoperative pain in light of chronic postoperative pain: a narrative review. Cureus, 2022, 14(4), e23763.
[http://dx.doi.org/10.7759/cureus.23763] [PMID: 35518528]
[8]
Mitra, S.; Jafra, A. Pain relief after ambulatory surgery: Progress over the last decade. Saudi J. Anaesth., 2018, 12(4), 618-625.
[http://dx.doi.org/10.4103/sja.SJA_232_18] [PMID: 30429746]
[9]
Williams, A.C.C.; Fisher, E.; Hearn, L.; Eccleston, C. Psychological therapies for the management of chronic pain (excluding headache) in adults. Cochrane Database Syst. Rev., 2020, 8(8), CD007407.
[PMID: 32794606]
[10]
Sheckter, C.C.; Stewart, B.T.; Barnes, C.; Walters, A.; Bhalla, P.I.; Pham, T.N. Techniques and strategies for regional anesthesia in acute burn care—a narrative review. Burns Trauma, 2021, 9, tkab015.
[http://dx.doi.org/10.1093/burnst/tkab015] [PMID: 34285927]
[11]
Bindu, S.; Mazumder, S.; Bandyopadhyay, U. Non-steroidal anti-inflammatory drugs (NSAIDs) and organ damage: A current perspective. Biochem. Pharmacol., 2020, 180, 114147.
[http://dx.doi.org/10.1016/j.bcp.2020.114147] [PMID: 32653589]
[12]
Dolati, S.; Tarighat, F.; Pashazadeh, F.; Shahsavarinia, K.; Gholipouri, S.; Soleimanpour, H. The role of opioids in pain management in elderly patients with chronic kidney disease: a review article. Anesth. Pain Med., 2020, 10(5), e105754.
[http://dx.doi.org/10.5812/aapm.105754] [PMID: 34150565]
[13]
Raeisi, E.; Raeisi, F.; Heidarian, E.; Shahbazi-Gahroui, D.; Lemoigne, Y. Bromelain inhibitory effect on colony formation: An In vitro Study on human AGS, PC3, and MCF7 cancer cells. J. Med. Signals Sens., 2019, 9(4), 267-273.
[http://dx.doi.org/10.4103/jmss.JMSS_42_18] [PMID: 31737556]
[14]
Unuofin, J.O.; Lebelo, S.L. Antioxidant effects and mechanisms of medicinal plants and their bioactive compounds for the prevention and treatment of type 2 diabetes: an updated review. Oxid. Med. Cell. Longev., 2020, 2020, 1-36.
[http://dx.doi.org/10.1155/2020/1356893] [PMID: 32148647]
[15]
Ekor, M. The growing use of herbal medicines: issues relating to adverse reactions and challenges in monitoring safety. Front. Pharmacol., 2014, 4, 177.
[http://dx.doi.org/10.3389/fphar.2013.00177] [PMID: 24454289]
[16]
Mao, Q.Q.; Xu, X.Y.; Cao, S.Y.; Gan, R.Y.; Corke, H.; Beta, T.; Li, H.B. Bioactive Compounds and Bioactivities of Ginger Zingiber officinale Roscoe). Foods, 2019, 8(6), 185.
[http://dx.doi.org/10.3390/foods8060185] [PMID: 31151279]
[17]
Rondanelli, M.; Fossari, F.; Vecchio, V.; Gasparri, C.; Peroni, G.; Spadaccini, D.; Riva, A.; Petrangolini, G.; Iannello, G.; Nichetti, M.; Infantino, V.; Perna, S. Clinical trials on pain lowering effect of ginger: A narrative review. Phytother. Res., 2020, 34(11), 2843-2856.
[http://dx.doi.org/10.1002/ptr.6730] [PMID: 32436242]
[18]
Terry, R.; Posadzki, P.; Watson, L.K.; Ernst, E. The use of ginger Zingiber officinale for the treatment of pain: a systematic review of clinical trials. Pain Med., 2011, 12(12), 1808-1818.
[http://dx.doi.org/10.1111/j.1526-4637.2011.01261.x] [PMID: 22054010]
[19]
Kalava, A.; Darji, S.J.; Kalstein, A.; Yarmush, J.M. SchianodiCola, J.; Weinberg, J. Efficacy of ginger on intraoperative and postoperative nausea and vomiting in elective cesarean section patients. Eur. J. Obstet. Gynecol. Reprod. Biol., 2013, 169(2), 184-188.
[http://dx.doi.org/10.1016/j.ejogrb.2013.02.014] [PMID: 23510951]
[20]
Cheshfar, F.; Bani, S.; Mirghafourvand, M.; Hasanpour, S.; Javadzadeh, Y. Effects of ginger Zingiber officinale extract ointment on pain and episiotomy wound healing in nulliparous women: a randomized controlled clinical trial; Res. Square, 2022.
[21]
Irawati, N.B.U.; Xanda, A.N. Ginger aromatherapy (Zingiber Officinale) against post partum pain. Jurnal Kebidanan Malahayati, 2021, 8(1), 25-31.
[22]
Shabanian, G.; Satari, A. Comparison of the effect of ginger capsule and diclofenac tablet on the relief of pain following inguinal hernia surgery. Shahrekord Univ. Med. Sci. J., 2019, 21(3), 114-117.
[http://dx.doi.org/10.34172/jsums.2019.20]
[23]
Vadiati Saberi, B.; Radafshar, G.; Masoumi, F.; Ghojogh, M.; Modabbernia, S. Comparison of prophylactic and post operation effects of Zingiber Officinale and ibuprofen on periodontal flap surgery pain. J. Dental Faculty Gilan. Uni. Med. Sci., 2019, 8(4), 1-6.
[24]
Eberhart, L.H.J.; Mayer, R.; Betz, O.; Tsolakidis, S.; Hilpert, W.; Morin, A.M.; Geldner, G.; Wulf, H.; Seeling, W. Ginger does not prevent postoperative nausea and vomiting after laparoscopic surgery. Anesth. Analg., 2003, 96(4), 995-998.
[http://dx.doi.org/10.1213/01.ANE.0000055818.64084.41] [PMID: 12651648]
[25]
Rayati, F.; Hajmanouchehri, F.; Najafi, E. Comparison of anti-inflammatory and analgesic effects of Ginger powder and Ibuprofen in postsurgical pain model: A randomized, double-blind, case–control clinical trial. Dent. Res. J., 2017, 14(1), 1-7.
[http://dx.doi.org/10.4103/1735-3327.201135] [PMID: 28348610]
[26]
Koçak, İ.; Yücepur, C.; Gökler, O. Is ginger effective in reducing post-tonsillectomy morbidity? a prospective randomised clinical trial. Clin. Exp. Otorhinolaryngol., 2018, 11(1), 65-70.
[http://dx.doi.org/10.21053/ceo.2017.00374] [PMID: 28877566]
[27]
Tianthong, W.; Phupong, V. A randomized, double-blind, placebo-controlled trial on the efficacy of ginger in the prevention of abdominal distention in post cesarean section patients. Sci. Rep., 2018, 8(1), 6835.
[http://dx.doi.org/10.1038/s41598-018-25200-6] [PMID: 29717175]
[28]
Mashak, B.; Hashemnejad, M.; Kabir, K.; Refaei, M.; Esmaelzadeh Saeieh, S.; Torkashvand, S.; Salehi, L.; Yazdkhasti, M. The effect of ginger on preventing post-spinal puncture headache in patients undergoing cesarean section. Int. J. Women’s Health Reprod. Sci., 2018, 7(2), 204-210.
[http://dx.doi.org/10.15296/ijwhr.2019.34]
[29]
Ozgoli, G.; Mozafari, S.; Esmaeili, S.; Momenyan, S.; Zadeh Modarres, S. Effect of Zingiber officinale Roscoe rhizome (ginger) capsule on postpartum pain: Double-blind randomized clinical trial. J. Res. Med. Sci., 2021, 26(1), 105.
[http://dx.doi.org/10.4103/jrms.JRMS_544_20] [PMID: 35126568]
[30]
Alshibani, N.; Al-Kattan, R.; Alssum, L.; Basudan, A.; Shaheen, M.; Alqutub, M.N.; Al Dahash, F. Postoperative analgesic and anti-inflammatory effectiveness of ginger (Zingiber officinale) and NSAIDs as adjuncts to nonsurgical periodontal therapy for the management of periodontitis. Oral Health Prev. Dent., 2022, 20(1), 227-232.
[PMID: 35695692]
[31]
Hannoodee, S.; Nasuruddin, D.N. Acute Inflammatory Response. StatPearls, StatPearls Publishing Copyright © 2022; StatPearls Publishing LLC: Treasure Island, FL, 2022.
[32]
Mantyh, P.W. The neurobiology of skeletal pain. Eur. J. Neurosci., 2014, 39(3), 508-519.
[http://dx.doi.org/10.1111/ejn.12462] [PMID: 24494689]
[33]
Di Stefano, G.; Di Lionardo, A.; Di Pietro, G.; Truini, A. Neuropathic pain related to peripheral neuropathies according to the iasp grading system criteria. Brain Sci., 2020, 11(1), 1.
[http://dx.doi.org/10.3390/brainsci11010001] [PMID: 33374929]
[34]
Ballester, P.; Cerdá, B.; Arcusa, R.; Marhuenda, J.; Yamedjeu, K.; Zafrilla, P. Effect of ginger on inflammatory diseases. Molecules, 2022, 27(21), 7223.
[http://dx.doi.org/10.3390/molecules27217223] [PMID: 36364048]
[35]
Andrei, C.; Zanfirescu, A. Niţulescu, G.M.; Negreș, S. Understanding the molecular mechanisms underlying the analgesic effect of ginger. Nutraceuticals, 2022, 2(4), 384-403.
[http://dx.doi.org/10.3390/nutraceuticals2040029]
[36]
Yücel,, Ç. Karatoprak, G.Ş.; Açı.B.; Akkol, E.K.; Barak, T.H.; Sobarzo-Sánchez, E.; Aschner, M.; Shirooie, S. Immunomodulatory and anti-inflammatory therapeutic potential of gingerols and their nanoformulations. Front. Pharmacol., 2022, 13, 902551.
[http://dx.doi.org/10.3389/fphar.2022.902551] [PMID: 36133811]
[37]
Varrassi, G.; Alon, E.; Bagnasco, M.; Lanata, L.; Mayoral-Rojals, V.; Paladini, A.; Pergolizzi, J.V.; Perrot, S.; Scarpignato, C.; Tölle, T. Towards an effective and safe treatment of inflammatory pain: a delphi-guided expert consensus. Adv. Ther., 2019, 36(10), 2618-2637.
[http://dx.doi.org/10.1007/s12325-019-01053-x] [PMID: 31485978]
[38]
Yaksh, T.L.; Woller, S.A.; Ramachandran, R.; Sorkin, L.S. The search for novel analgesics: targets and mechanisms. F1000Prime Rep., 2015, 7, 56.
[http://dx.doi.org/10.12703/P7-56] [PMID: 26097729]
[39]
Roffe-Vazquez, D.N.; Huerta-Delgado, A.S.; Castillo, E.C.; Villarreal-Calderón, J.R.; Gonzalez-Gil, A.M.; Enriquez, C.; Garcia-Rivas, G.; Elizondo-Montemayor, L. Correlation of vitamin D with inflammatory cytokines, atherosclerotic parameters, and lifestyle factors in the setting of heart failure: a 12-month follow-up study. Int. J. Mol. Sci., 2019, 20(22), 5811.
[http://dx.doi.org/10.3390/ijms20225811] [PMID: 31752330]
[40]
Lombardo, M.; Feraco, A.; Ottaviani, M.; Rizzo, G.; Camajani, E.; Caprio, M.; Armani, A. The efficacy of vitamin D supplementation in the treatment of fibromyalgia syndrome and chronic musculoskeletal pain. Nutrients, 2022, 14(15), 3010.
[http://dx.doi.org/10.3390/nu14153010] [PMID: 35893864]
[41]
Kany, S.; Vollrath, J.T.; Relja, B. Cytokines in inflammatory disease. Int. J. Mol. Sci., 2019, 20(23), 6008.
[http://dx.doi.org/10.3390/ijms20236008] [PMID: 31795299]
[42]
Yang, S.; Sun, M.; Zhang, X. Protective effect of resveratrol on knee osteoarthritis and its molecular mechanisms: a recent review in preclinical and clinical trials. Front. Pharmacol., 2022, 13, 921003.
[http://dx.doi.org/10.3389/fphar.2022.921003] [PMID: 35959426]
[43]
Sirše, M. Effect of dietary polyphenols on osteoarthritis—molecular mechanisms. Life, 2022, 12(3), 436.
[http://dx.doi.org/10.3390/life12030436] [PMID: 35330187]
[44]
Danwilai, K.; Konmun, J.; Sripanidkulchai, B.; Subongkot, S. Antioxidant activity of ginger extract as a daily supplement in cancer patients receiving adjuvant chemotherapy: a pilot study. Cancer Manag. Res., 2017, 9, 11-18.
[http://dx.doi.org/10.2147/CMAR.S124016] [PMID: 28203106]
[45]
Schadich, E. Hlaváč J.; Volná, T.; Varanasi, L.; Hajdúch, M.; Džubák, P. Effects of ginger phenylpropanoids and quercetin on nrf2-are pathway in human BJ fibroblasts and HaCaT keratinocytes. BioMed Res. Int., 2016, 2016, 1-6.
[http://dx.doi.org/10.1155/2016/2173275] [PMID: 26942188]
[46]
Yin, Y.; Dong, Y.; Vu, S.; Yang, F.; Yarov-Yarovoy, V.; Tian, Y.; Zheng, J. Structural mechanisms underlying activation of TRPV1 channels by pungent compounds in gingers. Br. J. Pharmacol., 2019, 176(17), bph.14766.
[http://dx.doi.org/10.1111/bph.14766] [PMID: 31207668]
[47]
Dedov, V.N.; Tran, V.H.; Duke, C.C.; Connor, M.; Christie, M.J.; Mandadi, S.; Roufogalis, B.D. Gingerols: a novel class of vanilloid receptor (VR1) agonists. Br. J. Pharmacol., 2002, 137(6), 793-798.
[http://dx.doi.org/10.1038/sj.bjp.0704925] [PMID: 12411409]
[48]
Yang, S.; Yang, F.; Wei, N.; Hong, J.; Li, B.; Luo, L.; Rong, M.; Yarov-Yarovoy, V.; Zheng, J.; Wang, K.; Lai, R. A pain-inducing centipede toxin targets the heat activation machinery of nociceptor TRPV1. Nat. Commun., 2015, 6(1), 8297.
[http://dx.doi.org/10.1038/ncomms9297] [PMID: 26420335]
[49]
Yang, F.; Zheng, J. Understand spiciness: mechanism of TRPV1 channel activation by capsaicin. Protein Cell, 2017, 8(3), 169-177.
[http://dx.doi.org/10.1007/s13238-016-0353-7] [PMID: 28044278]
[50]
Kalyvas, J.; Theodore, N. Thoracic Spine Stabilization. Encycl. Neurol. Sci. (Second Edition), 2014, 455-458.
[http://dx.doi.org/10.1016/B978-0-12-385157-4.00795-8]
[51]
Basbaum, A.I.; Bautista, D.M.; Scherrer, G.; Julius, D. Cellular and molecular mechanisms of pain. Cell, 2009, 139(2), 267-284.
[http://dx.doi.org/10.1016/j.cell.2009.09.028] [PMID: 19837031]
[52]
Pogatzki-Zahn, E.M.; Segelcke, D.; Schug, S.A. Postoperative pain—from mechanisms to treatment. Pain Rep., 2017, 2(2), e588.
[http://dx.doi.org/10.1097/PR9.0000000000000588] [PMID: 29392204]
[53]
Dib-Hajj, S.D.; Yang, Y.; Waxman, S.G. Genetics and molecular pathophysiology of Na(v)1.7-related pain syndromes. Adv. Genet., 2008, 63, 85-110.
[http://dx.doi.org/10.1016/S0065-2660(08)01004-3] [PMID: 19185186]
[54]
Kim, Y.H.; Back, S.K.; Davies, A.J.; Jeong, H.; Jo, H.J.; Chung, G.; Na, H.S.; Bae, Y.C.; Kim, S.J.; Kim, J.S.; Jung, S.J.; Oh, S.B. TRPV1 in GABAergic interneurons mediates neuropathic mechanical allodynia and disinhibition of the nociceptive circuitry in the spinal cord. Neuron, 2012, 74(4), 640-647.
[http://dx.doi.org/10.1016/j.neuron.2012.02.039] [PMID: 22632722]
[55]
Alloui, A.; Zimmermann, K.; Mamet, J.; Duprat, F.; Noël, J.; Chemin, J.; Guy, N.; Blondeau, N.; Voilley, N.; Rubat-Coudert, C.; Borsotto, M.; Romey, G.; Heurteaux, C.; Reeh, P.; Eschalier, A.; Lazdunski, M. TREK-1, a K+ channel involved in polymodal pain perception. EMBO J., 2006, 25(11), 2368-2376.
[http://dx.doi.org/10.1038/sj.emboj.7601116] [PMID: 16675954]
[56]
Kim, S.; Cheon, C.; Kim, B.; Kim, W. The effect of ginger and its sub-components on pain. Plants, 2022, 11(17), 2296.
[http://dx.doi.org/10.3390/plants11172296] [PMID: 36079679]
[57]
Colloca, L.; Ludman, T.; Bouhassira, D.; Baron, R.; Dickenson, A.H.; Yarnitsky, D.; Freeman, R.; Truini, A.; Attal, N.; Finnerup, N.B.; Eccleston, C.; Kalso, E.; Bennett, D.L.; Dworkin, R.H.; Raja, S.N. Neuropathic pain. Nat. Rev. Dis. Primers, 2017, 3(1), 17002.
[http://dx.doi.org/10.1038/nrdp.2017.2] [PMID: 28205574]
[58]
Shen, C.L.; Wang, R.; Yakhnitsa, V.; Santos, J.; Watson, C.; Kiritoshi, T.; Ji, G.; Kim, N.; Lovett, J.; Hamood, A.; Neugebauer, V. Ginger root extract mitigates neuropathic pain via suppressing neuroinflammation: Gut-brain connection. Curr. Dev. Nutr., 2022, 6(S1), 808.
[http://dx.doi.org/10.1093/cdn/nzac064.027]
[59]
Mata-Bermudez, A.; Izquierdo, T.; de los Monteros-Zuñiga, E.; Coen, A.; Godínez-Chaparro, B. Antiallodynic effect induced by [6]-gingerol in neuropathic rats is mediated by activation of the serotoninergic system and the nitric oxide-cyclic guanosine monophosphate-adenosine triphosphate-sensitive K + channel pathway. Phytother. Res., 2018, 32(12), 2520-2530.
[http://dx.doi.org/10.1002/ptr.6191] [PMID: 30251306]
[60]
Fajrin, F.A.; Hidayanti, E.D.; Khoiroh, N.L.; Sulistyaningrum, G.; Imandasari, N.; Afifah, A.; Hartono, S. Red ginger oil affects COX-2 and NMDAR expression during inflammatory- or neuropathy-induced chronic pain in mice. Jundishapur J. Nat. Pharm. Prod., 2021, 16(4)
[http://dx.doi.org/10.5812/jjnpp.112353]
[61]
Borgonetti, V.; Governa, P.; Biagi, M.; Pellati, F.; Galeotti, N. Zingiber officinale Roscoe rhizome extract alleviates neuropathic pain by inhibiting neuroinflammation in mice. Phytomedicine, 2020, 78, 153307.
[http://dx.doi.org/10.1016/j.phymed.2020.153307] [PMID: 32846405]
[62]
Chia, J.S.M.; Izham, N.A.M.; Farouk, A.A.O.; Sulaiman, M.R.; Mustafa, S.; Hutchinson, M.R.; Perimal, E.K. Zerumbone Modulates α2A-Adrenergic, TRPV1, and NMDA NR2B Receptors Plasticity in CCI-Induced Neuropathic Pain In Vivo and LPS-Induced SH-SY5Y Neuroblastoma In Vitro Models. Front. Pharmacol., 2020, 11, 92.
[http://dx.doi.org/10.3389/fphar.2020.00092] [PMID: 32194397]
[63]
Kang, S.; Brennan, T.J. Mechanisms of postoperative pain. Anesth. Pain Med., 2016, 11(3), 236-248.
[http://dx.doi.org/10.17085/apm.2016.11.3.236]
[64]
Spofford, C.M.; Brennan, T.J. Gene expression in skin, muscle, and dorsal root ganglion after plantar incision in the rat. Anesthesiology, 2012, 117(1), 161-172.
[http://dx.doi.org/10.1097/ALN.0b013e31825a2a2b] [PMID: 22617252]
[65]
Zhou, X.; Afzal, S.; Wohlmuth, H.; Münch, G.; Leach, D.; Low, M.; Li, C.G. Molecules, 2022, 27(12)
[66]
Lakhan, S.E.; Ford, C.T.; Tepper, D. Zingiberaceae extracts for pain: a systematic review and meta-analysis. Nutr. J., 2015, 14(1), 50.
[http://dx.doi.org/10.1186/s12937-015-0038-8] [PMID: 25972154]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy