Generic placeholder image

Recent Patents on Engineering

Editor-in-Chief

ISSN (Print): 1872-2121
ISSN (Online): 2212-4047

General Review Article

Recent Patents on Thermal Characteristic Analysis and Modeling of Machine Tools

Author(s): Zhaolong Li and Junming Du*

Volume 18, Issue 5, 2024

Published on: 29 August, 2023

Article ID: e120623217881 Pages: 13

DOI: 10.2174/1872212118666230612113017

Price: $65

conference banner
Abstract

Modern machining machines are becoming more sophisticated and automated, but the problems of thermal deformation caused by machining have also come to the fore. CNC machine tools are used in high-speed, high-feed rate machining conditions, so the impact of thermal deformation factors will lead to a more prominent loss of accuracy. In this context, the design and manufacture of future CNC machine tools need to take further account of the errors caused by thermal deformation and the accompanying loss of accuracy. The principle of thermal characterisation and thermal error modeling of machine tools is to measure and reasonably analyse the machine tool at different temperature points and make corrections to the analysis data in order to get a value as close as possible to the real value and improve machining accuracy. Several representative patents and studies on thermal characterisation and thermal error modeling of machine tools at home and abroad are reviewed. This study presents a selection and summary of a large number of recent patents and studies on machine tool thermal characterisation and thermal error modeling, focusing on the selection of the machine tool thermal error measurement point area, thermal error modeling methods, spindle thermal displacement compensation, and other aspects, and discusses the future trends in the mainstream methods for reducing the thermal error of machine tools. The analysis and modeling of thermal errors in machine tools have an integral influence on further improvements in machining accuracy and efficiency in the future.

Graphical Abstract

[1]
Y.X. Zheng, "Research status of thermal error modeling of CNC machine tools in China", Mech. Engin. Auto, pp. 222-223, 2016.
[2]
W.J. Gong, L.X. Zhang, JP Li, L. Li, and J.Y. Xiao, "Summary of prediction models of spindle thermal deformation", Develop. Innov. Mach. Electric. Prod, no. 003, pp. 125-128, 2016.
[3]
Q.C. Guo, H.M. Wang, and A.J. Li, "Research progress of thermal error modeling technology for machine tools", J. Hebei Uni. Sci. Technol., vol. 32, no. 004, pp. 344-350, 2015.
[4]
E.M. Miao, and Y.S. Liu, "Method and system for determining sectional modeling point of temperature sensitive interval", Patent: CN110716500A, 2020.
[5]
X.Y. Wei, J.T. Wu, X.L. Ding, X.G. Feng, Q.S. Pan, and M.Y. Qian, "Self-adaptive selection method of temperature sensitive point of machine tool thermal error", Patent: CN114967592A, 2022.
[6]
C.J. Chang, and J.P. Hung, "Real-Time Compensation for Thermal Errors of the Milling Machine", Appl. Sci., vol. 6, no. 4, p. 101, .
[http://dx.doi.org/10.3390/app6040101]
[7]
X.L. Liu, H.W. Song, and S Wu, "Selection method of temperature sensitive points for thermal error modeling of dual-turntable five-axis CNC machine tools", Patent: CN109765846A, 2022.
[8]
J.X. Shen, "Machine tool information acquisition and separation method based on thermal characteristic mechanism analysis", Patent: CN114357660A, 2022.
[9]
W. Wu, "A Virtual Instrument for Thermal Characteristic Analysis of Machine Tools” ring of CNC machine tool spindle", Patent: CN207541454U, 2018.
[10]
W.F. Si, "Method for predicting machining accuracy of numerical control milling and boring machine based on thermal analysis", Patent: CN112475904A, 2021.
[11]
W.G. Gao, D.L. Ni, D.W. Zhang, and L.T. Weng, "Method for analyzing thermal characteristics of electric spindle based on heat generation and heat dissipation power", Patent: CN110717294A, 2019.
[12]
J.H. Wang, S.F. Xue, C.B. Yang, Y.S. Zhao, and K. Chen, "Comprehensive theoretical modeling and analysis method for thermal characteristics of spindle of numerical control machine tool", Patent: CN110705147A, 2019.
[13]
Z.Y. Cui, "Thermal deformation model acquisition method, thermal deformation estimation acquisition method, thermal deformation compensation value acquisition method and recording medium thereof", Patent: K.R.1020040050013, 2018.
[14]
Z. Huang, J.J. Li, L. Du, X.S. Chen, F.Q. Heng, K. Xu, and Z.J. Wang, "Numerical simulation method, prediction method and modeling system for thermal characteristics of heavy numerical control floor milling lathe", Patent: CN104200019A, 2018.
[15]
Z.D. Zhou, J.M. Hu, P. Lou, Q. Liu, and Z. Jiang, "BP neural network thermal error modeling method for heavy machine tools optimized by genetic algorithm", Patent: CN104597842A, 2015.
[16]
C. Ma, J.L. Liu, L.L. Yi, and S.L. Wang, "Thermal error modeling method and thermal error compensation system of shaft system based on LSTM neural network", Patent: CN111259498A, 2020.
[17]
F. Fang, S.T. Xiang, L. Liu, and Z.P. Luo, "Modeling and detection method of thermal error of NC machine tool spindle based on detection neural network", Patent: CN109739181A, 2019.
[18]
Z. Li, W. Zhu, B. Zhu, B. Wang, and Q. Wang, "Thermal error modeling of electric spindle based on particle swarm optimization-SVM neural network", Int. J. Adv. Manuf. Technol., vol. 121, no. 11-12, pp. 7215-7227, 2022.
[http://dx.doi.org/10.1007/s00170-022-09827-4]
[19]
C.Y. Wu, S.T. Xiang, C.W. Lu, and C. Liu, "A Thermal Error Modeling Method of Rotating Shaft of Five-axis Machine Tool Based on Convolutional Network", Patent: CN111985149A, 2020.
[20]
G.H. Chen, H. Xiang, Y. Wang, J.H. Chen, J. Zhang, and B. Li, "A spatial error modeling method of CNC machine tools based on spatial grid compensation", Patent: CN105404237A, 2016.
[21]
L.Q. Du, H.C. Wang, Y.W. Yu, X.B. Yi, G. Chen, H. Yang, J. He, and A.Y. Hu, "A Modeling Method of Machine Tool Thermal Error Based on Deep Learning", Patent: CN110083125A, 2019.
[22]
L.Q. Du, R.J. Li, Y.W. Yu, X.B. Yi, J.Y. Zhang, G. Chen, Q. Zhang, and X.J. Lu, "A thermal error modeling method of NC machine tools based on optimized fuzzy neural network", Patent: CN110058569A, 2019.
[23]
Q.J. Guo, R.F. Xu, and L. He, "A Modeling Method of Machine Tool Thermal Error Based on Ant Colony Neural Network", Patent: CN105094053A, 2015.
[24]
J.H. Zhang, Y.F. Zhang, Q. Yin, T.M. Huang, J. Ming, and C. Li, "Grey neural network modeling method for thermal error compensation of numerical control machine tools", Patent: CN103984287A, 2014.
[25]
K. Liu, and Y.Q. Wang, "Calculation method based on deep neural network and Monte Carlo Carlo method, reliability of thermal error model of machine tool", Patent: WO2020168584A1, 2019.
[26]
X.D. Yao, J.G. Yang, and G.F. Hou, "Modeling method of real-time compensation for thermal error of CNC machine tools based on time series algorithm", Patent: CN102736558A, 2011.
[27]
B. Li, W.C. Su, X. Wei, M.H. Lan, L. Chen, Z.D. Jiang, and J.F. Bai, "Grey theory piecewise weighted thermal error modeling method with lag data processing", Patent: CN110262393A, 2019.
[28]
J.H. Chen, Y. Chen, Y.Y. He, and P.C. Hu, "Modeling method and system for Z-axis thermal error of vertical machine tool under environmental influence", Patent: CN114488945A, 2022.
[29]
Z. Huang, Z.J. Wang, J.Y. Li, K. Xu, L. Chen, L.P. Wang, and L. Du, "Modeling method of thermal drift of NC machine tool spindle based on FA-LSSVM", Patent: CN105607575A, 2016.
[30]
Z. Huang, Z.J. Jia, T. Deng, L. Du, and L.P. Wang, "Modeling method of thermal error of NC machine tool spindle based on FS+WPSVM", Patent: CN107391888A, 2017.
[31]
Z. Huang, Y.C. Liu, and T. Zhou, "Comprehensive modeling method of thermal error of five-axis CNC machine tools based on LSO-LSSVM", Patent: CN112433507A, 2021.
[32]
Q.J. Guo, X.N. Qi, and X.H. Yang, "Modeling method of machine tool thermal error based on multivariate projection pursuit clustering", Patent: CN105204435A, 2014.
[33]
S.B. Wang, B.R. Tang, S.L. Sun, Q. Huang, Z.Y. Zhao, and Z.H. Wang, "Method for creating thermal error model and solving method based on cutting force", Patent: CN113779726A, 2021.
[34]
C. Ma, J.L. Liu, L.L. Yi, and S.L. Wang, "Thermal characteristic analysis method, thermal error modeling method and thermal error compensation system of shaft system based on analytical method", Patent: CN111310373A, 2022.
[35]
C. Ma, J.L. Liu, H.Q. Gui, and S.L. Wang, "Thermal error modeling method and compensation system of linear servo system based on energy balance", Patent: CN113093545A, 2021.
[36]
C. Ma, J.L. Liu, L.L. Yi, and S.L. Wang, "Thermal error modeling method, total error modeling method and thermal error compensation system of shaft system with two axial constraints", Patent: CN111190390A, 2020.
[37]
H.T. Yue, C.G. Guo, Q. Li, L.J. Zhao, and G.S. Ding, "Modeling and Compensation Method of Thermo-mechanical Coupling Error of CNC Machine Tools Considering Processing Parameters", Patent: CN110196572A, 2019.
[38]
H. Shi, Y. Xiao, and T. Tao, "Measuring device and modeling method for thermal error of spindle of numerical control lathe", Patent: CN114296396A, 2021.
[39]
J.Z. Fu, X.H. Yao, W.Q. Lin, and Z.C. Chen, "Modeling method of thermal error least squares support vector machine for NC machine tools", Patent: CN101446994A, 2008.
[40]
Z. Li, Q. Wang, B. Zhu, B. Wang, W. Zhu, and Y. Dai, "Thermal error modeling of high-speed electric spindle based on Aquila Optimizer optimized least squares support vector machine", Case Stud. Therm. Eng., vol. 39, p. 102432, 2022.
[http://dx.doi.org/10.1016/j.csite.2022.102432]
[41]
G.H. Chen, D.Q. Liu, L. Zhang, H. Xiang, D.Z. Zhao, G.Q. Tong, B. Li, and Y.X. Chen, "Method for modeling thermal error of whole machine tool", Patent: CN111666659A, 2020.
[42]
J. Yuan, J. Lu, Z.X. Qiu, Y.F. Shen, and J.X. Shao, "Machine tool thermal error modeling method and testing system based on golden section and cumulative regression", Patent: CN104090526A, 2017.
[43]
Z.F. Liu, M.H. Pan, A.P. Zhang, B. Luo, J.Y. Zhang, and L.G. Cai, "A Thermal Error Modeling Method Based on Grey Linear Regression", Patent: CN103268082A, 2013.
[44]
Y. Dai, H. Qu, S.Q. Zhan, Y.H. Gao, and Z.C. Zhou, "Thermal error modeling method of high-speed motorized spindle based on bond graph", Patent: CN113110295A, 2021.
[45]
F.X. Du, X.Y. Feng, and H. Li, "Two-step-based thermal error modeling method for CNC machine tools", Patent: CN109240204A, 2019.
[46]
F. Fang, S.T. Xiang, J.B. Li, and Y.G. Cui, "Deep learning-based thermal error modeling method for CNC machine tool spindle", Patent: CN108363870A, 2021.
[47]
C.X. Zhang, F.H. Kong, and M. Cui, "A nonlinear autoregressive neural network thermal error modeling method for machine tools with external input", Patent: CN110705180A, 2019.
[48]
S.B. Wang, and B.R. Tang, "A modeling method of cutting force model considering spindle thermal error and tool runout", Patent: CN114036671A, 2021.
[49]
Z.L. Zhang, S. Feng, Y. Yuan, C. Yue, and X.D. Lu, "Method for modeling thermal error of spindle of numerical control machine tool and reliability analysis of machining accuracy", Patent: CN114329837A, 2021.
[50]
M. Yin, J. Peng, and L. Cao, "Physical modeling method of axial thermal error of NC machine tool spindle", Patent: CN113126566A, 2021.
[51]
Z.L. Li, B. Zhu, and Y. Dai, "Research on thermal error modeling of motorized spindle based on BP neural network optimized by beetle antennae search algorithm", Optimal design of a high-speed motor, 2021.
[http://dx.doi.org/10.3390/machines9110286]
[52]
H. Dong, "A new modeling method of thermal error least squares support vector machine for CNC machine tools", Patent: CN102479261A, 2010.
[53]
B. Li, B. Tan, and X.Y. Mao, "Analytical modeling method for environmental temperature of heavy machine tools", Patent: CN103543637A, 2016.
[54]
C. Ma, J.L. Liu, H.Q. Gui, and S.L. Wang, "Main shaft thermal error modeling method, error prediction system, error control system, error control method and cloud computing system", Patent: CN113051832A, 2021.
[55]
J.H. Chen, Y. Chen, and Y.Y. He, "Modeling method, forecasting method and modeling system for spindle thermal error", Patent: CN114019909A, 2021.
[56]
J. Zang, W.H. Zhao, and B. Li, "Modeling method of positioning error of ball screw feed system of semi-closed loop control CNC machine tool", Patent: CN104483900A, 2018.
[57]
C. Ma, J.L. Liu, H.Q. Gui, and S.L. Wang, "Modeling method of self-learning prediction model of machine tool thermal error and control method of machine tool thermal error based on digital twinning", Patent: CN113051831A, 2022.
[58]
J.N. Gu, Y.X. Wang, S.L. Wang, Y.F. Zhang, Y.J. Ling, Q. Yin, P.L. Zhou, and Y.Q. Liu, "Selection and optimization method of temperature measuring point combination for numerical control machine tool thermal error compensation modeling", Patent: CN103926874A, 2014.
[59]
N.M. Miao, Y. Liu, S.X. Yang, and H. Liu, "Method and system for predicting thermal error of numerical control machine tool based on unbiased estimation split model", Patent: CN105759719A, 2016.
[60]
B. Li, B. Tan, X.Y. Mao, K.M. Mao, and G.Y. Ren, "A prediction method of thermal error of heavy machine tool considering ambient temperature", Patent: CN103823991A, 2014.
[61]
L. Yin, F. Zhang, W.C. Lin, P. Wu, and C. Chen, "Method, device and storage medium for predicting thermal error of machine tool feed shaft", Patent: CN114310485A, 2022.
[62]
X. Gao, Y. Guo, D.A. Hanson, Z. Liu, M. Wang, and T. Zan, "Thermal error prediction of ball screws based on PSO-LSTM", Int. J. Adv. Manuf. Technol., vol. 116, no. 5-6, pp. 1721-1735, 2021.
[http://dx.doi.org/10.1007/s00170-021-07560-y]
[63]
G.Q. Fu, Y.J. Rao, Y.P. Xie, C. Tao, H.W. Gong, C.J. Lu, H.L. Gao, and L. Guo, "Combination selection method of weighted integrated temperature sensitive points for spindle thermal error modeling", Patent: CN111414977A, 2020.
[64]
G.Q. Fu, C. Tao, Y.P. Xie, H.W. Gong, Y.J. Rao, C.H. Lu, H.L. Gao, and L. Gao, "Selection method of temperature sensitive point combination in machine tool thermal error modeling by region", Patent: CN111459094A, 2021.
[65]
S.B. Wang, R.B. Tang, S.L. Sun, H. Wang, and Q. Huang, "Modeling method of spindle axial thermal error model based on machine tool power", Patent: CN115017829A, 2022.
[66]
K. Liu, H.B. Liu, and T. Li, "Application method of “thermal error-temperature ring of CNC machine tool spindle"", Patent: WO2020006851A1, 2018.
[67]
G.F. Yin, Q.H. Liao, and L. Wang, "Modeling method for selecting thermal key points of CNC machine tool spindle system based on time characteristics", Patent: CN110543140A, 2020.
[68]
F. Fang, S.T. Xiang, C. Liu, W.J Min, and Z.P. Luo, "A training method of thermal error modeling of NC machine tool spindle based on image threshold setting", Patent: CN109709895A, 2021.
[69]
G.L. Li, Z.Y. Wang, Z.Y. Li, K. Xu, X.Y. Chen, and Y. Xiao, "Sectional modeling method of thermal error of NC machine tool spindle considering thermal hysteresis", Patent: CN114896771A, 2022.
[70]
K. Liu, Y.Q. Wang, H.B. Liu, T. Li, H.N. Liu, and D.W. Li, "Modeling and compensation method for radial thermal drift error of spindle of horizontal numerical control lathe", Patent: CN107942934A, 2019.
[71]
K. Liu, H.B. Liu, T. Li, Y.Q. Wang, Z.Y. Jia, and D.M. Guo, "Method for testing and modeling origin thermal drift error of semi-closed loop feed shaft of numerical control machine tool", Patent: CN107168242A, 2019.
[72]
C.F. Xi, and W.J. Cheng, "Thermal displacement error measuring device and modeling method of numerical control machine tool", Patent: CN111123835A, 2019.
[73]
X.H. Shan, "Thermal deformation correction method and thermal deformation correction device of numerical control machine tool", Patent: JP2006116654A, 2004.
[74]
C. Ma, J.L. Liu, H.Q. Gui, and S.L. Wang, "Establishment method of grinding comprehensive error model and geometric-thermal error control method of gear grinding machine", Patent: CN113589757A, 2021.
[75]
D.Q. Zeng, H.Y. Chen, H.F. Yin, and Z.G. Li, "Machine tool thermal error compensation method, device, computer equipment, system and machine tool", Patent: CN114660992A, 2022.
[76]
Z.H. Zu, Y.Y. Huang, M. Yu, G. Chen, J.H. Zhao, and M.Y. Qiu, "Method for compensating thermal error of machining equipment, device, system, medium and terminal thereof", Patent: CN112147951A, 2020.
[77]
T. Tao, Y.X. Liu, Z.Z. Yan, H.Y. Du, H. Shi, J.X. Fan, C.P. Jiang, and X.S. Mei, "Data acquisition and thermal error compensation system of CNC machine tool edge based on internet of things", Patent: CN112034788A, 2020.
[78]
X.Y. Wei, Y.C. Chen, W.D. Hu, Q.S. Pan, E.M. Miao, and X.G. Feng, "Method for compensating thermal error of machine tools in different regions", Patent: CN114895627A, 2022.
[79]
X.J. Tao, X.J. Shi, and Y.J. Zhou, "Measuring system and method for thermal error of gear hobbing machine bed", Patent: CN114115122A, 2021.
[80]
W.G. Gao, W. Li, D.L. Ni, D.W. Zhang, L.N. Wang, and K. Shi, "Device and method for testing thermal error of machine tool spindle", Patent: CN112276673A, 2020.
[81]
B.J. Li, H.J. Cao, and H.L. Zheng, "Analysis-based comprehensive energy efficiency test method for CNC machine tools", Patent: CN113010980A, 2021.
[82]
M.T. Lu, R.L. Diao, and X.Y. Jiang, "Thermal error control structure of numerical control machine tool", Patent: CN114310478A, 2022.
[83]
L. Hao, J. Hao, H.T. Wang, G.L. Zhang, Z. Xue, and J.T. Duan, "Thermal error control structure and method of numerical control machine tool", Patent: CN107378637A, 2017.
[84]
K. Liu, Y.M. Cui, L. Song, H.N. Liu, W. Han, and Y.Q. Wang, "Self-adaptive compensation method for thermal error of numerical control machine tool", Patent: CN113009882A, 2021.
[85]
K. Liu, S.F. Wang, and Z.Y. Ban, "Self-healing method for spindle accuracy of numerical control machine tool", Patent: CN114019903A, 2021.
[86]
Y. Dai, X.S. Tao, Z.L. Li, Y.D. Bao, Y.D. Bao, and G.D. Liu, "Method and system for compensating thermal error of numerical control milling head", Patent: CN113721548A, 2021.
[87]
Y. Yang, C.H. Yang, D.Y. Liu, and L.W. Zeng, "Automatic displacement compensation method and system for thermal deformation of worm gear hobbing machine", Patent: CN114002999A, 2022.
[88]
D.H. Jin, "Method and system for measuring and correcting thermal displacement of machine tool spindle", Patent: JP2004154907A, 2002.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy