Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Identification of circRNA-miRNA-mRNA Network Regulated by Hsp90 in Human Melanoma A375 Cells

Author(s): Qiang Fu, Hengyuan Gao, Kaisheng Liu, Juan Su, Jianglin Zhang, Xiaojing Guo* and Fang Yang*

Volume 27, Issue 2, 2024

Published on: 20 June, 2023

Page: [307 - 316] Pages: 10

DOI: 10.2174/1386207326666230609145247

Price: $65

conference banner
Abstract

Background: Melanoma is the deadliest form of skin cancer. Heat shock protein 90 (Hsp90) is highly expressed in human melanoma. Hsp90 inhibitors can suppress the growth of human melanoma A375 cells; however, the underlying mechanism remains unclear.

Methods: A375 cells were treated with SNX-2112, an Hsp90 inhibitor, for 48 h, and wholetranscriptome sequencing was performed.

Results: A total of 2,528 differentially expressed genes were identified, including 895 upregulated and 1,633 downregulated genes. Pathway enrichment analyses of differentially expressed mRNAs identified the extracellular matrix (ECM)-receptor interaction pathway as the most significantly enriched pathway. The ECM receptor family mainly comprises integrins (ITGs) and collagens (COLs), wherein ITGs function as the major cell receptors for COLs. 19 upregulated miRNAs were found to interact with 6 downregulated ITG genes and 8 upregulated miRNAs were found to interact with 3 downregulated COL genes. 9 differentially expressed circRNAs in SNX-2112- treated A375 cells were identified as targets of the ITG- and COL-related miRNAs. Based on the differentially expressed circRNAs, miRNAs, and mRNAs, ITGs- and COL-based circRNAmiRNA- mRNA regulatory networks were mapped, revealing a novel regulatory mechanism of Hsp90-regulated melanoma.

Conclusion: Targeting the ITG-COL network is a promising approach to the treatment of melanoma.

Graphical Abstract

[1]
Takiddin, A.; Schneider, J.; Yang, Y.; Abd-Alrazaq, A.; Househ, M. Artificial intelligence for skin cancer detection: Scoping review. J. Med. Internet Res., 2021, 23(11), e22934.
[http://dx.doi.org/10.2196/22934] [PMID: 34821566]
[2]
Byrd, A.L.; Belkaid, Y.; Segre, J.A. The human skin microbiome. Nat. Rev. Microbiol., 2018, 16(3), 143-155.
[http://dx.doi.org/10.1038/nrmicro.2017.157] [PMID: 29332945]
[3]
Elgamal, M. Automatic skin cancer images classification. Int. J. Adv. Comput, 2013, 4(3)
[4]
Pop, T.D.; Diaconeasa, Z. Recent advances in phenolic metabolites and skin cancer. Int. J. Mol. Sci., 2021, 22(18), 9707.
[http://dx.doi.org/10.3390/ijms22189707] [PMID: 34575899]
[5]
Dildar, M.; Akram, S.; Irfan, M.; Khan, H.U.; Ramzan, M.; Mahmood, A.R.; Alsaiari, S.A.; Saeed, A.H.M.; Alraddadi, M.O.; Mahnashi, M.H. Skin cancer detection: A review using deep learning techniques. Int. J. Environ. Res. Public Health, 2021, 18(10), 5479.
[http://dx.doi.org/10.3390/ijerph18105479] [PMID: 34065430]
[6]
Banerjee, M.; Hatial, I.; Keegan, B.M.; Blagg, B.S.J. Assay design and development strategies for finding Hsp90 inhibitors and their role in human diseases. Pharmacol. Ther., 2021, 221, 107747.
[http://dx.doi.org/10.1016/j.pharmthera.2020.107747] [PMID: 33245994]
[7]
Li, L.; Chen, N.N.; You, Q.D.; Xu, X.L. An updated patent review of anticancer Hsp90 inhibitors (2013-present). Expert Opin. Ther. Pat., 2021, 31(1), 67-80.
[http://dx.doi.org/10.1080/13543776.2021.1829595] [PMID: 32990109]
[8]
Schopf, F.H.; Biebl, M.M.; Buchner, J. The HSP90 chaperone machinery. Nat. Rev. Mol. Cell Biol., 2017, 18(6), 345-360.
[http://dx.doi.org/10.1038/nrm.2017.20] [PMID: 28429788]
[9]
Pearl, L.H.; Prodromou, C.; Workman, P. The Hsp90 molecular chaperone: An open and shut case for treatment. Biochem. J., 2008, 410(3), 439-453.
[http://dx.doi.org/10.1042/BJ20071640] [PMID: 18290764]
[10]
Vartholomaiou, E.; Echeverría, P.C.; Picard, D. Unusual suspects in the twilight zone between the hsp90 interactome and carcinogenesis. Adv. Cancer Res., 2016, 129, 1-30.
[http://dx.doi.org/10.1016/bs.acr.2015.08.001] [PMID: 26915999]
[11]
Hoter, A.; El-Sabban, M.; Naim, H. The HSP90 Family: Structure, regulation, function, and implications in health and disease. Int. J. Mol. Sci., 2018, 19(9), 2560.
[http://dx.doi.org/10.3390/ijms19092560] [PMID: 30158430]
[12]
Birbo, B.; Madu, E.E.; Madu, C.O.; Jain, A.; Lu, Y. Role of HSP90 in Cancer. Int. J. Mol. Sci., 2021, 22(19), 10317.
[http://dx.doi.org/10.3390/ijms221910317] [PMID: 34638658]
[13]
McCarthy, M.M.; Pick, E.; Kluger, Y.; Gould-Rothberg, B.; Lazova, R.; Camp, R.L.; Rimm, D.L.; Kluger, H.M. HSP90 as a marker of progression in melanoma. Ann. Oncol., 2008, 19(3), 590-594.
[http://dx.doi.org/10.1093/annonc/mdm545] [PMID: 18037622]
[14]
Mielczarek-Lewandowska, A.; Hartman, M.L.; Czyz, M. Inhibitors of HSP90 in melanoma. Apoptosis, 2020, 25(1-2), 12-28.
[http://dx.doi.org/10.1007/s10495-019-01577-1] [PMID: 31659567]
[15]
Savoia, P.; Fava, P.; Casoni, F.; Cremona, O. Targeting the ERK signaling pathway in melanoma. Int. J. Mol. Sci., 2019, 20(6), 1483.
[http://dx.doi.org/10.3390/ijms20061483] [PMID: 30934534]
[16]
Shannan, B.; Chen, Q.; Watters, A.; Perego, M.; Krepler, C.; Thombre, R.; Li, L.; Rajan, G.; Peterson, S.; Gimotty, P.A.; Wilson, M.; Nathanson, K.L.; Gangadhar, T.C.; Schuchter, L.M.; Weeraratna, A.T.; Herlyn, M.; Vultur, A. Enhancing the evaluation of PI3K inhibitors through 3D melanoma models. Pigment Cell Melanoma Res., 2016, 29(3), 317-328.
[http://dx.doi.org/10.1111/pcmr.12465] [PMID: 26850518]
[17]
Sinnberg, T.; Levesque, M.P.; Krochmann, J.; Cheng, P.F.; Ikenberg, K.; Meraz-Torres, F.; Niessner, H.; Garbe, C.; Busch, C. Wnt-signaling enhances neural crest migration of melanoma cells and induces an invasive phenotype. Mol. Cancer, 2018, 17(1), 59.
[http://dx.doi.org/10.1186/s12943-018-0773-5] [PMID: 29454361]
[18]
Madonna, G. Ullman, C.D.; Gentilcore, G.; Palmieri, G.; Ascierto, P.A. NF-κB as potential target in the treatment of melanoma. J. Transl. Med., 2012, 10(1), 53.
[http://dx.doi.org/10.1186/1479-5876-10-53] [PMID: 22433222]
[19]
Campbell, I.D.; Humphries, M.J. Integrin structure, activation, and interactions. Cold Spring Harb. Perspect. Biol., 2011, 3(3), a004994.
[http://dx.doi.org/10.1101/cshperspect.a004994] [PMID: 21421922]
[20]
Barczyk, M.; Carracedo, S.; Gullberg, D. Integrins. Cell Tissue Res., 2010, 339(1), 269-280.
[http://dx.doi.org/10.1007/s00441-009-0834-6] [PMID: 19693543]
[21]
Hughes, P.E.; Pfaff, M. Integrin affinity modulation. Trends Cell Biol., 1998, 8(9), 359-364.
[http://dx.doi.org/10.1016/S0962-8924(98)01339-7] [PMID: 9728397]
[22]
Li, Z.H.; Zhou, Y.; Ding, Y.X.; Guo, Q.L.; Zhao, L. Roles of integrin in tumor development and the target inhibitors. Chin. J. Nat. Med., 2019, 17(4), 241-251.
[http://dx.doi.org/10.1016/S1875-5364(19)30028-7] [PMID: 31076128]
[23]
Ramsay, A.G.; Marshall, J.F.; Hart, I.R. Integrin trafficking and its role in cancer metastasis. Cancer Metastasis Rev., 2007, 26(3-4), 567-578.
[http://dx.doi.org/10.1007/s10555-007-9078-7] [PMID: 17786537]
[24]
Hamidi, H.; Ivaska, J. Author Correction: Every step of the way: integrins in cancer progression and metastasis. Nat. Rev. Cancer, 2019, 19(3), 179.
[http://dx.doi.org/10.1038/s41568-019-0112-1] [PMID: 30705430]
[25]
Ricard-Blum, S. The collagen family. Cold Spring Harb. Perspect. Biol., 2011, 3(1), a004978.
[http://dx.doi.org/10.1101/cshperspect.a004978] [PMID: 21421911]
[26]
Xu, S.; Xu, H.; Wang, W.; Li, S.; Li, H.; Li, T.; Zhang, W.; Yu, X.; Liu, L. The role of collagen in cancer: From bench to bedside. J. Transl. Med., 2019, 17(1), 309.
[http://dx.doi.org/10.1186/s12967-019-2058-1] [PMID: 31521169]
[27]
de Almeida, R.B.M.; Barbosa, D.B.; do Bomfim, M.R.; Amparo, J.A.O.; Andrade, B.S.; Costa, S.L.; Campos, J.M.; Cruz, J.N.; Santos, C.B.R.; Leite, F.H.A.; Botura, M.B. Identification of a Novel Dual Inhibitor of Acetylcholinesterase and Butyrylcholinesterase: in vitro and in silico Studies; Pharmaceuticals: Basel, 2023, Vol. 16, .
[28]
Almeida, V.M.; Dias, Ê.R.; Souza, B.C.; Cruz, J.N.; Santos, C.B.R.; Leite, F.H.A.; Queiroz, R.F.; Branco, A. Methoxylated flavonols from Vellozia dasypus Seub ethyl acetate active myeloperoxidase extract: in vitro and in silico assays. J. Biomol. Struct. Dyn., 2022, 40(16), 7574-7583.
[http://dx.doi.org/10.1080/07391102.2021.1900916] [PMID: 33739225]
[29]
Rego, C.M.A.; Francisco, A.F.; Boeno, C.N.; Paloschi, M.V.; Lopes, J.A.; Silva, M.D.S.; Santana, H.M.; Serrath, S.N.; Rodrigues, J.E.; Lemos, C.T.L.; Dutra, R.S.S.; da Cruz, J.N.; Dos Santos, C.B.R. da S Setúbal, S.; Fontes, M.R.M.; Soares, A.M.; Pires, W.L.; Zuliani, J.P. Inflammasome NLRP3 activation induced by Convulxin, a C-type lectin-like isolated from Crotalus durissus terrificus snake venom. Sci. Rep., 2022, 12(1), 4706.
[http://dx.doi.org/10.1038/s41598-022-08735-7] [PMID: 35304541]
[30]
Santos, C.B.R.; Santos, K.L.B.; Cruz, J.N.; Leite, F.H.A.; Borges, R.S.; Taft, C.A.; Campos, J.M.; Silva, C.H.T.P. Molecular modeling approaches of selective adenosine receptor type 2A agonists as potential anti-inflammatory drugs. J. Biomol. Struct. Dyn., 2021, 39(9), 3115-3127.
[PMID: 32338151]
[31]
Wang, X.; Wang, S.; Liu, Y.; Ding, W.; Zheng, K.; Xiang, Y.; Liu, K.; Wang, D.; Zeng, Y.; Xia, M.; Yang, D.; Wang, Y. The Hsp90 inhibitor SNX-2112 induces apoptosis of human hepatocellular carcinoma cells: The role of ER stress. Biochem. Biophys. Res. Commun., 2014, 446(1), 160-166.
[http://dx.doi.org/10.1016/j.bbrc.2014.02.081] [PMID: 24582562]
[32]
Wang, R.; Shao, F.; Liu, Z.; Zhang, J.; Wang, S.; Liu, J.; Liu, H.; Chen, H.; Liu, K.; Xia, M.; Wang, Y. The Hsp90 inhibitor SNX-2112, induces apoptosis in multidrug resistant K562/ADR cells through suppression of Akt/NF-κB and disruption of mitochondria-dependent pathways. Chem. Biol. Interact., 2013, 205(1), 1-10.
[http://dx.doi.org/10.1016/j.cbi.2013.06.007] [PMID: 23777986]
[33]
Liu, K.S.; Ding, W.C.; Wang, S.X.; Liu, Z.; Xing, G.W.; Wang, Y.; Wang, Y.F. The heat shock protein 90 inhibitor SNX-2112 inhibits B16 melanoma cell growth in vitro and in vivo. Oncol. Rep., 2012, 27(6), 1904-1910.
[PMID: 22447251]
[34]
Liu, K.S.; Liu, H.; Qi, J.H.; Liu, Q.Y.; Liu, Z.; Xia, M.; Xing, G.W.; Wang, S.X.; Wang, Y.F. SNX-2112, an Hsp90 inhibitor, induces apoptosis and autophagy via degradation of Hsp90 client proteins in human melanoma A-375 cells. Cancer Lett., 2012, 318(2), 180-188.
[http://dx.doi.org/10.1016/j.canlet.2011.12.015] [PMID: 22182451]
[35]
Wang, S.X.; Ju, H.Q.; Liu, K.S.; Zhang, J.X.; Wang, X.; Xiang, Y.F.; Wang, R.; Liu, J.Y.; Liu, Q.Y.; Xia, M.; Xing, G.W.; Liu, Z.; Wang, Y.F. SNX-2112, a novel Hsp90 inhibitor, induces G2/M cell cycle arrest and apoptosis in MCF-7 cells. Biosci. Biotechnol. Biochem., 2011, 75(8), 1540-1545.
[http://dx.doi.org/10.1271/bbb.110225] [PMID: 21821931]
[36]
Sidera, K.; Patsavoudi, E. HSP90 inhibitors: Current development and potential in cancer therapy. Recent Patents Anticancer Drug Discov., 2014, 9(1), 1-20.
[PMID: 23312026]
[37]
Trepel, J.; Mollapour, M.; Giaccone, G.; Neckers, L. Targeting the dynamic HSP90 complex in cancer. Nat. Rev. Cancer, 2010, 10(8), 537-549.
[http://dx.doi.org/10.1038/nrc2887] [PMID: 20651736]
[38]
Kechagia, J.Z.; Ivaska, J.; Roca-Cusachs, P. Integrins as biomechanical sensors of the microenvironment. Nat. Rev. Mol. Cell Biol., 2019, 20(8), 457-473.
[http://dx.doi.org/10.1038/s41580-019-0134-2] [PMID: 31182865]
[39]
Mishra, S.; Yadav, T.; Rani, V. Exploring miRNA based approaches in cancer diagnostics and therapeutics. Crit. Rev. Oncol. Hematol., 2016, 98, 12-23.
[http://dx.doi.org/10.1016/j.critrevonc.2015.10.003] [PMID: 26481951]
[40]
Rupaimoole, R.; Slack, F.J. MicroRNA therapeutics: Towards a new era for the management of cancer and other diseases. Nat. Rev. Drug Discov., 2017, 16(3), 203-222.
[http://dx.doi.org/10.1038/nrd.2016.246] [PMID: 28209991]
[41]
Lin, Z.; He, R.; Luo, H.; Lu, C.; Ning, Z.; Wu, Y.; Han, C.; Tan, G.; Wang, Z. Integrin-β5, a miR-185-targeted gene, promotes hepatocellular carcinoma tumorigenesis by regulating β-catenin stability. J. Exp. Clin. Cancer Res., 2018, 37(1), 17.
[http://dx.doi.org/10.1186/s13046-018-0691-9] [PMID: 29386044]
[42]
Xiong, D.; Dang, Y.; Lin, P.; Wen, D.; He, R.; Luo, D.; Feng, Z.; Chen, G. A circRNA–miRNA–mRNA network identification for exploring underlying pathogenesis and therapy strategy of hepatocellular carcinoma. J. Transl. Med., 2018, 16(1), 220.
[http://dx.doi.org/10.1186/s12967-018-1593-5] [PMID: 30092792]
[43]
Liang, Z.Z.; Guo, C.; Zou, M.M.; Meng, P.; Zhang, T.T. circRNA-miRNA-mRNA regulatory network in human lung cancer: an update. Cancer Cell Int., 2020, 20(1), 173.
[http://dx.doi.org/10.1186/s12935-020-01245-4] [PMID: 32467668]
[44]
Zhang, M.; Bai, X.; Zeng, X.; Liu, J.; Liu, F.; Zhang, Z. circRNA-miRNA-mRNA in breast cancer. Clin. Chim. Acta, 2021, 523, 120-130.
[http://dx.doi.org/10.1016/j.cca.2021.09.013] [PMID: 34537217]
[45]
Yu, M.; Chu, S.; Fei, B.; Fang, X.; Liu, Z. O-GlcNAcylation of ITGA5 facilitates the occurrence and development of colorectal cancer. Exp. Cell Res., 2019, 382(2), 111464.
[http://dx.doi.org/10.1016/j.yexcr.2019.06.009] [PMID: 31202709]
[46]
Liu, D.; Liu, S.; Fang, Y.; Liu, L.; Hu, K. Comprehensive analysis of the expression and prognosis for ITGBs: Identification of ITGB5 as a biomarker of poor prognosis and correlated with immune infiltrates in gastric cancer. Front. Cell Dev. Biol., 2022, 9, 816230.
[http://dx.doi.org/10.3389/fcell.2021.816230] [PMID: 35223869]
[47]
Yang, Y.; Feng, Q.; Hu, K.; Cheng, F. Using CRISPRa and CRISPRi technologies to study the biological functions of ITGB5, TIMP1, and TMEM176B in prostate cancer cells. Front. Mol. Biosci., 2021, 8, 676021.
[http://dx.doi.org/10.3389/fmolb.2021.676021] [PMID: 34109215]
[48]
Zhu, C.; Kong, Z.; Wang, B.; Cheng, W.; Wu, A.; Meng, X. ITGB3/CD61: A hub modulator and target in the tumor microenvironment. Am. J. Transl. Res., 2019, 11(12), 7195-7208.
[PMID: 31934272]
[49]
Ren, D.; Zhao, J.; Sun, Y.; Li, D.; Meng, Z.; Wang, B.; Fan, P.; Liu, Z.; Jin, X.; Wu, H. Overexpressed ITGA2 promotes malignant tumor aggression by up-regulating PD-L1 expression through the activation of the STAT3 signaling pathway. J. Exp. Clin. Cancer Res., 2019, 38(1), 485.
[http://dx.doi.org/10.1186/s13046-019-1496-1] [PMID: 31818309]
[50]
Budden, T.; Gaudy-Marqueste, C.; Porter, A.; Kay, E.; Gurung, S.; Earnshaw, C.H.; Roeck, K.; Craig, S.; Traves, V.; Krutmann, J.; Muller, P.; Motta, L.; Zanivan, S.; Malliri, A.; Furney, S.J.; Nagore, E.; Virós, A. Ultraviolet light-induced collagen degradation inhibits melanoma invasion. Nat. Commun., 2021, 12(1), 2742.
[http://dx.doi.org/10.1038/s41467-021-22953-z] [PMID: 33980846]
[51]
Raglow, Z.; Thomas, S.M. Tumor matrix protein collagen XIα1 in cancer. Cancer Lett., 2015, 357(2), 448-453.
[http://dx.doi.org/10.1016/j.canlet.2014.12.011] [PMID: 25511741]
[52]
Chen, P.; Cescon, M.; Bonaldo, P. Collagen VI in cancer and its biological mechanisms. Trends Mol. Med., 2013, 19(7), 410-417.
[http://dx.doi.org/10.1016/j.molmed.2013.04.001] [PMID: 23639582]
[53]
Liu, J.; Shen, J.X.; Wu, H.T.; Li, X.L.; Wen, X.F.; Du, C.W.; Zhang, G.J. Collagen 1A1 (COL1A1) promotes metastasis of breast cancer and is a potential therapeutic target. Discov. Med., 2018, 25(139), 211-223.
[PMID: 29906404]
[54]
Oudart, J.B.; Villemin, M.; Brassart, B.; Sellier, C.; Terryn, C.; Dupont-Deshorgue, A.; Monboisse, J.C.; Maquart, F.X.; Ramont, L.; Brassart-Pasco, S. F4, a collagen XIX-derived peptide, inhibits tumor angiogenesis through αvβ3 and α5β1 integrin interaction. Cell Adhes. Migr., 2021, 15(1), 215-223.
[http://dx.doi.org/10.1080/19336918.2021.1951425] [PMID: 34308743]
[55]
Zeltz, C.; Gullberg, D. The integrin-collagen connection--a glue for tissue repair? J. Cell Sci., 2016, 129(4), 653-664.
[PMID: 26857815]
[56]
Koivunen, J.; Tu, H.; Kemppainen, A.; Anbazhagan, P.; Finnilä, M.A.; Saarakkala, S.; Käpylä, J.; Lu, N.; Heikkinen, A.; Juffer, A.H.; Heino, J.; Gullberg, D.; Pihlajaniemi, T. Integrin α11β1 is a receptor for collagen XIII. Cell Tissue Res., 2021, 383(3), 1135-1153.
[http://dx.doi.org/10.1007/s00441-020-03300-y] [PMID: 33306155]
[57]
Cao, L.; Chen, Y.; Zhang, M.; Xu, D.; Liu, Y.; Liu, T.; Liu, S.; Wang, P. Identification of hub genes and potential molecular mechanisms in gastric cancer by integrated bioinformatics analysis. PeerJ, 2018, 6, e5180.
[http://dx.doi.org/10.7717/peerj.5180] [PMID: 30002985]
[58]
Lv, Y.; Lv, Y.; Wang, Z.; Yuan, K.; Zeng, Y. Noncoding RNAs as sensors of tumor microenvironmental stress. J. Exp. Clin. Cancer Res., 2022, 41(1), 224.
[http://dx.doi.org/10.1186/s13046-022-02433-y] [PMID: 35842651]
[59]
Sun, X.; Zhao, X.; Xu, S.; Zhou, Y.; Jia, Z.; Li, Y. CircSRSF4 enhances proliferation, invasion, and migration to promote the progression of osteosarcoma via Rac1. Int. J. Mol. Sci., 2022, 23(11), 6200.
[http://dx.doi.org/10.3390/ijms23116200] [PMID: 35682879]
[60]
Tan, Q.; Liu, C.; Shen, Y.; Huang, T. Circular RNA circ_0000517 Facilitates The Growth and Metastasis of Non-Small Cell Lung Cancer by Sponging miR-326/miR-330-5p. Cell J., 2021, 23(5), 552-561.
[PMID: 34837683]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy