Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

A Stable Cell Line Co-expressing hTRPV1 and GCaMP6s: A Novel Cell-based Assay For High-throughput Screening of hTRPV1 Agonists

Author(s): Jingjing Shi, Xuejun Chen, Yi Zhang, Tong Shi, Ruihua Zhang, Siqing Zhu, Xingxing Zong, Chen Wang* and Liqin Li*

Volume 27, Issue 2, 2024

Published on: 01 June, 2023

Page: [298 - 306] Pages: 9

DOI: 10.2174/1386207326666230511143259

Price: $65

Abstract

Background: Transient receptor potential vanilloid-1 (TRPV1) is a non-selective cation channel capable of integrating various noxious chemical and physical stimuli. Recently, human TRPV1 (hTRPV1) has attracted wide attention from researchers because it is closely related to pain, inflammation, temperature perception, and tumors. Our study was aimed at generating a stable cell line co-expressing hTRPV1 receptor and GCaMP6s calcium indicator protein and, based on this, developing high-throughput screening methods for targeting hTRPV1 agonists.

Methods: The CHO-hTRPV1-GCaMP6s cell line stably expressing hTRPV1 and GCaMP6s was generated by co-transfection of hTRPV1 and GCaMP6s into Chinese hamster ovary (CHO) cells. The high-throughput screening methods were developed based on detecting the concentration of intracellular calcium ions ([Ca2+]i) by using chemically synthesized dyes and genetically encoded calcium indicator (GECI). Meanwhile, the sensitivity and adaptability of these methods in the evaluation of capsaicinoids were also compared.

Results: A stable cell line co-expressing hTRPV1 and GCaMP6s was generated and used to establish a functional high-throughput screening assay based on the measurement of [Ca2+]i by fluorometric imaging plate reader (FLIPR). The GECI exhibited a higher sensitivity and applicability than that of chemically synthesized dyes in detecting the changes in [Ca2+]i induced by capsaicin. The CHO-hTRPV1-GCaMP6s cell line was further used to detect the dose-dependent relationships of various hTRPV1 agonists (comparison of EC50 values: capsaicin (39 ± 1.67 nM) < nonivamide (67 ± 3.05 nM) < piperine (9222 ± 1851 nM)), and this order is consistent with the pharmacological properties of hTRPV1 activation by these agonists.

Conclusion: The successful establishment of the CHO-hTRPV1-GCaMP6s cell lines and their application in high-throughput screening of hTRPV1 agonists.

Graphical Abstract

[1]
Montell, C.; Birnbaumer, L.; Flockerzi, V.; Bindels, R.J.; Bruford, E.A.; Caterina, M.J.; Clapham, D.E.; Harteneck, C.; Heller, S.; Julius, D.; Kojima, I.; Mori, Y.; Penner, R.; Prawitt, D.; Scharenberg, A.M.; Schultz, G.; Shimizu, N.; Zhu, M.X. A unified nomenclature for the superfamily of TRP cation channels. Mol. Cell, 2002, 9(2), 229-231.
[http://dx.doi.org/10.1016/S1097-2765(02)00448-3] [PMID: 11864597]
[2]
Caterina, M.J.; Schumacher, M.A.; Tominaga, M.; Rosen, T.A.; Levine, J.D.; Julius, D. The capsaicin receptor: A heat-activated ion channel in the pain pathway. Nature, 1997, 389(6653), 816-824.
[http://dx.doi.org/10.1038/39807] [PMID: 9349813]
[3]
McNamara, F.N.; Randall, A.; Gunthorpe, M.J. Effects of piperine, the pungent component of black pepper, at the human vanilloid receptor (TRPV1). Br. J. Pharmacol., 2005, 144(6), 781-790.
[http://dx.doi.org/10.1038/sj.bjp.0706040] [PMID: 15685214]
[4]
Yang, F.; Zheng, J. Understand spiciness: Mechanism of TRPV1 channel activation by capsaicin. Protein Cell, 2017, 8(3), 169-177.
[http://dx.doi.org/10.1007/s13238-016-0353-7] [PMID: 28044278]
[5]
Kwon, D.H.; Zhang, F.; Suo, Y.; Bouvette, J.; Borgnia, M.J.; Lee, S.Y. Heat-dependent opening of TRPV1 in the presence of capsaicin. Nat. Struct. Mol. Biol., 2021, 28(7), 554-563.
[http://dx.doi.org/10.1038/s41594-021-00616-3] [PMID: 34239123]
[6]
Bujak, J.K.; Kosmala, D.; Szopa, I.M.; Majchrzak, K.; Bednarczyk, P. Inflammation, Cancer and Immunity—Implication of TRPV1 Channel. Front. Oncol., 2019, 9, 1087.
[http://dx.doi.org/10.3389/fonc.2019.01087] [PMID: 31681615]
[7]
Touska, F.; Marsakova, L.; Teisinger, J.; Vlachova, V.A. “cute” desensitization of TRPV1. Curr. Pharm. Biotechnol., 2011, 12(1), 122-129.
[http://dx.doi.org/10.2174/138920111793937826] [PMID: 20932251]
[8]
Sappington, R.M.; Sidorova, T.; Long, D.J.; Calkins, D.J. TRPV1: Contribution to retinal ganglion cell apoptosis and increased intracellular Ca2+ with exposure to hydrostatic pressure. Invest. Ophthalmol. Vis. Sci., 2009, 50(2), 717-728.
[http://dx.doi.org/10.1167/iovs.08-2321] [PMID: 18952924]
[9]
Moriello, A.S.; De Petrocellis, L.; Vitale, R.M. Fluorescence-Based Assay for TRPV1 Channels. Methods Mol. Biol., 2023, 2576, 119-131.
[http://dx.doi.org/10.1007/978-1-0716-2728-0_9] [PMID: 36152181]
[10]
Moriello, A.S.; De Petrocellis, L. Assay of TRPV1 Receptor Signaling. Methods Mol. Biol., 2016, 1412, 65-76.
[http://dx.doi.org/10.1007/978-1-4939-3539-0_7] [PMID: 27245892]
[11]
Paredes, R.M.; Etzler, J.C.; Watts, L.T.; Zheng, W.; Lechleiter, J.D. Chemical calcium indicators. Methods, 2008, 46(3), 143-151.
[http://dx.doi.org/10.1016/j.ymeth.2008.09.025] [PMID: 18929663]
[12]
Thomas, D.; Tovey, S.C.; Collins, T.J.; Bootman, M.D.; Berridge, M.J.; Lipp, P. A comparison of fluorescent Ca2+indicator properties and their use in measuring elementary and global Ca2+signals. Cell Calcium, 2000, 28(4), 213-223.
[http://dx.doi.org/10.1054/ceca.2000.0152] [PMID: 11032777]
[13]
Paddle, B.M. A cytoplasmic component of pyridine nucleotide fluorescence in rat diaphragm: Evidence from comparisons with flavoprotein fluorescence. Pflugers Arch., 1985, 404(4), 326-331.
[http://dx.doi.org/10.1007/BF00585343] [PMID: 4059025]
[14]
Ohkura, M.; Sasaki, T.; Sadakari, J.; Gengyo-Ando, K.; Kagawa-Nagamura, Y.; Kobayashi, C.; Ikegaya, Y.; Nakai, J. Genetically encoded green fluorescent Ca2+ indicators with improved detectability for neuronal Ca2+ signals. PLoS One, 2012, 7(12), e51286.
[http://dx.doi.org/10.1371/journal.pone.0051286] [PMID: 23240011]
[15]
Inoue, M. Genetically encoded calcium indicators to probe complex brain circuit dynamics in vivo. Neurosci. Res., 2021, 169, 2-8.
[http://dx.doi.org/10.1016/j.neures.2020.05.013] [PMID: 32531233]
[16]
Zhang, N.; Zhang, Z.; Ozden, I.; Ding, S. Imaging Mitochondrial Ca<sup>2+</sup> Uptake in Astrocytes and Neurons using Genetically Encoded Ca<sup>2+</sup> Indicators (GECIs). J. Vis. Exp., 2022, 179(179), 1-16.
[http://dx.doi.org/10.3791/62917] [PMID: 35129169]
[17]
Han, J.W.; Heo, W.; Lee, D.; Kang, C.; Kim, H.Y.; Jun, I.; So, I.; Hur, H.; Lee, M.G.; Jung, M.; Kim, J.Y. Plasma membrane localized GCaMP-MS4A12 by orai1 co-expression shows thapsigargin- and Ca 2+ -dependent fluorescence increases. Mol. Cells, 2021, 44(4), 223-232.
[http://dx.doi.org/10.14348/molcells.2021.2031] [PMID: 33935043]
[18]
Zhang, Y.L.; Moran, S.P.; Allen, A.; Baez-Nieto, D.; Xu, Q.; Wang, L.A.; Martenis, W.E.; Sacher, J.R.; Gale, J.P.; Weïwer, M.; Wagner, F.F.; Pan, J.Q. Novel Fluorescence-Based High-Throughput FLIPR Assay Utilizing Membrane-Tethered Genetic Calcium Sensors to Identify T-Type Calcium Channel Modulators. ACS Pharmacol. Transl. Sci., 2022, 5(3), 156-168.
[http://dx.doi.org/10.1021/acsptsci.1c00233] [PMID: 35311021]
[19]
Yu, H.; Li, M.; Wang, W.; Wang, X. High throughput screening technologies for ion channels. Acta Pharmacol. Sin., 2016, 37(1), 34-43.
[http://dx.doi.org/10.1038/aps.2015.108] [PMID: 26657056]
[20]
Phillips, E.; Reeve, A.; Bevan, S.; McIntyre, P. Identification of species-specific determinants of the action of the antagonist capsazepine and the agonist PPAHV on TRPV1. J. Biol. Chem., 2004, 279(17), 17165-17172.
[http://dx.doi.org/10.1074/jbc.M313328200] [PMID: 14960593]
[21]
Gao, N.; Yang, F.; Chen, S.; Wan, H.; Zhao, X.; Dong, H. The role of TRPV1 ion channels in the suppression of gastric cancer development. J. Exp. Clin. Cancer Res., 2020, 39(1), 206.
[http://dx.doi.org/10.1186/s13046-020-01707-7] [PMID: 33008449]
[22]
Tominaga, M.; Caterina, M.J.; Malmberg, A.B.; Rosen, T.A.; Gilbert, H.; Skinner, K.; Raumann, B.E.; Basbaum, A.I.; Julius, D. The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron, 1998, 21(3), 531-543.
[http://dx.doi.org/10.1016/S0896-6273(00)80564-4] [PMID: 9768840]
[23]
Savidge, J.; Davis, C.; Shah, K.; Colley, S.; Phillips, E.; Ranasinghe, S.; Winter, J.; Kotsonis, P.; Rang, H.; McIntyre, P. Cloning and functional characterization of the guinea pig vanilloid receptor 1. Neuropharmacology, 2002, 43(3), 450-456.
[http://dx.doi.org/10.1016/S0028-3908(02)00122-3] [PMID: 12243775]
[24]
Gavva, N.R.; Klionsky, L.; Qu, Y.; Shi, L.; Tamir, R.; Edenson, S.; Zhang, T.J.; Viswanadhan, V.N.; Toth, A.; Pearce, L.V.; Vanderah, T.W.; Porreca, F.; Blumberg, P.M.; Lile, J.; Sun, Y.; Wild, K.; Louis, J.C.; Treanor, J.J.S. Molecular determinants of vanilloid sensitivity in TRPV1. J. Biol. Chem., 2004, 279(19), 20283-20295.
[http://dx.doi.org/10.1074/jbc.M312577200] [PMID: 14996838]
[25]
Correll, C.C.; Phelps, P.T.; Anthes, J.C.; Umland, S.; Greenfeder, S. Cloning and pharmacological characterization of mouse TRPV1. Neurosci. Lett., 2004, 370(1), 55-60.
[http://dx.doi.org/10.1016/j.neulet.2004.07.058] [PMID: 15489017]
[26]
Singh, A.; Raju, R.; Mrad, M.; Reddell, P.; Münch, G. The reciprocal EC50 value as a convenient measure of the potency of a compound in bioactivity-guided purification of natural products. Fitoterapia, 2020, 143, 104598.
[http://dx.doi.org/10.1016/j.fitote.2020.104598] [PMID: 32330577]
[27]
Cao, Z.; Zou, X.; Cui, Y.; Hulsizer, S.; Lein, P.J.; Wulff, H.; Pessah, I.N. Rapid throughput analysis demonstrates that chemicals with distinct seizurogenic mechanisms differentially alter Ca2+ dynamics in networks formed by hippocampal neurons in culture. Mol. Pharmacol., 2015, 87(4), 595-605.
[http://dx.doi.org/10.1124/mol.114.096701] [PMID: 25583085]
[28]
Bruton, J.; Cheng, A.J.; Westerblad, H. Ca2+ was measured in living cells. Adv. Exp. Med. Biol., 2020, 1131, 7-26.
[http://dx.doi.org/10.1007/978-3-030-12457-1_2] [PMID: 31646505]
[29]
Dong, Y.; Yin, Y.; Vu, S.; Yang, F.; Yarov-Yarovoy, V.; Tian, Y.; Zheng, J. A distinct structural mechanism underlies TRPV1 activation by piperine. Biochem. Biophys. Res. Commun., 2019, 516(2), 365-372.
[http://dx.doi.org/10.1016/j.bbrc.2019.06.039] [PMID: 31213294]
[30]
Thomas, K.C.; Ethirajan, M.; Shahrokh, K.; Sun, H.; Lee, J.; Cheatham, T.E., III; Yost, G.S.; Reilly, C.A. Structure-activity relationship of capsaicin analogs and transient receptor potential vanilloid 1-mediated human lung epithelial cell toxicity. J. Pharmacol. Exp. Ther., 2011, 337(2), 400-410.
[http://dx.doi.org/10.1124/jpet.110.178491] [PMID: 21343315]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy