Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Research Article

Recent Developments and Future Prospects of Natural Antimicrobial Bioactive Metabolites Obtained from Endophytic Bacterial Isolate

Author(s): Moti Lal and Neelam*

Volume 20, Issue 3, 2024

Published on: 13 July, 2023

Article ID: e090623217840 Pages: 7

DOI: 10.2174/1573407219666230609124929

Price: $65

Abstract

Background: Adathoda beddomei (Adosa), a kind of softwood, evergreen, perennial shrub, has been used as a source of endophyte bacteria. Adhatoda beddomei has a wide variety of chemicals, including anthocyanins, aminophylline, alkaloids, cardiac glycosides, isoprenaline, triterpenoids, resins, flavonoids, tannins, sterol, saponins, etc. The root, stem, and leaf parts of Adathoda beddomei are most often used in indigenous medicine. Moreover, the root bark is also used to cure several conditions, including leprosy, fever, and bleeding.

Objective: Some important bioactive metabolites were obtained from endophytes bacteria and analyzed through various techniques (NMR, MASS, FTIR, HPLC, and UV- spectrophotometer) for their bioactive secondary metabolites.

Methods: In silico calculation was performed to reveal bioactive metabolites with the potential to be antibacterial, and their primary mode of action may include dissolving bacterial and fungal cell walls.

Results: The antimicrobial activity of Adathoda beddomei was demonstrated against different pathogenic and non-pathogenic bacteria. Identification of endophytes was done based on external morphological characteristics with the help of a scanning electron microscope (SEM).

Conclusion: Natural compounds derived from endophyte bacteria with a very low molecular mass can be used to discover new and important structures for different pharmaceuticals and agrochemicals.

Graphical Abstract

[1]
Pichersky, E.; Gang, D.R. Genetics and biochemistry of secondary metabolites in plants: An evolutionary perspective. Trends Plant Sci., 2000, 5(10), 439-445.
[http://dx.doi.org/10.1016/S1360-1385(00)01741-6] [PMID: 11044721]
[2]
Jensen, N.B.; Strucko, T.; Kildegaard, K.R.; David, F.; Maury, J.; Mortensen, U.H.; Forster, J.; Nielsen, J.; Borodina, ; Clone, I.E. Method for iterative chromosomal integration of multiple genes in Saccharomyces cerevisiae. FEMS Yeast Res., 2014, 14, 238-248.
[http://dx.doi.org/10.1111/1567-1364.12118] [PMID: 24151867]
[3]
Ahmed, W.; Azmat, R.; Ullah, K.S.; Masuood, S.; Liaquat, M.; Qayyum, A.; Mehmood, A. Pharmacological studies of isolated compounds from adhatoda vasica and Calotropis procera as an antioxidant and antimicrobial bioactive sources. Pak. J. Bot., 2018, 50, 2363-2367.
[4]
Shyam, L. K.; Pierre, M.J.; Sharon, L.D. Bacterial endophyte colonization and distribution within plants. Microorganisms, 2017, 5, 03-26.
[http://dx.doi.org/10.3390/microorganisms5040077] [PMID: 29186821]
[5]
Altemimi, A.; Lakhssassi, N.; Baharlouei, A.; Dennis, G.; David, A.L. Photochemical extraction, isolation, and identification of bioactive compounds from plant extracts. Plant, 2017, 6, 2-23.
[http://dx.doi.org/10.3390/plants6040042]
[6]
Verma, S.K.; Lal, M.; Debnath, M. Optimization of process parameters for production of antimicrobial metabolites by an endophytic fungus Aspergillus sp. CPR5 isolated from Calotropis procera root. Asian J. Pharm. Clin. Res., 2017, 10(4), 225-230.
[http://dx.doi.org/10.22159/ajpcr.2017.v10i4.16631]
[7]
Zhao, L.; Xu, Y.; Lai, X.H.; Shan, C.; Deng, Z.; Ji, Y. Screening and characterization of endophytic Bacillus and Paenibacillus strains from medicinal plant Lonicera japonica for use as potential plant growth promoters. Braz. J. Microbiol., 2015, 46(4), 977-989.
[http://dx.doi.org/10.1590/S1517-838246420140024] [PMID: 26691455]
[8]
Onifade, A.K. Preliminary studies on the bioactivity of secondary metabolites from Aureobasidium pullulans and Emericela rugulosa. Res. J. Microbiol., 2007, 2(2), 156-162.
[http://dx.doi.org/10.3923/jm.2007.156.162]
[9]
Brown, D.A.; Beveridge, T.J.; Keevil, C.W.; Sherriff, B.L. Evaluation of microscopic techniques to observe iron precipitation in a natural microbial biofilm. FEMS Microbiol. Ecol., 1998, 26(4), 297-310.
[http://dx.doi.org/10.1111/j.1574-6941.1998.tb00514.x]
[10]
Eltem, R. Subterranean infestation by Holotrichia parallela larvae is associated with changes in the peanut (Arachis hypogaea L.) rhizosphere microbiome. J. 3 Biotech, 2016, 6, 2-8.
[11]
Dias, D.; Jones, O.; Beale, D.; Boughton, B.; Benheim, D.; Kouremenos, K.; Wolfender, J.L.; Wishart, D. Current and future perspectives on the structural identification of small molecules in biological systems. Metabolites, 2016, 6(4), 46.
[http://dx.doi.org/10.3390/metabo6040046] [PMID: 27983674]
[12]
Matthew, J.B.; Julio, T.; Paul, B.; Bhargava, R.; Butler, H.J.; Fielden, P.R.; Fogarty, S.W.; Heys, K.A.; Hughes, C.; Lasch, P.; Martin-Hirsch, P.L.; Obinaju, B.; Sockalingum, G.D.; Strong, R.J.; Walsh, M.J.; Wood, B.R.; Gardner, P.; Martin, F.L. Comprehensive vibrational spectro-scopic investigation of trans, trans, trans-[Pt(N3)2(OH)2(py)2], a Pt (IV) diazido anticancer prodrug candidate. Nat. Protoc., 2014, 9, 1771-1791.
[13]
Andreassen, T. Tackling the peak overlap issue in NMR metabolomics studies: 1D projected correlation traces from statistical correlation analysis on nontilted 2D 1H NMR J-resolved spectra. BMC Bioinf., 2019, 15, 1-8.
[14]
Tilvi, T.; Mahesh, S.; Keisham, M.; Singh, S. Mass spectrometry for structural characterization of bioactive compounds. Compr. Anal. Chem., 2014, 65, 193-218.
[http://dx.doi.org/10.1016/B978-0-444-63359-0.00008-2]
[15]
Higgs, R.E.; Zahn, J.A.; Gygi, J.D.; Hilton, M.D. Rapid method to estimate the presence of secondary metabolites in microbial extracts. Appl. Environ. Microbiol., 2001, 67(1), 371-376.
[http://dx.doi.org/10.1128/AEM.67.1.371-376.2001] [PMID: 11133468]
[16]
Seibert, J.B.; Viegas, J.S.R.; Almeida, T.C.; Amparo, T.R.; Rodrigues, I.V.; Lanza, J.S.; Frezard, F.D.J.G.; Soares, R.D.O.A.; Teixeira, L.F.M.; Souza, G.H.B.D.; Vieira, P.M. Nanostructured systems improve the antimicrobial potential of the essential oil from Cymbopogon densiflorus leave. J. Nat. Prod., 2019, 82, 01-13.
[http://dx.doi.org/10.1021/acs.jnatprod.8b00870] [PMID: 31815454]
[17]
Kalaichelvi, K.; Dhivya, S.M. Screening of phytoconstituents, UV-VIS Spectrum and FTIR analysis of Micrococca mercurialis (L.). Benth. Int. J. Herb. Med., 2017, 5, 40-44.
[18]
Joshi, S.R.; War Nongkhlaw, F.M. Microscopic study on colonization and antimicrobial property of endophytic bacteria associated with ethnomedicinal plants of Meghalaya. J. Microsc. Ultrastruct., 2017, 5(3), 132-139.
[http://dx.doi.org/10.1016/j.jmau.2016.09.002] [PMID: 30023247]
[19]
Ju, B.; Chen, B.; Zhang, X.; Han, C.; Jiang, A. Photocatalytic activity enhanced via g-C3N4 nanoplates to nanorods. J. Chem., 2014, 117, 9-14.
[20]
Krati, G.; Madhavi, A. Phytochemical screening, ultra violet and infra-red spectroscopy of ethanolic leaf extract of Thevetia peruviana (Pers.) Thevetia yellow. J. Pharm. Innov., 2018, 7, 314-318.
[21]
War Nongkhla, F.M.; Joshi, S.R. Epiphytic and endophytic bacteria that promote growth of ethnomedicinal plants in the subtropical forests of Meghalaya, India. Rev. Biol. Trop., 2014, 62(4), 1295-1308.
[http://dx.doi.org/10.15517/rbt.v62i4.12138] [PMID: 25720168]
[22]
Ju, Y.E.S.; Lucey, B.P.; Holtzman, D.M. Sleep and Alzheimer disease pathology-A bidirectional relationship. Nat. Rev. Neurol., 2014, 10(2), 115-119.
[http://dx.doi.org/10.1038/nrneurol.2013.269] [PMID: 24366271]
[23]
Ghavri, K.; Adhav, M. Comparative phytochemical screening of morphotypes of Thevetia peruviana (Pers.). J. Pharmacogn. Phytochem., 2018, 7, 539-541.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy