Generic placeholder image

Current Drug Targets

Editor-in-Chief

ISSN (Print): 1389-4501
ISSN (Online): 1873-5592

Mini-Review Article

The Potential of Mur Enzymes as Targets for Antimicrobial Drug Discovery

Author(s): Dharmendra Kumar, Nandan Sarkar, Kuldeep K. Roy, Dheeraj Bisht, Deepak Kumar, Bitasta Mandal, Mogana Rajagopal and Yadu Nandan Dey*

Volume 24, Issue 8, 2023

Published on: 16 June, 2023

Page: [627 - 647] Pages: 21

DOI: 10.2174/1389450124666230608150759

Price: $65

Abstract

The extensive development in the strains of resistant bacteria is a potential hazard to public health worldwide. This necessitates the development of newer agents with the antibacterial property having new mechanisms of action. Mur enzymes catalyze the steps related to the biosynthesis of peptidoglycan, which constitutes a major part of the cell wall in bacteria. Peptidoglycan increases the stiffness of the cell wall, helping it to survive in unfavorable conditions. Therefore, the inhibition of Mur enzymes may lead to novel antibacterial agents that may help in controlling or overcoming bacterial resistance. Mur enzymes are classified into MurA, MurB, MurC, MurD, MurE, and MurF. Until-date, multiple inhibitors are reported for each class of the Mur enzymes. In this review, we have summarized the development of Mur enzyme inhibitors as antibacterial agents in the last few decades.

Next »
Graphical Abstract

[1]
World Health Organization. Antibiotic resistance Available From: https://www.who.int/news-room/fact-sheets/detail/antibiotic-resistance
[2]
Jukič M, Gobec S, Sova M. Reaching toward underexplored targets in antibacterial drug design. Drug Dev Res 2019; 80(1): 6-10.
[http://dx.doi.org/10.1002/ddr.21465] [PMID: 30312991]
[3]
El Zoeiby A, Sanschagrin F, Levesque RC. Structure and function of the Mur enzymes: Development of novel inhibitors. Mol Microbiol 2003; 47(1): 1-12.
[http://dx.doi.org/10.1046/j.1365-2958.2003.03289.x] [PMID: 12492849]
[4]
Naclerio GA, Sintim HO. Multiple ways to kill bacteria via inhibiting novel cell wall or membrane targets. Future Med Chem 2020; 12(13): 1253-79.
[http://dx.doi.org/10.4155/fmc-2020-0046] [PMID: 32538147]
[5]
Vollmer W, Blanot D, De Pedro MA. Peptidoglycan structure and architecture. FEMS Microbiol Rev 2008; 32(2): 149-67.
[http://dx.doi.org/10.1111/j.1574-6976.2007.00094.x] [PMID: 18194336]
[6]
Lovering AL, Safadi SS, Strynadka NCJ. Structural perspective of peptidoglycan biosynthesis and assembly. Annu Rev Biochem 2012; 81(1): 451-78.
[http://dx.doi.org/10.1146/annurev-biochem-061809-112742] [PMID: 22663080]
[7]
Šink R, Barreteau H, Patin D, Mengin-Lecreulx D, Gobec S, Blanot D. MurD enzymes: Some recent developments. Biomol Concepts 2013; 4(6): 539-56.
[http://dx.doi.org/10.1515/bmc-2013-0024] [PMID: 25436755]
[8]
Shanmugam G, Jeon J. Computer-aided drug discovery in plant pathology. Plant Pathol J 2017; 33(6): 529-42.
[http://dx.doi.org/10.5423/PPJ.RW.04.2017.0084] [PMID: 29238276]
[9]
Hrast M, Sosič I, Šink R, Gobec S. Inhibitors of the peptidoglycan biosynthesis enzymes MurA-F. Bioorg Chem 2014; 55: 2-15.
[http://dx.doi.org/10.1016/j.bioorg.2014.03.008] [PMID: 24755374]
[10]
Amera GM, Khan RJ, Pathak A, Jha RK, Muthukumaran J, Singh AK. Computer aided ligand based screening for identification of promising molecules against enzymes involved in peptidoglycan biosynthetic pathway from Acinetobacter baumannii. Microb Pathog 2020; 147: 104205.
[http://dx.doi.org/10.1016/j.micpath.2020.104205] [PMID: 32353580]
[11]
Hrast M, Rožman K, Ogris I, et al. Evaluation of the published kinase inhibitor set to identify multiple inhibitors of bacterial ATP-dependent mur ligases. J Enzyme Inhib Med Chem 2019; 34(1): 1010-7.
[http://dx.doi.org/10.1080/14756366.2019.1608981] [PMID: 31072165]
[12]
Smith CA. Structure, function and dynamics in the mur family of bacterial cell wall ligases. J Mol Biol 2006; 362(4): 640-55.
[http://dx.doi.org/10.1016/j.jmb.2006.07.066] [PMID: 16934839]
[13]
Barreteau H, Kovač A, Boniface A, Sova M, Gobec S, Blanot D. Cytoplasmic steps of peptidoglycan biosynthesis. FEMS Microbiol Rev 2008; 32(2): 168-207.
[http://dx.doi.org/10.1111/j.1574-6976.2008.00104.x] [PMID: 18266853]
[14]
Hervé M, Boniface A, Gobec S, Blanot D, Mengin-Lecreulx D. Biochemical characterization and physiological properties of Escherichia coli UDP-N-acetylmuramate:L-alanyl-γ-D-glutamyl-meso-diaminopimelate ligase. J Bacteriol 2007; 189(11): 3987-95.
[http://dx.doi.org/10.1128/JB.00087-07] [PMID: 17384195]
[15]
Sapkota M, Marreddy RKR, Wu X, Kumar M, Hurdle JG. The early stage peptidoglycan biosynthesis Mur enzymes are antibacterial and antisporulation drug targets for recurrent Clostridioides difficile infection. Anaerobe 2020; 61: 102129.
[http://dx.doi.org/10.1016/j.anaerobe.2019.102129] [PMID: 31760080]
[16]
Mengin-Lecreulx D, van Heijenoort J, Park JT. Identification of the mpl gene encoding UDP-N-acetylmuramate: L-alanyl-γ-D-glutamyl-meso-diaminopimelate ligase in Escherichia coli and its role in recycling of cell wall peptidoglycan. J Bacteriol 1996; 178(18): 5347-52.
[http://dx.doi.org/10.1128/jb.178.18.5347-5352.1996] [PMID: 8808921]
[17]
Hervin V, Arora R, Rani J, et al. Design and synthesis of various 5′-Deoxy-5′-(4-substituted-1,2,3-triazol-1-yl)-uridine analogues as inhibitors of Mycobacterium tuberculosis Mur ligases. Molecules 2020; 25(21): 4953.
[http://dx.doi.org/10.3390/molecules25214953] [PMID: 33114668]
[18]
Subramanian RH, Suzuki Y, Tallorin L, et al. Enzyme-directed functionalization of designed, two-dimensional protein lattices. Biochemistry 2021; 60(13): 1050-62.
[http://dx.doi.org/10.1021/acs.biochem.0c00363] [PMID: 32706243]
[19]
Magalhães RP, Fernandes HS, Sousa SF. Modelling enzymatic mechanisms with QM/MM approaches: Current status and future challenges. Isr J Chem 2020; 60(7): 655-66.
[http://dx.doi.org/10.1002/ijch.202000014]
[20]
Kumari M, Subbarao N. Identification of novel multitarget antitubercular inhibitors against mycobacterial peptidoglycan biosynthetic Mur enzymes by structure-based virtual screening. J Biomol Struct Dyn 2022; 40(18): 8185-96.
[http://dx.doi.org/10.1080/07391102.2021.1908913] [PMID: 33826470]
[21]
Jung KH, Kwon S, Kim CM, Lee JH, Park HH. Putative hexameric glycosyltransferase functional unit revealed by the crystal structure of Acinetobacter baumannii MurG. IUCrJ 2021; 8(4): 574-83.
[http://dx.doi.org/10.1107/S2052252521003729] [PMID: 34258006]
[22]
Kumari M, Singh R, Subbarao N. Exploring the interaction mechanism between potential inhibitor and multi-target Mur enzymes of mycobacterium tuberculosis using molecular docking, molecular dynamics simulation, principal component analysis, free energy landscape, dynamic cross-correlation matrices, vector movements, and binding free energy calculation. J Biomol Struct Dyn 2022; 40(24): 13497-526.
[http://dx.doi.org/10.1080/07391102.2021.1989040] [PMID: 34662260]
[23]
Annunziato G. Strategies to overcome antimicrobial resistance (AMR) making use of non-essential target inhibitors: A review. Int J Mol Sci 2019; 20(23): 5844.
[http://dx.doi.org/10.3390/ijms20235844] [PMID: 31766441]
[24]
Hrast M, Frlan R, Knez D, Zdovc I, Barreteau H, Gobec S. Mur ligases inhibitors with azastilbene scaffold: Expanding the structure–activity relationship. Bioorg Med Chem Lett 2021; 40: 127966.
[http://dx.doi.org/10.1016/j.bmcl.2021.127966] [PMID: 33744441]
[25]
Shinde Y, Ahmad I, Surana S, Patel H. The Mur enzymes chink in the armour of Mycobacterium tuberculosis Cell Wall. Eur J Med Chem 2021; 222: 113568.
[http://dx.doi.org/10.1016/j.ejmech.2021.113568] [PMID: 34118719]
[26]
Wegener H. Antibiotic resistance-linking human and animal health.Improving food safety through a one health approach: Workshop summary. National Academies Press 2012; p. 331.
[27]
Miyachiro MM, Granato D, Trindade DM, Ebel C, Paes Leme AF, Dessen A. Complex formation between Mur enzymes from Streptococcus pneumoniae. Biochemistry 2019; 58(30): 3314-24.
[http://dx.doi.org/10.1021/acs.biochem.9b00277] [PMID: 31264408]
[28]
Patel H, Jadhav H, Ansari I, Pawara R, Surana S. Pyridine and nitro-phenyl linked 1,3,4-thiadiazoles as MDR-TB inhibitors. Eur J Med Chem 2019; 167: 1-9.
[http://dx.doi.org/10.1016/j.ejmech.2019.01.073] [PMID: 30743094]
[29]
Eniyan K, Rani J, Ramachandran S, Bhat R, Khan IA, Bajpai U. Screening of antitubercular compound library identifies inhibitors of Mur enzymes in Mycobacterium tuberculosis. SLAS Discov 2020; 25(1): 70-8.
[http://dx.doi.org/10.1177/2472555219881148] [PMID: 31597510]
[30]
Sangshetti JN, Joshi SS, Patil RH, Moloney MG, Shinde DB. Mur ligase inhibitors as anti-bacterials: A comprehensive review. Curr Pharm Des 2017; 23(21): 3164-96.
[http://dx.doi.org/10.2174/1381612823666170214115048] [PMID: 28201974]
[31]
Mueller EA, Levin PA. Bacterial cell wall quality control during environmental stress. MBio 2020; 11(5): e02456-20.
[http://dx.doi.org/10.1128/mBio.02456-20] [PMID: 33051371]
[32]
Rani J, Silla Y, Borah K, Ramachandran S, Bajpai U. Repurposing of FDA-approved drugs to target MurB and MurE enzymes in Mycobacterium tuberculosis. J Biomol Struct Dyn 2020; 38(9): 2521-32.
[http://dx.doi.org/10.1080/07391102.2019.1637280] [PMID: 31244382]
[33]
Isa MA, Mohammed MM. Molecular docking and dynamic simulation of UDP-N-acetylenolpyruvoylglucosamine reductase (MurB) obtained from Mycobacterium tuberculosis using in silico approach. Netw Model Anal Health Inform Bioinform 2021; 10(1): 40.
[http://dx.doi.org/10.1007/s13721-021-00317-3]
[34]
Nirwan S, Chahal V, Kakkar R. Structure-based virtual screening, free energy of binding and molecular dynamics simulations to propose novel inhibitors of Mtb-MurB oxidoreductase enzyme. J Biomol Struct Dyn 2021; 39(2): 656-71.
[http://dx.doi.org/10.1080/07391102.2020.1712258] [PMID: 31906796]
[35]
Alhaji Isa M, Majumdar RS, Haider S, Kandasamy S. Molecular modelling and dynamic simulation of UDP-N-acetylglucosamine 1-carboxyvinyltransferase (MurA) from Mycobacterium tuberculosis using in silico approach. Informatics in Medicine Unlocked 2018; 12: 56-66.
[http://dx.doi.org/10.1016/j.imu.2018.06.007]
[36]
Keeley A, Ábrányi-Balogh P, Hrast M, et al. Heterocyclic electrophiles as new MurA inhibitors. Arch Pharm 2018; 351(12): 1800184.
[http://dx.doi.org/10.1002/ardp.201800184] [PMID: 30461051]
[37]
Boulhissa I, Chikhi A, Bensegueni A, et al. Investigation of new inhibitors of UDP-N-acetylglucosamine enolpyruvyl transferase (MurA) by virtual screening with antibacterial assessment. Curr Computeraided Drug Des 2021; 17(2): 214-24.
[http://dx.doi.org/10.2174/1573409916666200213124929] [PMID: 32053077]
[38]
Yan Y, Munshi S, Leiting B, Anderson MS, Chrzas J, Chen Z. Crystal structure of Escherichia coli UDPMurNAc-tripeptide d-alanyl-d-alanine-adding enzyme (MurF) at 2.3 Å resolution. J Mol Biol 2000; 304(3): 435-45.
[http://dx.doi.org/10.1006/jmbi.2000.4215] [PMID: 11090285]
[39]
Taha MO, Atallah N, Al-Bakri AG, et al. Discovery of new MurF inhibitors via pharmacophore modeling and QSAR analysis followed by in-silico screening. Bioorg Med Chem 2008; 16(3): 1218-35.
[http://dx.doi.org/10.1016/j.bmc.2007.10.076] [PMID: 17988876]
[40]
Eveland SS, Pompliano DL, Anderson MS. Conditionally lethal Escherichia coli murein mutants contain point defects that map to regions conserved among murein and folyl poly-gamma-glutamate ligases: identification of a ligase superfamily. Biochemistry 1997; 36(20): 6223-9.
[http://dx.doi.org/10.1021/bi9701078] [PMID: 9166795]
[41]
Bertrand JA, Auger G, Fanchon E, et al. Crystal structure of UDP-N-acetylmuramoyl-L-alanine:D-glutamate ligase from Escherichia coli. EMBO J 1997; 16(12): 3416-25.
[http://dx.doi.org/10.1093/emboj/16.12.3416] [PMID: 9218784]
[42]
Kouidmi I, Levesque RC, Paradis-Bleau C. The biology of Mur ligases as an antibacterial target. Mol Microbiol 2014; 94(2): 242-53.
[http://dx.doi.org/10.1111/mmi.12758] [PMID: 25130693]
[43]
Maitra A, Nukala S, Dickman R, et al. Characterization of the MurT/GatD complex in Mycobacterium tuberculosis towards validating a novel anti-tubercular drug target. JAC-Antimicrobial Resistance 2021; 3(1): dlab028.
[http://dx.doi.org/10.1093/jacamr/dlab028] [PMID: 34223102]
[44]
Dik DA, Fisher JF, Mobashery S. Cell-wall recycling of the Gram-negative bacteria and the nexus to antibiotic resistance. Chem Rev 2018; 118(12): 5952-84.
[http://dx.doi.org/10.1021/acs.chemrev.8b00277] [PMID: 29847102]
[45]
Mol CD, Brooun A, Dougan DR, et al. Crystal structures of active fully assembled substrate- and product-bound complexes of UDP-N-acetylmuramic acid:L-alanine ligase (MurC) from Haemophilus influenzae. J Bacteriol 2003; 185(14): 4152-62.
[http://dx.doi.org/10.1128/JB.185.14.4152-4162.2003] [PMID: 12837790]
[46]
Zidar N, Tomašić T, Šink R, et al. New 5-benzylidenethiazolidin-4-one inhibitors of bacterial MurD ligase: Design, synthesis, crystal structures, and biological evaluation. Eur J Med Chem 2011; 46(11): 5512-23.
[http://dx.doi.org/10.1016/j.ejmech.2011.09.017] [PMID: 21963114]
[47]
Kumar P, Saumya KU, Giri R. Identification of peptidomimetic compounds as potential inhibitors against MurA enzyme of Mycobacterium tuberculosis. J Biomol Struct Dyn 2020; 38(17): 4997-5013.
[http://dx.doi.org/10.1080/07391102.2019.1696231] [PMID: 31755364]
[48]
Evangelina IA, Herdiyati Y, Laviana A, et al. Bio-mechanism inhibitory prediction of β-sitosterol from Kemangi (Ocimum basilicum L.) as an inhibitor of MurA enzyme of oral bacteria: in vitro and in silico study. Adv Appl Bioinform Chem 2021; 14: 103-15.
[http://dx.doi.org/10.2147/AABC.S301488] [PMID: 34188494]
[49]
Piepenbreier H, Diehl A, Fritz G. Minimal exposure of lipid II cycle intermediates triggers cell wall antibiotic resistance. Nat Commun 2019; 10(1): 2733. Available From: https://www.nature.com/articles/s41467-019-10673-4
[http://dx.doi.org/10.1038/s41467-019-10673-4] [PMID: 31227716]
[50]
Skarzynski T, Mistry A, Wonacott A, Hutchinson SE, Kelly VA, Duncan K. Structure of UDP-N-acetylglucosamine enolpyruvyl transferase, an enzyme essential for the synthesis of bacterial peptidoglycan, complexed with substrate UDP-N-acetylglucosamine and the drug fosfomycin. Structure 1996; 4(12): 1465-74.
[http://dx.doi.org/10.1016/S0969-2126(96)00153-0] [PMID: 8994972]
[51]
Kurnia D, Hutabarat GS, Windaryanti D, Herlina T, Herdiyati Y, Satari MH. Potential allylpyrocatechol derivatives as antibacterial agent against oral pathogen of S. sanguinis ATCC 10,556 and as inhibitor of MurA enzymes: in vitro and in silico study. Drug Des Devel Ther 2020; 14: 2977-85.
[http://dx.doi.org/10.2147/DDDT.S255269] [PMID: 32801638]
[52]
Eschenburg S, Schönbrunn E. Comparative X-ray analysis of the un-liganded fosfomycin-target murA. Proteins 2000; 40(2): 290-8.
[http://dx.doi.org/10.1002/(SICI)1097-0134(20000801)40:2<290::AID-PROT90>3.0.CO;2-0] [PMID: 10842342]
[53]
Hamilton DJ, Ábrányi-Balogh P, Keeley A, et al. Bromo-cyclobutenaminones as new covalent UDP-N-acetylglucosamine enolpyruvyl transferase (MurA) inhibitors. Pharmaceuticals 2020; 13(11): 362.
[http://dx.doi.org/10.3390/ph13110362] [PMID: 33153141]
[54]
Mihalovits LM, Ferenczy GG, Keserű GM. Catalytic mechanism and covalent inhibition of UDP-N-Acetylglucosamine Enolpyruvyl Transferase (MurA): Implications to the design of novel antibacterials. J Chem Inf Model 2019; 59(12): 5161-73.
[http://dx.doi.org/10.1021/acs.jcim.9b00691] [PMID: 31715096]
[55]
Marquardt JL, Brown ED, Walsh CT, Anderson KS. Isolation and structural elucidation of a tetrahedral intermediate in the UDP-N-acetylglucosamine enolpyruvoyl transferase enzymic pathway. J Am Chem Soc 1993; 115(22): 10398-9.
[http://dx.doi.org/10.1021/ja00075a081]
[56]
Christensen BG, Leanza WJ, Beattie TR, et al. Phosphonomycin: Structure and synthesis. Science 1969; 166(3901): 123-5.
[http://dx.doi.org/10.1126/science.166.3901.123] [PMID: 5821213]
[57]
Isa MA. Homology modeling and molecular dynamic simulation of UDP-N-acetylmuramoyl-l-alanine-d-glutamate ligase (MurD) from Mycobacterium tuberculosis H37Rv using in silico approach. Comput Biol Chem 2019; 78: 116-26.
[http://dx.doi.org/10.1016/j.compbiolchem.2018.11.002] [PMID: 30504089]
[58]
Hendlin D, Stapley EO, Jackson M, et al. Phosphonomycin, a new antibiotic produced by strains of streptomyces. Science 1969; 166(3901): 122-3.
[http://dx.doi.org/10.1126/science.166.3901.122] [PMID: 5809587]
[59]
Nicolle LE. Urinary tract infection: Traditional pharmacologic therapies. Am J Med 2002; 113(1) (Suppl. 1A): 35-44.
[http://dx.doi.org/10.1016/S0002-9343(02)01058-6] [PMID: 12113870]
[60]
Kahan FM, Kahan JS, Cassidy PJ, Kropp H. The mechanism of action of fosfomycin (phosphonomycin). Ann N Y Acad Sci 1974; 235(1 Mode of Actio): 364-86.
[http://dx.doi.org/10.1111/j.1749-6632.1974.tb43277.x] [PMID: 4605290]
[61]
Kadner RJ, Winkler HH. Isolation and characterization of mutations affecting the transport of hexose phosphates in Escherichia coli. J Bacteriol 1973; 113(2): 895-900.
[http://dx.doi.org/10.1128/jb.113.2.895-900.1973] [PMID: 4347928]
[62]
Venkateswaran PS, Wu HC. Isolation and characterization of a phosphonomycin-resistant mutant of Escherichia coli K-12. J Bacteriol 1972; 110(3): 935-44.
[http://dx.doi.org/10.1128/jb.110.3.935-944.1972] [PMID: 4555418]
[63]
Marquardt JL, Siegele DA, Kolter R, Walsh CT. Cloning and sequencing of Escherichia coli murZ and purification of its product, a UDP-N-acetylglucosamine enolpyruvyl transferase. J Bacteriol 1992; 174(17): 5748-52.
[http://dx.doi.org/10.1128/jb.174.17.5748-5752.1992] [PMID: 1512209]
[64]
Mendoza C, Garcia JM, Llaneza J, Mendez FJ, Hardisson C, Ortiz JM. Plasmid-determined resistance to fosfomycin in Serratia marcescens. Antimicrob Agents Chemother 1980; 18(2): 215-9.
[http://dx.doi.org/10.1128/AAC.18.2.215] [PMID: 7004337]
[65]
Etienne JÃ, Gerbaud G, Courvalin P, Fleurette J. Plasmid-mediated resistance to fosfomycin in Staphylococcus epidermidis. FEMS Microbiol Lett 1989; 61(1-2): 133-8.
[http://dx.doi.org/10.1111/j.1574-6968.1989.tb03566.x] [PMID: 2599353]
[66]
Suárez JE, Mendoza MC. Plasmid-encoded fosfomycin resistance. Antimicrob Agents Chemother 1991; 35(5): 791-5.
[http://dx.doi.org/10.1128/AAC.35.5.791] [PMID: 1854159]
[67]
Arca P, Reguera G, Hardisson C. Plasmid-encoded fosfomycin resistance in bacteria isolated from the urinary tract in a multicentre survey. J Antimicrob Chemother 1997; 40(3): 393-9.
[http://dx.doi.org/10.1093/jac/40.3.393] [PMID: 9338493]
[68]
De Smet KAL, Kempsell KE, Gallagher A, Duncan K, Young DB. Alteration of a single amino acid residue reverses fosfomycin resistance of recombinant MurA from Mycobacterium tuberculosis The EMBL accession number for the sequence in this paper is X96711. Microbiology 1999; 145(11): 3177-84.
[http://dx.doi.org/10.1099/00221287-145-11-3177] [PMID: 10589726]
[69]
Funes Chabán M, Hrast M, Frlan R, Graikioti DG, Athanassopoulos CM, Carpinella MC. Inhibition of MurA enzyme from Escherichia coli and Staphylococcus aureus by diterpenes from Lepechinia meyenii and their synthetic analogs. Antibiotics 2021; 10(12): 1535.
[http://dx.doi.org/10.3390/antibiotics10121535] [PMID: 34943747]
[70]
Apriyanti E, Satari MH, Kurnia D. Potential of MurA enzyme and GBAP in Fsr quorum sensing system as antibacterial drugs target: in vitro and in silico study of antibacterial compounds from Myrmecodia pendans. Comb Chem High Throughput Screen 2021; 24(1): 109-18.
[http://dx.doi.org/10.2174/1386207323666200628111348] [PMID: 32598250]
[71]
Hrast M, Rožman K, Jukič M, Patin D, Gobec S, Sova M. Synthesis and structure–activity relationship study of novel quinazolinone-based inhibitors of MurA. Bioorg Med Chem Lett 2017; 27(15): 3529-33.
[http://dx.doi.org/10.1016/j.bmcl.2017.05.064] [PMID: 28579123]
[72]
Amera GM, Khan RJ, Pathak A, et al. Structure based drug designing and discovery of promising lead molecules against UDP-N-acetylenolpyruvoylglucosamine reductase (MurB): A potential drug target in multi-drug resistant Acinetobacter baumannii. J Mol Graph Model 2020; 100: 107675.
[http://dx.doi.org/10.1016/j.jmgm.2020.107675] [PMID: 32731183]
[73]
Shi T, Ma Q, Liu X, et al. Double deletion of murA and murB induced temperature sensitivity in Corynebacterium glutamicum. Bioengineered 2019; 10(1): 561-73.
[http://dx.doi.org/10.1080/21655979.2019.1685058] [PMID: 31648597]
[74]
Sanad SMH, Ahmed AAM, Mekky AEM. Synthesis, in-vitro and in-silico study of novel thiazoles as potent antibacterial agents and MurB inhibitors. Arch Pharm 2020; 353(4): 1900309.
[http://dx.doi.org/10.1002/ardp.201900309] [PMID: 31967349]
[75]
Benson TE, Walsh CT, Hogle JM. The structure of the substrate-free form of MurB, an essential enzyme for the synthesis of bacterial cell walls. Structure 1996; 4(1): 47-54.
[http://dx.doi.org/10.1016/S0969-2126(96)00008-1] [PMID: 8805513]
[76]
Baum EZ, Montenegro DA, Licata L, et al. Identification and characterization of new inhibitors of the Escherichia coli MurA enzyme. Antimicrob Agents Chemother 2001; 45(11): 3182-8.
[http://dx.doi.org/10.1128/AAC.45.11.3182-3188.2001] [PMID: 11600375]
[77]
Benson TE, Filman DJ, Walsh CT, Hogle JM. An enzyme–substrate complex involved in bacterial cell wall biosynthesis. Nat Struct Biol 1995; 2(8): 644-53.
[http://dx.doi.org/10.1038/nsb0895-644] [PMID: 7552726]
[78]
Benson TE, Walsh CT, Hogle JM. X-ray crystal structures of the S229A mutant and wild-type MurB in the presence of the substrate enolpyruvyl-UDP-N-acetylglucosamine at 1.8-A resolution. Biochemistry 1997; 36(4): 806-11.
[http://dx.doi.org/10.1021/bi962221g] [PMID: 9020778]
[79]
Lees WJ, Benson TE, Hogle JM, Walsh CT. (E)-enolbutyryl-UDP-N-acetylglucosamine as a mechanistic probe of UDP-N-acetylenolpyruvylglucosamine reductase (MurB). Biochemistry 1996; 35(5): 1342-51.
[http://dx.doi.org/10.1021/bi952287w] [PMID: 8634262]
[80]
Hrast M, Jukič M, Patin D, et al. in silico identification, synthesis and biological evaluation of novel tetrazole inhibitors of MurB. Chem Biol Drug Des 2018; 91(6): 1101-12.
[http://dx.doi.org/10.1111/cbdd.13172] [PMID: 29363274]
[81]
Nirwan S, Chahal V, Kakkar R. A comparative study of different docking methodologies to assess the protein–ligand interaction for the E. coli MurB enzyme. J Biomol Struct Dyn 2022; 40(21): 11229-38.
[http://dx.doi.org/10.1080/07391102.2021.1957019] [PMID: 34323658]
[82]
Gupta A, Singh R, Sonar PK, Saraf SK. Novel 4-thiazolidinone derivatives as anti-infective agents: Synthesis, characterization, and antimicrobial evaluation. Biochem Res Int 2016; 2016: 1-8.
[http://dx.doi.org/10.1155/2016/8086762] [PMID: 26925267]
[83]
Zeng F, Qi T, Li C, et al. Synthesis, structure–activity relationship and binding mode analysis of 4-thiazolidinone derivatives as novel inhibitors of human dihydroorotate dehydrogenase. MedChemComm 2017; 8(6): 1297-302.
[http://dx.doi.org/10.1039/C7MD00081B] [PMID: 30108840]
[84]
Berckx F, Wibberg D, Kalinowski J, Pawlowski K. The peptidoglycan biosynthesis gene murC in Frankia: Actinorhizal vs. Plant Type. Genes 2020; 11(4): 432.
[http://dx.doi.org/10.3390/genes11040432] [PMID: 32316316]
[85]
Andres CJ, Bronson JJ, D’Andrea SV, et al. 4-Thiazolidinones: Novel inhibitors of the bacterial enzyme murB. Bioorg Med Chem Lett 2000; 10(8): 715-7.
[http://dx.doi.org/10.1016/S0960-894X(00)00073-1] [PMID: 10782671]
[86]
Marmor S, Petersen CP, Reck F, Yang W, Gao N, Fisher SL. Biochemical characterization of a phosphinate inhibitor of Escherichia coli MurC. Biochemistry 2001; 40(40): 12207-14.
[http://dx.doi.org/10.1021/bi015567m] [PMID: 11580296]
[87]
Falk PJ, Ervin KM, Volk KS, Ho HT. Biochemical evidence for the formation of a covalent acyl-phosphate linkage between UDP-N-acetylmuramate and ATP in the Escherichia coli UDP-N-acetylmuramate:L-alanine ligase-catalyzed reaction. Biochemistry 1996; 35(5): 1417-22.
[http://dx.doi.org/10.1021/bi952078b] [PMID: 8634271]
[88]
Deva T, Baker EN, Squire CJ, Smith CA. Structure of Escherichia coli UDP- N -acetylmuramoyl: L -alanine ligase (MurC). Acta Crystallogr D Biol Crystallogr 2006; 62(12): 1466-74.
[http://dx.doi.org/10.1107/S0907444906038376] [PMID: 17139082]
[89]
Messaoudi A, Zoghlami M, Basharat Z, Sadfi-Zouaoui N. Identification of a potential inhibitor targeting MurC ligase of the drug resistant Pseudomonas aeruginosa strain through structure-based virtual screening approach and in vitro assay. Curr Pharm Biotechnol 2019; 20(14): 1203-12.
[http://dx.doi.org/10.2174/1389201020666190719123133] [PMID: 31333120]
[90]
Seo PW, Park SY, Hofmann A, Kim JS. Crystal structures of UDP- N -acetylmuramic acid L -alanine ligase (MurC) from Mycobacterium bovis with and without UDP- N -acetylglucosamine. Acta Crystallogr D Struct Biol 2021; 77(5): 618-27.
[http://dx.doi.org/10.1107/S2059798321002199] [PMID: 33950018]
[91]
Isa MA. Comparative modeling and dynamic simulation of UDP-N-acetylmuramoyl-alanine ligase (MurC) from Mycobacterium tuberculosis through virtual screening and toxicity analysis. Life Sci 2020; 262: 118466.
[http://dx.doi.org/10.1016/j.lfs.2020.118466] [PMID: 32961233]
[92]
Laddomada F, Miyachiro MM, Jessop M, et al. The MurG glycosyltransferase provides an oligomeric scaffold for the cytoplasmic steps of peptidoglycan biosynthesis in the human pathogen Bordetella pertussis. Sci Rep 2019; 9(1): 4656.
[http://dx.doi.org/10.1038/s41598-019-40966-z] [PMID: 30874582]
[93]
Pratviel-Sosa F, Acher F, Trigalo F, Blanot D, Azerad R, Heijenoort J. Effect of various analogues of D-glutamic acid on the D-glutamate-adding enzyme from Escherichis coli. FEMS Microbiol Lett 1994; 115(2-3): 223-8.
[http://dx.doi.org/10.1111/j.1574-6968.1994.tb06642.x] [PMID: 7908001]
[94]
Kotnik M, Humljan J, Contreras-Martel C, et al. Structural and functional characterization of enantiomeric glutamic acid derivatives as potential transition state analogue inhibitors of MurD ligase. J Mol Biol 2007; 370(1): 107-15.
[http://dx.doi.org/10.1016/j.jmb.2007.04.048] [PMID: 17507028]
[95]
Jha RK, Khan RJ, Amera GM, et al. Identification of promising molecules against MurD ligase from Acinetobacter baumannii: insights from comparative protein modelling, virtual screening, molecular dynamics simulations and MM/PBSA analysis. J Mol Model 2020; 26(11): 304.
[http://dx.doi.org/10.1007/s00894-020-04557-4] [PMID: 33068184]
[96]
Štrancar K, Blanot D, Gobec S. Design, synthesis and structure–activity relationships of new phosphinate inhibitors of MurD. Bioorg Med Chem Lett 2006; 16(2): 343-8.
[http://dx.doi.org/10.1016/j.bmcl.2005.09.086] [PMID: 16271472]
[97]
Azam MA, Jupudi S. MurD inhibitors as antibacterial agents: A review. Chem Pap 2020; 74(6): 1697-708.
[http://dx.doi.org/10.1007/s11696-020-01057-w]
[98]
Tiwari P, Sharma P, Kumar M, Kapil A, Abdul Samath E, Kaur P. Identification of novel natural MurD ligase inhibitors as potential antimicrobial agents targeting Acinetobacter baumannii : in silico screening and biological evaluation. J Biomol Struct Dyn 2022; 40(24): 14051-66.
[http://dx.doi.org/10.1080/07391102.2021.2000497] [PMID: 34766874]
[99]
Zheng X, Zheng T, Liao Y, Luo L. Identification of Potential Inhibitors of MurD Enzyme of Staphylococcus aureus from a Marine Natural Product Library. Molecules 2021; 26(21): 6426.
[http://dx.doi.org/10.3390/molecules26216426] [PMID: 34770835]
[100]
Bertrand JA, Auger G, Martin L, et al. Determination of the MurD mechanism through crystallographic analysis of enzyme complexes. J Mol Biol 1999; 289(3): 579-90.
[http://dx.doi.org/10.1006/jmbi.1999.2800] [PMID: 10356330]
[101]
Azam MA, Jupudi S, Saha N, Paul RK. Combining molecular docking and molecular dynamics studies for modelling Staphylococcus aureus MurD inhibitory activity. SAR QSAR Environ Res 2019; 30(1): 1-20.
[http://dx.doi.org/10.1080/1062936X.2018.1539034] [PMID: 30406684]
[102]
Jupudi S, Azam MA, Wadhwani A. Synthesis, molecular docking, binding free energy calculation and molecular dynamics simulation studies of benzothiazol-2-ylcarbamodithioates as Staphylococcus aureus MurD inhibitors. J Recept Signal Transduct Res 2019; 39(3): 283-93.
[http://dx.doi.org/10.1080/10799893.2019.1663538] [PMID: 31538846]
[103]
Simčič M, Pureber K, Kristan K, Urleb U, Kocjan D, Grdadolnik SG. A novel 2-oxoindolinylidene inhibitor of bacterial MurD ligase: Enzyme kinetics, protein-inhibitor binding by NMR and a molecular dynamics study. Eur J Med Chem 2014; 83: 92-101.
[http://dx.doi.org/10.1016/j.ejmech.2014.06.021] [PMID: 24952377]
[104]
Horton JR, Bostock JM, Chopra I, et al. Macrocyclic inhibitors of the bacterial cell wall biosynthesis enzyme mur D. Bioorg Med Chem Lett 2003; 13(9): 1557-60.
[http://dx.doi.org/10.1016/S0960-894X(03)00176-8] [PMID: 12699754]
[105]
Azam MA, Saha N, Jupudi S. An explorative study on Staphylococcus aureus MurE inhibitor: induced fit docking, binding free energy calculation, and molecular dynamics. J Recept Signal Transduct Res 2019; 39(1): 45-54.
[http://dx.doi.org/10.1080/10799893.2019.1605528] [PMID: 31162992]
[106]
Jung KH, Kim YG, Kim CM, et al. Wide-open conformation of UDP-MurNc-tripeptide ligase revealed by the substrate-free structure of MurE from Acinetobacter baumannii. FEBS Lett 2021; 595(2): 275-83.
[http://dx.doi.org/10.1002/1873-3468.14007] [PMID: 33230844]
[107]
Basavannacharya C, Robertson G, Munshi T, Keep NH, Bhakta S. ATP-dependent MurE ligase in Mycobacterium tuberculosis: Biochemical and structural characterisation. Tuberculosis (Edinb) 2010; 90(1): 16-24.
[http://dx.doi.org/10.1016/j.tube.2009.10.007] [PMID: 19945347]
[108]
Gordon E, Flouret B, Chantalat L, van Heijenoort J, Mengin-Lecreulx D, Dideberg O. Crystal structure of UDP-N-acetylmuramoyl-L-alanyl-D-glutamate: meso-diaminopimelate ligase from Escherichia coli. J Biol Chem 2001; 276(14): 10999-1006.
[http://dx.doi.org/10.1074/jbc.M009835200] [PMID: 11124264]
[109]
Osman K, Evangelopoulos D, Basavannacharya C, et al. An antibacterial from Hypericum acmosepalum inhibits ATP-dependent MurE ligase from Mycobacterium tuberculosis. Int J Antimicrob Agents 2012; 39(2): 124-9.
[http://dx.doi.org/10.1016/j.ijantimicag.2011.09.018] [PMID: 22079533]
[110]
Mengin-Lecreulx D, Falla T, Blanot D, van Heijenoort J, Adams DJ, Chopra I. Expression of the Staphylococcus aureus UDP-N-acetylmuramoyl- L-alanyl-D-glutamate:L-lysine ligase in Escherichia coli and effects on peptidoglycan biosynthesis and cell growth. J Bacteriol 1999; 181(19): 5909-14.
[http://dx.doi.org/10.1128/JB.181.19.5909-5914.1999] [PMID: 10498701]
[111]
Bansal R, Haque MA, Hassan MI, Ethayathulla AS, Kaur P. Structural and conformational behavior of MurE ligase from Salmonella enterica serovar Typhi at different temperature and pH conditions. Int J Biol Macromol 2020; 150: 389-99.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.01.306] [PMID: 32018007]
[112]
Gu YG, Florjancic AS, Clark RF, et al. Structure–activity relationships of novel potent MurF inhibitors. Bioorg Med Chem Lett 2004; 14(1): 267-70.
[http://dx.doi.org/10.1016/j.bmcl.2003.09.073] [PMID: 14684340]
[113]
Stamper GF, Longenecker KL, Fry EH, et al. Structure-based optimization of MurF inhibitors. Chem Biol Drug Des 2006; 67(1): 58-65.
[http://dx.doi.org/10.1111/j.1747-0285.2005.00317.x] [PMID: 16492149]
[114]
Höltje JV. Growth of the stress-bearing and shape-maintaining murein sacculus of Escherichia coli. Microbiol Mol Biol Rev 1998; 62(1): 181-203.
[http://dx.doi.org/10.1128/MMBR.62.1.181-203.1998] [PMID: 9529891]
[115]
Yan Y, Munshi S, Li Y, Pryor KAD, Marsilio F, Leiting B. Crystallization and preliminary X-ray analysis of the Escherichia coli UDP-MurNAc-tripeptide D -alanyl- D -alanine-adding enzyme (MurF). Acta Crystallogr D Biol Crystallogr 1999; 55(12): 2033-4.
[http://dx.doi.org/10.1107/S0907444999011786] [PMID: 10666581]
[116]
Poopandi S, Sundaraj R, Rajmichael R, et al. Computational screening of potential inhibitors targeting MurF of Brugia malayi Wolbachia through multi-scale molecular docking, molecular dynamics and MM-GBSA analysis. Mol Biochem Parasitol 2021; 246: 111427.
[http://dx.doi.org/10.1016/j.molbiopara.2021.111427] [PMID: 34666103]
[117]
Mayer VMT, Tomek MB, Figl R, et al. Utilization of different MurNAc sources by the oral pathogen Tannerella forsythia and role of the inner membrane transporter AmpG. BMC Microbiol 2020; 20(1): 352.
[http://dx.doi.org/10.1186/s12866-020-02006-z] [PMID: 33203363]
[118]
Hrast M, Turk S, Sosič I, et al. Structure–activity relationships of new cyanothiophene inhibitors of the essential peptidoglycan biosynthesis enzyme MurF. Eur J Med Chem 2013; 66: 32-45.
[http://dx.doi.org/10.1016/j.ejmech.2013.05.013] [PMID: 23786712]
[119]
Škedelj V, Tomašić T, Mašič LP, Zega A. ATP-binding site of bacterial enzymes as a target for antibacterial drug design. J Med Chem 2011; 54(4): 915-29.
[http://dx.doi.org/10.1021/jm101121s] [PMID: 21235241]
[120]
Bouhss A, Mengin-Lecreulx D, Blanot D, van Heijenoort J, Parquet C. Invariant amino acids in the Mur peptide synthetases of bacterial peptidoglycan synthesis and their modification by site-directed mutagenesis in the UDP-MurNAc:L-alanine ligase from Escherichia coli. Biochemistry 1997; 36(39): 11556-63.
[http://dx.doi.org/10.1021/bi970797f] [PMID: 9305945]
[121]
Sheng Y, Sun X, Shen Y, Bognar AL, Baker EN, Smith CA. Structural and functional similarities in the ADP-forming amide bond ligase superfamily: implications for a substrate-induced conformational change in folylpolyglutamate synthetase 1 1Edited by I. A. Wilson. J Mol Biol 2000; 302(2): 425-38.
[http://dx.doi.org/10.1006/jmbi.2000.3987] [PMID: 10970743]
[122]
Tanner ME, Vaganay S, van Heijenoort J, Blanot D. Phosphinate inhibitors of the D-glutamic acid adding enzyme of peptidoglycan biosynthesis. J Org Chem 1996; 61(5): 1756-60.
[http://dx.doi.org/10.1021/jo951780a] [PMID: 11667046]
[123]
Sosič I, Barreteau H, Simčič M, et al. Second-generation sulfonamide inhibitors of d-glutamic acid-adding enzyme: Activity optimisation with conformationally rigid analogues of d-glutamic acid. Eur J Med Chem 2011; 46(7): 2880-94.
[http://dx.doi.org/10.1016/j.ejmech.2011.04.011] [PMID: 21524830]
[124]
Simčič M, Sosič I, Hodošček M, et al. The binding mode of second-generation sulfonamide inhibitors of MurD: Clues for rational design of potent MurD inhibitors. PLoS One 2012; 7(12): e52817.
[http://dx.doi.org/10.1371/journal.pone.0052817] [PMID: 23285193]
[125]
Blanco A, Blanco G. Enzymes.Medical biochemistry. (1st ed.). Academic Press 2017; pp. 153-75.
[http://dx.doi.org/10.1016/B978-0-12-803550-4.00008-2]
[126]
Frey PA, Hegeman AD. Enzymatic reaction mechanisms. New York: Oxford University Press 2006.
[127]
Perdih A, Hrast M, Barreteau H, Gobec S, Wolber G, Solmajer T. Benzene-1,3-dicarboxylic acid 2,5-dimethylpyrrole derivatives as multiple inhibitors of bacterial Mur ligases (MurC–MurF). Bioorg Med Chem 2014; 22(15): 4124-34.
[http://dx.doi.org/10.1016/j.bmc.2014.05.058] [PMID: 24953950]
[128]
Perdih A, Hrast M, Pureber K, et al. Furan-based benzene mono- and dicarboxylic acid derivatives as multiple inhibitors of the bacterial Mur ligases (MurC–MurF): Experimental and computational characterization. J Comput Aided Mol Des 2015; 29(6): 541-60.
[http://dx.doi.org/10.1007/s10822-015-9843-6] [PMID: 25851408]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy